new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 7

GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

Training Large Language Models (LLMs) presents significant memory challenges, predominantly due to the growing size of weights and optimizer states. Common memory-reduction approaches, such as low-rank adaptation (LoRA), add a trainable low-rank matrix to the frozen pre-trained weight in each layer, reducing trainable parameters and optimizer states. However, such approaches typically underperform training with full-rank weights in both pre-training and fine-tuning stages since they limit the parameter search to a low-rank subspace and alter the training dynamics, and further, may require full-rank warm start. In this work, we propose Gradient Low-Rank Projection (GaLore), a training strategy that allows full-parameter learning but is more memory-efficient than common low-rank adaptation methods such as LoRA. Our approach reduces memory usage by up to 65.5% in optimizer states while maintaining both efficiency and performance for pre-training on LLaMA 1B and 7B architectures with C4 dataset with up to 19.7B tokens, and on fine-tuning RoBERTa on GLUE tasks. Our 8-bit GaLore further reduces optimizer memory by up to 82.5% and total training memory by 63.3%, compared to a BF16 baseline. Notably, we demonstrate, for the first time, the feasibility of pre-training a 7B model on consumer GPUs with 24GB memory (e.g., NVIDIA RTX 4090) without model parallel, checkpointing, or offloading strategies.

  • 6 authors
·
Mar 6, 2024 15

OwLore: Outlier-weighed Layerwise Sampled Low-Rank Projection for Memory-Efficient LLM Fine-tuning

The rapid advancements in Large Language Models (LLMs) have revolutionized various natural language processing tasks. However, the substantial size of LLMs presents significant challenges in training or fine-tuning. While parameter-efficient approaches such as low-rank adaptation (LoRA) have gained popularity, they often compromise performance compared to full-rank fine-tuning. In this paper, we propose Outlier-weighed Layerwise Sampled Low-Rank Projection (OwLore), a new memory-efficient fine-tuning approach, inspired by the layerwise outlier distribution of LLMs, which dynamically samples pre-trained layers to fine-tune instead of adding additional adaptors. We first interpret the outlier phenomenon through the lens of Heavy-Tailed Self-Regularization theory (HT-SR), discovering that layers with more outliers tend to be more heavy-tailed and consequently better trained. Inspired by this finding, OwLore strategically assigns higher sampling probabilities to layers with more outliers to better leverage the knowledge stored in pre-trained LLMs. To further mitigate the memory demands of fine-tuning, we integrate gradient low-rank projection into our approach, which facilitates each layer to be efficiently trained in a low-rank manner. By incorporating the efficient characteristics of low-rank and optimal layerwise sampling, OwLore significantly improves the memory-performance trade-off in LLM pruning. Our extensive experiments across various architectures, including LLaMa2, LLaMa3, and Mistral, demonstrate that OwLore consistently outperforms baseline approaches, including full fine-tuning. Specifically, it achieves up to a 1.1% average accuracy gain on the Commonsense Reasoning benchmark, a 3.0% improvement on MMLU, and a notable 10% boost on MT-Bench, while being more memory efficient. OwLore allows us to fine-tune LLaMa2-7B with only 21GB of memory.

  • 4 authors
·
May 28, 2024

Gradient Weight-normalized Low-rank Projection for Efficient LLM Training

Large Language Models (LLMs) have shown remarkable performance across various tasks, but the escalating demands on computational resources pose significant challenges, particularly in the extensive utilization of full fine-tuning for downstream tasks. To address this, parameter-efficient fine-tuning (PEFT) methods have been developed, but they often underperform compared to full fine-tuning and struggle with memory efficiency. In this work, we introduce Gradient Weight-Normalized Low-Rank Projection (GradNormLoRP), a novel approach that enhances both parameter and memory efficiency while maintaining comparable performance to full fine-tuning. GradNormLoRP normalizes the weight matrix to improve gradient conditioning, facilitating better convergence during optimization. Additionally, it applies low-rank approximations to the weight and gradient matrices, significantly reducing memory usage during training. Extensive experiments demonstrate that our 8-bit GradNormLoRP reduces optimizer memory usage by up to 89.5% and enables the pre-training of large LLMs, such as LLaMA 7B, on consumer-level GPUs like the NVIDIA RTX 4090, without additional inference costs. Moreover, GradNormLoRP outperforms existing low-rank methods in fine-tuning tasks. For instance, when fine-tuning the RoBERTa model on all GLUE tasks with a rank of 8, GradNormLoRP achieves an average score of 80.65, surpassing LoRA's score of 79.23. These results underscore GradNormLoRP as a promising alternative for efficient LLM pre-training and fine-tuning. Source code: https://github.com/Jhhuangkay/Gradient-Weight-normalized-Low-rank-Projection-for-Efficient-LLM-Training

  • 5 authors
·
Dec 27, 2024 2

SVD-Free Low-Rank Adaptive Gradient Optimization for Large Language Models

Low-rank optimization has emerged as a promising direction in training large language models (LLMs) to reduce the memory usage of adaptive optimizers by constraining learning to a lower-dimensional space. Prior work typically projects gradients of linear layers using approaches based on Singular Value Decomposition (SVD). However, applying SVD-based procedures individually to each layer in large models is computationally expensive and incurs additional memory costs due to storing the projection matrices. In this work, we propose a computationally efficient and conceptually simple two-step procedure to approximate SVD-based gradient projections into lower-dimensional spaces. First, we construct a complete orthogonal basis using predefined orthogonal matrices of the Discrete Cosine Transform (DCT). Second, we adaptively select basis columns based on their alignment with the gradient of each layer. Each projection matrix in our method is obtained via a single matrix multiplication followed by a lightweight sorting step to identify the most relevant basis vectors. Due to the predefined nature of the orthogonal bases, they are computed once at the start of training. During training, we store only the indices of the selected columns, avoiding the need to store full projection matrices for each layer. Our numerical experiments on both pre-training and fine-tuning tasks demonstrate the effectiveness of our dual strategy in approximating optimal low-rank projections, matching the performance of costly SVD-based methods while achieving faster runtime and reduced memory usage.

  • 4 authors
·
May 23

FRUGAL: Memory-Efficient Optimization by Reducing State Overhead for Scalable Training

With the increase in the number of parameters in large language models, the process of pre-training and fine-tuning increasingly demands larger volumes of GPU memory. A significant portion of this memory is typically consumed by the optimizer state. To overcome this challenge, recent approaches such as low-rank adaptation (LoRA (Hu et al., 2021)), low-rank gradient projection (GaLore (Zhao et al., 2024)), and blockwise optimization (BAdam (Luo et al., 2024)) have been proposed. However, in all these algorithms, the effective rank of the weight updates remains low-rank, which can lead to a substantial loss of information from the gradient. This loss can be critically important, especially during the pre-training stage. In this paper, we introduce FRUGAL (Full-Rank Updates with GrAdient spLitting), a new memory-efficient optimization framework. FRUGAL leverages gradient splitting to perform low-dimensional updates using advanced algorithms (such as Adam), while updates along the remaining directions are executed via state-free methods like SGD or signSGD (Bernstein et al., 2018). Our framework can be integrated with various low-rank update selection techniques, including GaLore and BAdam. We provide theoretical convergence guarantees for our framework when using SGDM for low-dimensional updates and SGD for state-free updates. Additionally, our method consistently outperforms concurrent approaches across various fixed memory budgets, achieving state-of-the-art results in pre-training and fine-tuning tasks while balancing memory efficiency and performance metrics.

  • 4 authors
·
Nov 12, 2024

Q-GaLore: Quantized GaLore with INT4 Projection and Layer-Adaptive Low-Rank Gradients

Training Large Language Models (LLMs) is memory-intensive due to the large number of parameters and associated optimization states. GaLore, a recent method, reduces memory usage by projecting weight gradients into a low-rank subspace without compromising performance. However, GaLore relies on time-consuming Singular Value Decomposition (SVD) operations to identify the subspace, and the frequent subspace updates lead to significant training time overhead. Moreover, GaLore offers minimal improvements in accuracy and efficiency compared to LoRA in more accessible fine-tuning scenarios. To address these limitations, we introduce Q-Galore, a novel approach that substantially reduces memory usage by combining quantization and low-rank projection, surpassing the benefits of GaLore. Our method is based on two key observations: (i) the gradient subspace exhibits diverse properties, with some layers converging early in training while others are subject to frequent changes; (ii) the projection matrices are highly resilient to low-bit quantization. Leveraging these insights, Q-GaLore adaptively updates the gradient subspace based on its convergence statistics, achieving comparable performance while significantly reducing the number of SVD operations. We maintain the projection matrices in INT4 format and weights in INT8 format, incorporating stochastic rounding to capture accumulated gradient information. This approach enables a high-precision training trajectory using only low-precision weights. We demonstrate that Q-GaLore achieves highly competitive performance with exceptional memory efficiency. At pre-training, Q-GaLore facilitates training a LLaMA-7B model from scratch on a single NVIDIA RTX 4060 Ti with only 16 GB memory. At fine-tuning, it reduces memory consumption by up to 50% compared to LoRA and GaLore, while consistently outperforming QLoRA at the same memory cost.

  • 7 authors
·
Jul 11, 2024 3

APOLLO: SGD-like Memory, AdamW-level Performance

Large language models (LLMs) are notoriously memory-intensive during training, particularly with the popular AdamW optimizer. This memory burden necessitates using more or higher-end GPUs or reducing batch sizes, limiting training scalability and throughput. To address this, various memory-efficient optimizers have been proposed to reduce optimizer memory usage. However, they face critical challenges: (i) reliance on costly SVD operations; (ii) significant performance trade-offs compared to AdamW; and (iii) still substantial optimizer memory overhead to maintain competitive performance. In this work, we identify that AdamW's learning rate adaptation rule can be effectively coarsened as a structured learning rate update. Based on this insight, we propose Approximated Gradient Scaling for Memory-Efficient LLM Optimization (APOLLO), which approximates learning rate scaling using an auxiliary low-rank optimizer state based on pure random projection. This structured learning rate update rule makes APOLLO highly tolerant to further memory reductions while delivering comparable pre-training performance. Even its rank-1 variant, APOLLO-Mini, achieves superior pre-training performance compared to AdamW with SGD-level memory costs. Extensive experiments demonstrate that the APOLLO series performs on-par with or better than AdamW, while achieving greater memory savings by nearly eliminating the optimization states of AdamW. These savings provide significant system-level benefits: (1) Enhanced Throughput: 3x throughput on an 8xA100-80GB setup compared to AdamW by supporting 4x larger batch sizes. (2) Improved Model Scalability: Pre-training LLaMA-13B with naive DDP on A100-80GB GPUs without system-level optimizations. (3) Low-End GPU Friendly Pre-training: Pre-training LLaMA-7B on a single GPU using less than 12 GB of memory with weight quantization.

  • 10 authors
·
Dec 6, 2024 2

From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank Gradients

Modern Large Language Models (LLMs) are composed of matrices with billions of elements, making their storage and processing quite demanding in terms of computational resources and memory usage. Being significantly large, such matrices can often be expressed in low-rank format with potential to relax resource requirements. Unlike prior works which focus on developing novel matrix decomposition algorithms, in this work we first study the emergence of low-rank structures across matrices within different layers of LLMs and establish a consequential relationship between the gradient dynamics and emerging low-rank expressiveness of matrices. Our findings reveal that different layers exhibit varying levels of converged low-rank structure, necessitating a non-uniform rank reduction across them to minimize performance drop due to compression. In view of that, we present Weight Low-Rank Projection (WeLore) that unifies weight compression and memory-efficient fine-tuning as ONE, in a data-agnostic and one-shot way. WeLore capitalizes the heavy-tail distribution of singular values to identify a suitable rank reduction ratio for matrices within LLMs. Going beyond only as a compression technique, WeLore categorizes weight matrices into Low-rank Components (LRCs) and Non-Low-rank Components (N-LRCs) based on their ability to express themselves as low-rank. Our gradient perspective and extensive experiments illustrate that LRCs tend to have better finetuning capabilities and can closely mimic (sometimes outperform) the training loss trajectory and performance of full-finetuning with notable memory and compute footprint reduction. For example, finetuning a 50\% compressed LLaMa-2 7B model using only a fraction of parameters in LRCs (WeLore) can outperform its full finetuning with ~3x better throughput and ~0.6x GPU requirement. Our codes are available at https://github.com/VITA-Group/welore

  • 7 authors
·
Jul 15, 2024 2

Trained Rank Pruning for Efficient Deep Neural Networks

The performance of Deep Neural Networks (DNNs) keeps elevating in recent years with increasing network depth and width. To enable DNNs on edge devices like mobile phones, researchers proposed several network compression methods including pruning, quantization and factorization. Among the factorization-based approaches, low-rank approximation has been widely adopted because of its solid theoretical rationale and efficient implementations. Several previous works attempted to directly approximate a pre-trained model by low-rank decomposition; however, small approximation errors in parameters can ripple a large prediction loss. As a result, performance usually drops significantly and a sophisticated fine-tuning is required to recover accuracy. We argue that it is not optimal to separate low-rank approximation from training. Unlike previous works, this paper integrates low rank approximation and regularization into the training. We propose Trained Rank Pruning (TRP), which iterates low rank approximation and training. TRP maintains the capacity of original network while imposes low-rank constraints during training. A stochastic sub-gradient descent optimized nuclear regularization is utilized to further encourage low rank in TRP. The TRP trained network has low-rank structure in nature, and can be approximated with negligible performance loss, eliminating fine-tuning after low rank approximation. The methods are comprehensively evaluated on CIFAR-10 and ImageNet, outperforming previous compression methods using low rank approximation. Code is available: https://github.com/yuhuixu1993/Trained-Rank-Pruning

  • 9 authors
·
Dec 6, 2018

LoRA-Pro: Are Low-Rank Adapters Properly Optimized?

Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models. Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning. In this paper, we first uncover a fundamental connection between the optimization processes of LoRA and full fine-tuning: using LoRA for optimization is mathematically equivalent to full fine-tuning using a low-rank gradient for parameter updates. And this low-rank gradient can be expressed in terms of the gradients of the two low-rank matrices in LoRA. Leveraging this insight, we introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of these low-rank matrices. This adjustment allows the low-rank gradient to more accurately approximate the full fine-tuning gradient, thereby narrowing the performance gap between LoRA and full fine-tuning. Furthermore, we theoretically derive the optimal solutions for adjusting the gradients of the low-rank matrices, applying them during fine-tuning in LoRA-Pro. We conduct extensive experiments across natural language understanding, dialogue generation, mathematical reasoning, code generation, and image classification tasks, demonstrating that LoRA-Pro substantially improves LoRA's performance, effectively narrowing the gap with full fine-tuning. Code is publicly available at https://github.com/mrflogs/LoRA-Pro.

  • 5 authors
·
Jul 25, 2024

Maestro: Uncovering Low-Rank Structures via Trainable Decomposition

Deep Neural Networks (DNNs) have been a large driver and enabler for AI breakthroughs in recent years. These models have been getting larger in their attempt to become more accurate and tackle new upcoming use-cases, including AR/VR and intelligent assistants. However, the training process of such large models is a costly and time-consuming process, which typically yields a single model to fit all targets. To mitigate this, various techniques have been proposed in the literature, including pruning, sparsification or quantization of the model weights and updates. While able to achieve high compression rates, they often incur computational overheads or accuracy penalties. Alternatively, factorization methods have been leveraged to incorporate low-rank compression in the training process. Similarly, such techniques (e.g.,~SVD) frequently rely on the computationally expensive decomposition of layers and are potentially sub-optimal for non-linear models, such as DNNs. In this work, we take a further step in designing efficient low-rank models and propose Maestro, a framework for trainable low-rank layers. Instead of regularly applying a priori decompositions such as SVD, the low-rank structure is built into the training process through a generalized variant of Ordered Dropout. This method imposes an importance ordering via sampling on the decomposed DNN structure. Our theoretical analysis demonstrates that our method recovers the SVD decomposition of linear mapping on uniformly distributed data and PCA for linear autoencoders. We further apply our technique on DNNs and empirically illustrate that Maestro enables the extraction of lower footprint models that preserve model performance while allowing for graceful accuracy-latency tradeoff for the deployment to devices of different capabilities.

  • 4 authors
·
Aug 28, 2023

SALT: Singular Value Adaptation with Low-Rank Transformation

The complex nature of medical image segmentation calls for models that are specifically designed to capture detailed, domain-specific features. Large foundation models offer considerable flexibility, yet the cost of fine-tuning these models remains a significant barrier. Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), efficiently update model weights with low-rank matrices but may suffer from underfitting when the chosen rank is insufficient to capture domain-specific nuances. Conversely, full-rank Singular Value Decomposition (SVD) based methods provide comprehensive updates by modifying all singular values, yet they often lack flexibility and exhibit variable performance across datasets. We propose SALT (Singular Value Adaptation with Low-Rank Transformation), a method that selectively adapts the most influential singular values using trainable scale and shift parameters while complementing this with a low-rank update for the remaining subspace. This hybrid approach harnesses the advantages of both LoRA and SVD, enabling effective adaptation without relying on increasing model size or depth. Evaluated on 5 challenging medical datasets, ranging from as few as 20 samples to 1000, SALT outperforms state-of-the-art PEFT (LoRA and SVD) by 2% to 5% in Dice with only 3.9% trainable parameters, demonstrating robust adaptation even in low-resource settings. The code for SALT is available at: https://github.com/BioMedIA-MBZUAI/SALT

  • 6 authors
·
Mar 20 2

FedSVD: Adaptive Orthogonalization for Private Federated Learning with LoRA

Low-Rank Adaptation (LoRA), which introduces a product of two trainable low-rank matrices into frozen pre-trained weights, is widely used for efficient fine-tuning of language models in federated learning (FL). However, when combined with differentially private stochastic gradient descent (DP-SGD), LoRA faces substantial noise amplification: DP-SGD perturbs per-sample gradients, and the matrix multiplication of the LoRA update (BA) intensifies this effect. Freezing one matrix (e.g., A) reduces the noise but restricts model expressiveness, often resulting in suboptimal adaptation. To address this, we propose FedSVD, a simple yet effective method that introduces a global reparameterization based on singular value decomposition (SVD). In our approach, each client optimizes only the B matrix and transmits it to the server. The server aggregates the B matrices, computes the product BA using the previous A, and refactorizes the result via SVD. This yields a new adaptive A composed of the orthonormal right singular vectors of BA, and an updated B containing the remaining SVD components. This reparameterization avoids quadratic noise amplification, while allowing A to better capture the principal directions of the aggregate updates. Moreover, the orthonormal structure of A bounds the gradient norms of B and preserves more signal under DP-SGD, as confirmed by our theoretical analysis. As a result, FedSVD consistently improves stability and performance across a variety of privacy settings and benchmarks, outperforming relevant baselines under both private and non-private regimes.

  • 8 authors
·
May 19 3

Global Convergence of Sub-gradient Method for Robust Matrix Recovery: Small Initialization, Noisy Measurements, and Over-parameterization

In this work, we study the performance of sub-gradient method (SubGM) on a natural nonconvex and nonsmooth formulation of low-rank matrix recovery with ell_1-loss, where the goal is to recover a low-rank matrix from a limited number of measurements, a subset of which may be grossly corrupted with noise. We study a scenario where the rank of the true solution is unknown and over-estimated instead. The over-estimation of the rank gives rise to an over-parameterized model in which there are more degrees of freedom than needed. Such over-parameterization may lead to overfitting, or adversely affect the performance of the algorithm. We prove that a simple SubGM with small initialization is agnostic to both over-parameterization and noise in the measurements. In particular, we show that small initialization nullifies the effect of over-parameterization on the performance of SubGM, leading to an exponential improvement in its convergence rate. Moreover, we provide the first unifying framework for analyzing the behavior of SubGM under both outlier and Gaussian noise models, showing that SubGM converges to the true solution, even under arbitrarily large and arbitrarily dense noise values, and--perhaps surprisingly--even if the globally optimal solutions do not correspond to the ground truth. At the core of our results is a robust variant of restricted isometry property, called Sign-RIP, which controls the deviation of the sub-differential of the ell_1-loss from that of an ideal, expected loss. As a byproduct of our results, we consider a subclass of robust low-rank matrix recovery with Gaussian measurements, and show that the number of required samples to guarantee the global convergence of SubGM is independent of the over-parameterized rank.

  • 2 authors
·
Feb 17, 2022

Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models

We study the computational limits of Low-Rank Adaptation (LoRA) update for finetuning transformer-based models using fine-grained complexity theory. Our key observation is that the existence of low-rank decompositions within the gradient computation of LoRA adaptation leads to possible algorithmic speedup. This allows us to (i) identify a phase transition behavior and (ii) prove the existence of nearly linear algorithms by controlling the LoRA update computation term by term, assuming the Strong Exponential Time Hypothesis (SETH). For the former, we identify a sharp transition in the efficiency of all possible rank-r LoRA update algorithms for transformers, based on specific norms resulting from the multiplications of the input sequence X, pretrained weights W^star, and adapter matrices alpha B A / r. Specifically, we derive a shared upper bound threshold for such norms and show that efficient (sub-quadratic) approximation algorithms of LoRA exist only below this threshold. For the latter, we prove the existence of nearly linear approximation algorithms for LoRA adaptation by utilizing the hierarchical low-rank structures of LoRA gradients and approximating the gradients with a series of chained low-rank approximations. To showcase our theory, we consider two practical scenarios: partial (e.g., only W_V and W_Q) and full adaptations (e.g., W_Q, W_V, and W_K) of weights in attention heads.

  • 5 authors
·
Jun 5, 2024

LoLDU: Low-Rank Adaptation via Lower-Diag-Upper Decomposition for Parameter-Efficient Fine-Tuning

The rapid growth of model scale has necessitated substantial computational resources for fine-tuning. Existing approach such as Low-Rank Adaptation (LoRA) has sought to address the problem of handling the large updated parameters in full fine-tuning. However, LoRA utilize random initialization and optimization of low-rank matrices to approximate updated weights, which can result in suboptimal convergence and an accuracy gap compared to full fine-tuning. To address these issues, we propose LoLDU, a Parameter-Efficient Fine-Tuning (PEFT) approach that significantly reduces trainable parameters by 2600 times compared to regular PEFT methods while maintaining comparable performance. LoLDU leverages Lower-Diag-Upper Decomposition (LDU) to initialize low-rank matrices for faster convergence and orthogonality. We focus on optimizing the diagonal matrix for scaling transformations. To the best of our knowledge, LoLDU has the fewest parameters among all PEFT approaches. We conducted extensive experiments across 4 instruction-following datasets, 6 natural language understanding (NLU) datasets, 8 image classification datasets, and image generation datasets with multiple model types (LLaMA2, RoBERTa, ViT, and Stable Diffusion), providing a comprehensive and detailed analysis. Our open-source code can be accessed at https://github.com/SKDDJ/LoLDU{https://github.com/SKDDJ/LoLDU}.

  • 7 authors
·
Oct 17, 2024 2

EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation

In this work, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users (e.g., tasks, compression ratios), resulting in greater flexibility in adjusting overall capacity without being constrained by specific compression formats. However, naively applying SVD to derive residual paths causes suboptimal utilization of the low-rank representation capacity. Instead, we propose Training-free Eigenspace Low-Rank Approximation (EoRA), a method that directly minimizes compression-induced errors without requiring gradient-based training, achieving fast optimization in minutes using a small amount of calibration data. EoRA projects compression errors into the eigenspace of input activations, leveraging eigenvalues to effectively prioritize the reconstruction of high-importance error components. Moreover, EoRA can be seamlessly integrated with fine-tuning and quantization to further improve effectiveness and efficiency. EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks, such as language generation, commonsense reasoning, and math reasoning tasks (e.g., 31.31%/12.88% and 9.69% improvements on ARC-Easy/ARC-Challenge and MathQA when compensating LLaMA3-8B that is quantized to 4-bit and pruned to 2:4 sparsity). EoRA offers a scalable, training-free solution to compensate for compression errors, making it a powerful tool to deploy LLMs in various capacity and efficiency requirements.

nvidia NVIDIA
·
Oct 28, 2024 2

Investigating the Benefits of Projection Head for Representation Learning

An effective technique for obtaining high-quality representations is adding a projection head on top of the encoder during training, then discarding it and using the pre-projection representations. Despite its proven practical effectiveness, the reason behind the success of this technique is poorly understood. The pre-projection representations are not directly optimized by the loss function, raising the question: what makes them better? In this work, we provide a rigorous theoretical answer to this question. We start by examining linear models trained with self-supervised contrastive loss. We reveal that the implicit bias of training algorithms leads to layer-wise progressive feature weighting, where features become increasingly unequal as we go deeper into the layers. Consequently, lower layers tend to have more normalized and less specialized representations. We theoretically characterize scenarios where such representations are more beneficial, highlighting the intricate interplay between data augmentation and input features. Additionally, we demonstrate that introducing non-linearity into the network allows lower layers to learn features that are completely absent in higher layers. Finally, we show how this mechanism improves the robustness in supervised contrastive learning and supervised learning. We empirically validate our results through various experiments on CIFAR-10/100, UrbanCars and shifted versions of ImageNet. We also introduce a potential alternative to projection head, which offers a more interpretable and controllable design.

  • 5 authors
·
Mar 17, 2024

RandLoRA: Full-rank parameter-efficient fine-tuning of large models

Low-Rank Adaptation (LoRA) and its variants have shown impressive results in reducing the number of trainable parameters and memory requirements of large transformer networks while maintaining fine-tuning performance. However, the low-rank nature of the weight update inherently limits the representation power of fine-tuned models, potentially compromising performance on complex tasks. This raises a critical question: when a performance gap between LoRA and standard fine-tuning is observed, is it due to the reduced number of trainable parameters or the rank deficiency? This paper aims to answer this question by introducing RandLoRA, a parameter-efficient method that performs full-rank updates using a learned linear combinations of low-rank, non-trainable random matrices. Our method limits the number of trainable parameters by restricting optimization to diagonal scaling matrices applied to the fixed random matrices. This allows us to effectively overcome the low-rank limitations while maintaining parameter and memory efficiency during training. Through extensive experimentation across vision, language, and vision-language benchmarks, we systematically evaluate the limitations of LoRA and existing random basis methods. Our findings reveal that full-rank updates are beneficial across vision and language tasks individually, and even more so for vision-language tasks, where RandLoRA significantly reduces -- and sometimes eliminates -- the performance gap between standard fine-tuning and LoRA, demonstrating its efficacy.

ALLoRA: Adaptive Learning Rate Mitigates LoRA Fatal Flaws

Low-Rank Adaptation (LoRA) is the bread and butter of Large Language Model (LLM) finetuning. LoRA learns an additive low-rank perturbation, AB, of a pretrained matrix parameter W to align the model to a new task or dataset with W+AB. We identify three core limitations to LoRA for finetuning--a setting that employs limited amount of data and training steps. First, LoRA employs Dropout to prevent overfitting. We prove that Dropout is only suitable for long training episodes but fails to converge to a reliable regularizer for short training episodes. Second, LoRA's initialization of B at 0 creates a slow training dynamic between A and B. That dynamic is also exacerbated by Dropout that further slows the escape from 0 for B which is particularly harmful for short training episodes. Third, the scaling factor multiplying each LoRA additive perturbation creates ``short-sighted'' interactions between the LoRA modules of different layers. Motivated by principled analysis of those limitations, we find an elegant solution: a Dropout-free, scaling-free, LoRA with Adaptive Learning rate--coined ALLoRA. By scaling the per sample and per parameter gradients with a coefficient inversely proportional to parameters' ell_2 norm, ALLoRA alleviates those three limitations. As a by-product, ALLoRA removes two hyper-parameters from LoRA: the scaling factor and the dropout rate. Empirical results show that ALLoRA admits better accuracy than LoRA on various settings, including against recent LoRA variants such as Weight-Decomposed Low-Rank Adaptation (DoRA). Ablation studies show our solution is the optimal in a family of weight-dependent / output-dependent approaches on various LLMs including the latest Llama3.

  • 2 authors
·
Oct 12, 2024

Learning with Local Gradients at the Edge

To enable learning on edge devices with fast convergence and low memory, we present a novel backpropagation-free optimization algorithm dubbed Target Projection Stochastic Gradient Descent (tpSGD). tpSGD generalizes direct random target projection to work with arbitrary loss functions and extends target projection for training recurrent neural networks (RNNs) in addition to feedforward networks. tpSGD uses layer-wise stochastic gradient descent (SGD) and local targets generated via random projections of the labels to train the network layer-by-layer with only forward passes. tpSGD doesn't require retaining gradients during optimization, greatly reducing memory allocation compared to SGD backpropagation (BP) methods that require multiple instances of the entire neural network weights, input/output, and intermediate results. Our method performs comparably to BP gradient-descent within 5% accuracy on relatively shallow networks of fully connected layers, convolutional layers, and recurrent layers. tpSGD also outperforms other state-of-the-art gradient-free algorithms in shallow models consisting of multi-layer perceptrons, convolutional neural networks (CNNs), and RNNs with competitive accuracy and less memory and time. We evaluate the performance of tpSGD in training deep neural networks (e.g. VGG) and extend the approach to multi-layer RNNs. These experiments highlight new research directions related to optimized layer-based adaptor training for domain-shift using tpSGD at the edge.

  • 4 authors
·
Aug 17, 2022

DiffoRA: Enabling Parameter-Efficient LLM Fine-Tuning via Differential Low-Rank Matrix Adaptation

The Parameter-Efficient Fine-Tuning (PEFT) methods have been extensively researched for large language models in the downstream tasks. Among all the existing approaches, the Low-Rank Adaptation (LoRA) has gained popularity for its streamlined design by incorporating low-rank matrices into existing pre-trained models. Though effective, LoRA allocates every module an identical low-rank matrix, which ignores the varying properties and contributions across different components. Moreover, the existing adaptive LoRA solutions rely highly on intuitive importance scoring indicators to adjust the interior rank of the decomposition matrices. In this paper, we propose a new PEFT scheme called DiffoRA, which is theoretically grounded and enables module-wise adoption of LoRA. At the core of our DiffoRA lies a Differential Adaptation Matrix (DAM) to determine which module is the most suitable and essential for fine-tuning. We explain how the designed matrix impacts the convergence rate and generalization capability of a pre-trained model. Furthermore, we construct the DAM via continuous relaxation and discretization with weight-sharing optimizations. We fully implement our DiffoRA and design comprehensive experiments to evaluate its performance. The experimental results demonstrate that our approach achieves the best model accuracy over all the state-of-the-art baselines across various benchmarks.

  • 3 authors
·
Feb 12

SVFit: Parameter-Efficient Fine-Tuning of Large Pre-Trained Models Using Singular Values

Large pre-trained models (LPMs) have demonstrated exceptional performance in diverse natural language processing and computer vision tasks. However, fully fine-tuning these models poses substantial memory challenges, particularly in resource-constrained environments. Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, mitigate this issue by adjusting only a small subset of parameters. Nevertheless, these methods typically employ random initialization for low-rank matrices, which can lead to inefficiencies in gradient descent and diminished generalizability due to suboptimal starting points. To address these limitations, we propose SVFit, a novel PEFT approach that leverages singular value decomposition (SVD) to initialize low-rank matrices using critical singular values as trainable parameters. Specifically, SVFit performs SVD on the pre-trained weight matrix to obtain the best rank-r approximation matrix, emphasizing the most critical singular values that capture over 99% of the matrix's information. These top-r singular values are then used as trainable parameters to scale the fundamental subspaces of the matrix, facilitating rapid domain adaptation. Extensive experiments across various pre-trained models in natural language understanding, text-to-image generation, and image classification tasks reveal that SVFit outperforms LoRA while requiring 16 times fewer trainable parameters.

  • 8 authors
·
Sep 9, 2024

Simple Projection Variants Improve ColBERT Performance

Multi-vector dense retrieval methods like ColBERT systematically use a single-layer linear projection to reduce the dimensionality of individual vectors. In this study, we explore the implications of the MaxSim operator on the gradient flows of the training of multi-vector models and show that such a simple linear projection has inherent, if non-critical, limitations in this setting. We then discuss the theoretical improvements that could result from replacing this single-layer projection with well-studied alternative feedforward linear networks (FFN), such as deeper, non-linear FFN blocks, GLU blocks, and skip-connections, could alleviate these limitations. Through the design and systematic evaluation of alternate projection blocks, we show that better-designed final projections positively impact the downstream performance of ColBERT models. We highlight that many projection variants outperform the original linear projections, with the best-performing variants increasing average performance on a range of retrieval benchmarks across domains by over 2 NDCG@10 points. We then conduct further exploration on the individual parameters of these projections block in order to understand what drives this empirical performance, highlighting the particular importance of upscaled intermediate projections and residual connections. As part of these ablation studies, we show that numerous suboptimal projection variants still outperform the traditional single-layer projection across multiple benchmarks, confirming our hypothesis. Finally, we observe that this effect is consistent across random seeds, further confirming that replacing the linear layer of ColBERT models is a robust, drop-in upgrade.

  • 5 authors
·
Oct 14

Sparse Low-rank Adaptation of Pre-trained Language Models

Fine-tuning pre-trained large language models in a parameter-efficient manner is widely studied for its effectiveness and efficiency. The popular method of low-rank adaptation (LoRA) offers a notable approach, hypothesizing that the adaptation process is intrinsically low-dimensional. Although LoRA has demonstrated commendable performance, it is implemented with a fixed and unalterable intrinsic rank that might not always be the ideal choice. Recognizing the need for more flexible adaptation, we extend the methodology of LoRA to an innovative approach we call sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process. We achieve this through the incorporation of a gate unit optimized with proximal gradient method in the training stage, controlling the cardinality of rank under the sparsity of the gate. In the subsequent inference stage, we eliminate the parameter blocks corresponding to the zeroed-out ranks, to reduce each SoRA module back to a concise yet rank-optimal LoRA. Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters via updating in a sparse way. We further introduce a sparsifying scheduler for SoRA, aiming to examine the impact of the number of non-zero parameters on the model's memorization and generalization. Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.

  • 7 authors
·
Nov 20, 2023

Householder Projector for Unsupervised Latent Semantics Discovery

Generative Adversarial Networks (GANs), especially the recent style-based generators (StyleGANs), have versatile semantics in the structured latent space. Latent semantics discovery methods emerge to move around the latent code such that only one factor varies during the traversal. Recently, an unsupervised method proposed a promising direction to directly use the eigenvectors of the projection matrix that maps latent codes to features as the interpretable directions. However, one overlooked fact is that the projection matrix is non-orthogonal and the number of eigenvectors is too large. The non-orthogonality would entangle semantic attributes in the top few eigenvectors, and the large dimensionality might result in meaningless variations among the directions even if the matrix is orthogonal. To avoid these issues, we propose Householder Projector, a flexible and general low-rank orthogonal matrix representation based on Householder transformations, to parameterize the projection matrix. The orthogonality guarantees that the eigenvectors correspond to disentangled interpretable semantics, while the low-rank property encourages that each identified direction has meaningful variations. We integrate our projector into pre-trained StyleGAN2/StyleGAN3 and evaluate the models on several benchmarks. Within only 1% of the original training steps for fine-tuning, our projector helps StyleGANs to discover more disentangled and precise semantic attributes without sacrificing image fidelity.

  • 4 authors
·
Jul 16, 2023

LORD: Low Rank Decomposition Of Monolingual Code LLMs For One-Shot Compression

Low Rank Decomposition of matrix - splitting a large matrix into a product of two smaller matrix offers a means for compression that reduces the parameters of a model without sparsification, and hence delivering more speedup on modern hardware. Moreover, unlike quantization, the compressed linear layers remain fully differentiable and all the parameters trainable, while being able to leverage the existing highly efficient kernels over floating point matrices. We study the potential to compress Large Language Models (LLMs) for monolingual Code generation via Low Rank Decomposition (LoRD) and observe that ranks for the linear layers in these models can be reduced by upto 39.58% with less than 1% increase in perplexity. We then use Low Rank Decomposition (LoRD) to compress StarCoder 16B to 13.2B parameter with no drop and to 12.3B with minimal drop in HumanEval Pass@1 score, in less than 10 minutes on a single A100. The compressed models speeds up inference by up to 22.35% with just a single line of change in code over huggingface's implementation with pytorch backend. Low Rank Decomposition (LoRD) models remain compatible with state of the art near-lossless quantization method such as SpQR, which allows leveraging further compression gains of quantization. Lastly, QLoRA over Low Rank Decomposition (LoRD) model further reduces memory requirements by as much as 21.2% over vanilla QLoRA while offering similar gains from parameter efficient fine tuning. Our work shows Low Rank Decomposition (LoRD) as a promising new paradigm for LLM compression.

  • 3 authors
·
Sep 25, 2023

Low Rank Matrix Completion via Robust Alternating Minimization in Nearly Linear Time

Given a matrix Min R^{mtimes n}, the low rank matrix completion problem asks us to find a rank-k approximation of M as UV^top for Uin R^{mtimes k} and Vin R^{ntimes k} by only observing a few entries specified by a set of entries Omegasubseteq [m]times [n]. In particular, we examine an approach that is widely used in practice -- the alternating minimization framework. Jain, Netrapalli and Sanghavi~jns13 showed that if M has incoherent rows and columns, then alternating minimization provably recovers the matrix M by observing a nearly linear in n number of entries. While the sample complexity has been subsequently improved~glz17, alternating minimization steps are required to be computed exactly. This hinders the development of more efficient algorithms and fails to depict the practical implementation of alternating minimization, where the updates are usually performed approximately in favor of efficiency. In this paper, we take a major step towards a more efficient and error-robust alternating minimization framework. To this end, we develop an analytical framework for alternating minimization that can tolerate moderate amount of errors caused by approximate updates. Moreover, our algorithm runs in time widetilde O(|Omega| k), which is nearly linear in the time to verify the solution while preserving the sample complexity. This improves upon all prior known alternating minimization approaches which require widetilde O(|Omega| k^2) time.

  • 4 authors
·
Feb 21, 2023

Sparse Spectral Training and Inference on Euclidean and Hyperbolic Neural Networks

The growing computational demands posed by increasingly number of neural network's parameters necessitate low-memory-consumption training approaches. Previous memory reduction techniques, such as Low-Rank Adaptation (LoRA) and ReLoRA, suffer from the limitation of low rank and saddle point issues, particularly during intensive tasks like pre-training. In this paper, we propose Sparse Spectral Training (SST), an advanced training methodology that updates all singular values and selectively updates singular vectors of network weights, thereby optimizing resource usage while closely approximating full-rank training. SST refines the training process by employing a targeted updating strategy for singular vectors, which is determined by a multinomial sampling method weighted by the significance of the singular values, ensuring both high performance and memory reduction. Through comprehensive testing on both Euclidean and hyperbolic neural networks across various tasks, including natural language generation, machine translation, node classification and link prediction, SST demonstrates its capability to outperform existing memory reduction training methods and is comparable with full-rank training in some cases. On OPT-125M, with rank equating to 8.3% of embedding dimension, SST reduces the perplexity gap to full-rank training by 67.6%, demonstrating a significant reduction of the performance loss with prevalent low-rank methods. This approach offers a strong alternative to traditional training techniques, paving the way for more efficient and scalable neural network training solutions.

  • 5 authors
·
May 24, 2024

Kernelized Sparse Fine-Tuning with Bi-level Parameter Competition for Vision Models

Parameter-efficient fine-tuning (PEFT) aims to adapt pre-trained vision models to downstream tasks. Among PEFT paradigms, sparse tuning achieves remarkable performance by adjusting only the weights most relevant to downstream tasks, rather than densely tuning the entire weight matrix. Current methods follow a two-stage paradigm. First, it locates task-relevant weights by gradient information, which overlooks the parameter adjustments during fine-tuning and limits the performance. Second, it updates only the located weights by applying a sparse mask to the gradient of the weight matrix, which results in high memory usage due to the storage of all weight matrices in the optimizer. In this paper, we propose a one-stage method named SNELLA to overcome the above limitations. For memory usage, SNELLA selectively updates the weight matrix by adding it to another sparse matrix that is merged by two low-rank learnable matrices. We extend the low-rank decomposition by introducing nonlinear kernel functions, thereby increasing the rank of the resulting merged matrix to prevent the interdependency among weight updates, enabling better adaptation to downstream tasks. For locating task-relevant weights, we propose an adaptive bi-level sparsity allocation mechanism that encourages weights to compete across and inside layers based on their importance scores in an end-to-end manner. Extensive experiments are conducted on classification, segmentation, and generation tasks using different pre-trained vision models. The results show that SNELLA achieves SOTA performance with low memory usage. Notably, SNELLA obtains 1.8% (91.9% v.s. 90.1%) higher Top-1 accuracy on the FGVC benchmark compared to SPT-LoRA. Compared to previous methods, SNELLA achieves a memory reduction of 31.1%-39.9% across models with parameter scales from 86M to 632M. Our source codes are available at https://github.com/ssfgunner/SNELL.

  • 4 authors
·
Oct 27

DyLoRA: Parameter Efficient Tuning of Pre-trained Models using Dynamic Search-Free Low-Rank Adaptation

With the ever-growing size of pretrained models (PMs), fine-tuning them has become more expensive and resource-hungry. As a remedy, low-rank adapters (LoRA) keep the main pretrained weights of the model frozen and just introduce some learnable truncated SVD modules (so-called LoRA blocks) to the model. While LoRA blocks are parameter-efficient, they suffer from two major problems: first, the size of these blocks is fixed and cannot be modified after training (for example, if we need to change the rank of LoRA blocks, then we need to re-train them from scratch); second, optimizing their rank requires an exhaustive search and effort. In this work, we introduce a dynamic low-rank adaptation (DyLoRA) technique to address these two problems together. Our DyLoRA method trains LoRA blocks for a range of ranks instead of a single rank by sorting the representation learned by the adapter module at different ranks during training. We evaluate our solution on different natural language understanding (GLUE benchmark) and language generation tasks (E2E, DART and WebNLG) using different pretrained models such as RoBERTa and GPT with different sizes. Our results show that we can train dynamic search-free models with DyLoRA at least 4 to 7 times (depending to the task) faster than LoRA without significantly compromising performance. Moreover, our models can perform consistently well on a much larger range of ranks compared to LoRA.

  • 4 authors
·
Oct 14, 2022

LoRA-GA: Low-Rank Adaptation with Gradient Approximation

Fine-tuning large-scale pretrained models is prohibitively expensive in terms of computational and memory costs. LoRA, as one of the most popular Parameter-Efficient Fine-Tuning (PEFT) methods, offers a cost-effective alternative by fine-tuning an auxiliary low-rank model that has significantly fewer parameters. Although LoRA reduces the computational and memory requirements significantly at each iteration, extensive empirical evidence indicates that it converges at a considerably slower rate compared to full fine-tuning, ultimately leading to increased overall compute and often worse test performance. In our paper, we perform an in-depth investigation of the initialization method of LoRA and show that careful initialization (without any change of the architecture and the training algorithm) can significantly enhance both efficiency and performance. In particular, we introduce a novel initialization method, LoRA-GA (Low Rank Adaptation with Gradient Approximation), which aligns the gradients of low-rank matrix product with those of full fine-tuning at the first step. Our extensive experiments demonstrate that LoRA-GA achieves a convergence rate comparable to that of full fine-tuning (hence being significantly faster than vanilla LoRA as well as various recent improvements) while simultaneously attaining comparable or even better performance. For example, on the subset of the GLUE dataset with T5-Base, LoRA-GA outperforms LoRA by 5.69% on average. On larger models such as Llama 2-7B, LoRA-GA shows performance improvements of 0.34, 11.52%, and 5.05% on MT-bench, GSM8K, and Human-eval, respectively. Additionally, we observe up to 2-4 times convergence speed improvement compared to vanilla LoRA, validating its effectiveness in accelerating convergence and enhancing model performance. Code is available at https://github.com/Outsider565/LoRA-GA.

  • 3 authors
·
Jul 6, 2024

One Initialization to Rule them All: Fine-tuning via Explained Variance Adaptation

Foundation models (FMs) are pre-trained on large-scale datasets and then fine-tuned on a downstream task for a specific application. The most successful and most commonly used fine-tuning method is to update the pre-trained weights via a low-rank adaptation (LoRA). LoRA introduces new weight matrices that are usually initialized at random with a uniform rank distribution across model weights. Recent works focus on weight-driven initialization or learning of adaptive ranks during training. Both approaches have only been investigated in isolation, resulting in slow convergence or a uniform rank distribution, in turn leading to sub-optimal performance. We propose to enhance LoRA by initializing the new weights in a data-driven manner by computing singular value decomposition on minibatches of activation vectors. Then, we initialize the LoRA matrices with the obtained right-singular vectors and re-distribute ranks among all weight matrices to explain the maximal amount of variance and continue the standard LoRA fine-tuning procedure. This results in our new method Explained Variance Adaptation (EVA). We apply EVA to a variety of fine-tuning tasks ranging from language generation and understanding to image classification and reinforcement learning. EVA exhibits faster convergence than competitors and attains the highest average score across a multitude of tasks per domain.

  • 6 authors
·
Oct 9, 2024 2

MatryoshkaKV: Adaptive KV Compression via Trainable Orthogonal Projection

KV cache has become a de facto technique for the inference of large language models (LLMs), where tensors of shape (layer number, head number, sequence length, feature dimension) are introduced to cache historical information for self-attention. As the size of the model and data grows, the KV cache can quickly become a bottleneck within the system in both storage and memory transfer. To address this, prior studies usually focus on the first three axes of the cache tensors for compression. This paper supplements them, focusing on the feature dimension axis, by utilizing low-rank projection matrices to transform the cache features into spaces with reduced dimensions. We begin by investigating the canonical orthogonal projection method for data compression through principal component analysis (PCA). We observe the issue with PCA projection where significant performance degradation is observed at low compression rates. To bridge the gap, we propose to directly tune the orthogonal projection matrices with a distillation objective using an elaborate Matryoshka training strategy. After training, we adaptively search for the optimal compression rates for various layers and heads given varying compression budgets. Compared to previous works, our method can easily embrace pre-trained LLMs and hold a smooth tradeoff between performance and compression rate. We empirically witness the high data efficiency of our training procedure and find that our method can sustain over 90% performance with an average KV cache compression rate of 60% (and up to 75% in certain extreme scenarios) for popular LLMs like LLaMA2-7B-base and Mistral-7B-v0.3-base.

  • 8 authors
·
Oct 16, 2024

Supervised Dictionary Learning with Auxiliary Covariates

Supervised dictionary learning (SDL) is a classical machine learning method that simultaneously seeks feature extraction and classification tasks, which are not necessarily a priori aligned objectives. The goal of SDL is to learn a class-discriminative dictionary, which is a set of latent feature vectors that can well-explain both the features as well as labels of observed data. In this paper, we provide a systematic study of SDL, including the theory, algorithm, and applications of SDL. First, we provide a novel framework that `lifts' SDL as a convex problem in a combined factor space and propose a low-rank projected gradient descent algorithm that converges exponentially to the global minimizer of the objective. We also formulate generative models of SDL and provide global estimation guarantees of the true parameters depending on the hyperparameter regime. Second, viewed as a nonconvex constrained optimization problem, we provided an efficient block coordinate descent algorithm for SDL that is guaranteed to find an varepsilon-stationary point of the objective in O(varepsilon^{-1}(log varepsilon^{-1})^{2}) iterations. For the corresponding generative model, we establish a novel non-asymptotic local consistency result for constrained and regularized maximum likelihood estimation problems, which may be of independent interest. Third, we apply SDL for imbalanced document classification by supervised topic modeling and also for pneumonia detection from chest X-ray images. We also provide simulation studies to demonstrate that SDL becomes more effective when there is a discrepancy between the best reconstructive and the best discriminative dictionaries.

  • 3 authors
·
Jun 14, 2022

Unified Low-rank Compression Framework for Click-through Rate Prediction

Deep Click-Through Rate (CTR) prediction models play an important role in modern industrial recommendation scenarios. However, high memory overhead and computational costs limit their deployment in resource-constrained environments. Low-rank approximation is an effective method for computer vision and natural language processing models, but its application in compressing CTR prediction models has been less explored. Due to the limited memory and computing resources, compression of CTR prediction models often confronts three fundamental challenges, i.e., (1). How to reduce the model sizes to adapt to edge devices? (2). How to speed up CTR prediction model inference? (3). How to retain the capabilities of original models after compression? Previous low-rank compression research mostly uses tensor decomposition, which can achieve a high parameter compression ratio, but brings in AUC degradation and additional computing overhead. To address these challenges, we propose a unified low-rank decomposition framework for compressing CTR prediction models. We find that even with the most classic matrix decomposition SVD method, our framework can achieve better performance than the original model. To further improve the effectiveness of our framework, we locally compress the output features instead of compressing the model weights. Our unified low-rank compression framework can be applied to embedding tables and MLP layers in various CTR prediction models. Extensive experiments on two academic datasets and one real industrial benchmark demonstrate that, with 3-5x model size reduction, our compressed models can achieve both faster inference and higher AUC than the uncompressed original models. Our code is at https://github.com/yuhao318/Atomic_Feature_Mimicking.

  • 5 authors
·
May 28, 2024

Bone: Block Affine Transformation as Parameter Efficient Fine-tuning Methods for Large Language Models

Low-Rank Adaptation (LoRA) has achieved remarkable training results by freezing the original weights and training only low-rank matrices, establishing itself as the predominant fine-tuning method for LLMs. In pursuit of performance closer to full-parameter training, a series of LoRA variants have emerged, such as LoRA+, PISSA, Olora, and LoRA-GA. However, these improvements complicate the initial setup of model training and increase initialization time. More importantly, they overlook the internal interactions of the original weight information. To address these issues, we introduce a novel theory, ``Weight Guide'' aimed at continuously guiding trainable matrices through the original weights during training to enhance the utilization of weight information. Based on this theory, we designed a new PEFT technique called Bone (Block Affine), which not only enhances the utilization of original weight information but also emphasizes the internal connections between weights, leading to faster convergence and better data fitting. Experimental comparisons across two different LLM architectures (LLaMA2, RWKV6) and various parameter scales demonstrate that the Bone structure can achieve rapid convergence and superior data fitting without the need for complex initialization. For example, when fine-tuning LLaMA2-7B on the MetaMathQA dataset and validating on GSM8k and math benchmarks, Bone achieved fine-tuning scores of 49.36 and 8.8, respectively, outperforming PISSA by 5.84\% and 1.96\%.

  • 1 authors
·
Sep 19, 2024

Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis

Bilevel optimization is an important formulation for many machine learning problems. Current bilevel optimization algorithms assume that the gradient of the upper-level function is Lipschitz. However, recent studies reveal that certain neural networks such as recurrent neural networks (RNNs) and long-short-term memory networks (LSTMs) exhibit potential unbounded smoothness, rendering conventional bilevel optimization algorithms unsuitable. In this paper, we design a new bilevel optimization algorithm, namely BO-REP, to address this challenge. This algorithm updates the upper-level variable using normalized momentum and incorporates two novel techniques for updating the lower-level variable: initialization refinement and periodic updates. Specifically, once the upper-level variable is initialized, a subroutine is invoked to obtain a refined estimate of the corresponding optimal lower-level variable, and the lower-level variable is updated only after every specific period instead of each iteration. When the upper-level problem is nonconvex and unbounded smooth, and the lower-level problem is strongly convex, we prove that our algorithm requires mathcal{O}(1/epsilon^4) iterations to find an epsilon-stationary point in the stochastic setting, where each iteration involves calling a stochastic gradient or Hessian-vector product oracle. Notably, this result matches the state-of-the-art complexity results under the bounded smoothness setting and without mean-squared smoothness of the stochastic gradient, up to logarithmic factors. Our proof relies on novel technical lemmas for the periodically updated lower-level variable, which are of independent interest. Our experiments on hyper-representation learning, hyperparameter optimization, and data hyper-cleaning for text classification tasks demonstrate the effectiveness of our proposed algorithm.

  • 3 authors
·
Jan 17, 2024

Semantic-guided LoRA Parameters Generation

Low-Rank Adaptation (LoRA) has demonstrated strong generalization capabilities across a variety of tasks for efficiently fine-tuning AI models, especially on resource-constrained edges. However, in real-world applications, edge users often exhibit task-specific preferences that are difficult to handle with a unified model trained under a closed-world assumption, and the challenge may further increase when there are significant domain shifts between training and deployment. Meanwhile, retraining/fine-tuning models for each user is also impractical due to its cost-intensive nature and privacy concerns over raw data utilization from edges. To address these challenges, we propose Semantic-guided LoRA Parameter Generation (SG-LoRA), the first of its kind framework to efficiently produce user-specific LoRA parameters without any additional training on user tasks or access to user-specific data. Concretely, SG-LoRA uses task descriptions as the semantic bridge, measuring their proximity to a set of known expert tasks in a shared embedding space. Based on this semantic guidance, it models the target task's LoRA parameter distribution to generate high-performing parameters for novel tasks. SG-LoRA enables the real-time construction of LoRA models aligned with individual intents by distilling knowledge from prominent LoRA experts and, meanwhile, offering a privacy-preserving solution for personalized model adaptation in a novel zero-shot open-world setting proposed in this work. Extensive experiments on multiple challenging tasks confirm the superior performance and remarkable adaptability of SG-LoRA. Code is available at https://github.com/keepgoingjkg/SG-LoRA.

  • 5 authors
·
Sep 5

Weighted least-squares approximation with determinantal point processes and generalized volume sampling

We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.

  • 2 authors
·
Dec 21, 2023

One Head Eight Arms: Block Matrix based Low Rank Adaptation for CLIP-based Few-Shot Learning

Recent advancements in fine-tuning Vision-Language Foundation Models (VLMs) have garnered significant attention for their effectiveness in downstream few-shot learning tasks.While these recent approaches exhibits some performance improvements, they often suffer from excessive training parameters and high computational costs. To address these challenges, we propose a novel Block matrix-based low-rank adaptation framework, called Block-LoRA, for fine-tuning VLMs on downstream few-shot tasks. Inspired by recent work on Low-Rank Adaptation (LoRA), Block-LoRA partitions the original low-rank decomposition matrix of LoRA into a series of sub-matrices while sharing all down-projection sub-matrices. This structure not only reduces the number of training parameters, but also transforms certain complex matrix multiplication operations into simpler matrix addition, significantly lowering the computational cost of fine-tuning. Notably, Block-LoRA enables fine-tuning CLIP on the ImageNet few-shot benchmark using a single 24GB GPU. We also show that Block-LoRA has the more tighter bound of generalization error than vanilla LoRA. Without bells and whistles, extensive experiments demonstrate that Block-LoRA achieves competitive performance compared to state-of-the-art CLIP-based few-shot methods, while maintaining a low training parameters count and reduced computational overhead.

  • 5 authors
·
Jan 28

M-FAC: Efficient Matrix-Free Approximations of Second-Order Information

Efficiently approximating local curvature information of the loss function is a key tool for optimization and compression of deep neural networks. Yet, most existing methods to approximate second-order information have high computational or storage costs, which can limit their practicality. In this work, we investigate matrix-free, linear-time approaches for estimating Inverse-Hessian Vector Products (IHVPs) for the case when the Hessian can be approximated as a sum of rank-one matrices, as in the classic approximation of the Hessian by the empirical Fisher matrix. We propose two new algorithms as part of a framework called M-FAC: the first algorithm is tailored towards network compression and can compute the IHVP for dimension d, if the Hessian is given as a sum of m rank-one matrices, using O(dm^2) precomputation, O(dm) cost for computing the IHVP, and query cost O(m) for any single element of the inverse Hessian. The second algorithm targets an optimization setting, where we wish to compute the product between the inverse Hessian, estimated over a sliding window of optimization steps, and a given gradient direction, as required for preconditioned SGD. We give an algorithm with cost O(dm + m^2) for computing the IHVP and O(dm + m^3) for adding or removing any gradient from the sliding window. These two algorithms yield state-of-the-art results for network pruning and optimization with lower computational overhead relative to existing second-order methods. Implementations are available at [9] and [17].

  • 3 authors
·
Jul 7, 2021

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.

  • 6 authors
·
May 22, 2022

Constrained Bi-Level Optimization: Proximal Lagrangian Value function Approach and Hessian-free Algorithm

This paper presents a new approach and algorithm for solving a class of constrained Bi-Level Optimization (BLO) problems in which the lower-level problem involves constraints coupling both upper-level and lower-level variables. Such problems have recently gained significant attention due to their broad applicability in machine learning. However, conventional gradient-based methods unavoidably rely on computationally intensive calculations related to the Hessian matrix. To address this challenge, we begin by devising a smooth proximal Lagrangian value function to handle the constrained lower-level problem. Utilizing this construct, we introduce a single-level reformulation for constrained BLOs that transforms the original BLO problem into an equivalent optimization problem with smooth constraints. Enabled by this reformulation, we develop a Hessian-free gradient-based algorithm-termed proximal Lagrangian Value function-based Hessian-free Bi-level Algorithm (LV-HBA)-that is straightforward to implement in a single loop manner. Consequently, LV-HBA is especially well-suited for machine learning applications. Furthermore, we offer non-asymptotic convergence analysis for LV-HBA, eliminating the need for traditional strong convexity assumptions for the lower-level problem while also being capable of accommodating non-singleton scenarios. Empirical results substantiate the algorithm's superior practical performance.

  • 4 authors
·
Jan 29, 2024

LoRAPrune: Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning

Large pre-trained models (LPMs), such as LLaMA and GLM, have shown exceptional performance across various tasks through fine-tuning. Although low-rank adaption (LoRA) has emerged to cheaply fine-tune these LPMs on downstream tasks, their deployment is still hindered by the vast model scale and computational costs. Neural network pruning offers a way to compress LPMs. However, the current pruning methods designed for LPMs are not compatible with LoRA. This is due to their utilization of unstructured pruning on LPMs, impeding the merging of LoRA weights, or their dependence on the gradients of pre-trained weights to guide pruning, which can impose significant memory overhead. To this end, we propose LoRAPrune, a new framework that delivers an accurate, compact model for efficient inference in a highly memory-effective manner. Specifically, we first design a LoRA-guided pruning criterion, which uses the weights and gradients of LoRA, rather than the gradients of pre-trained weights for importance estimation. We then propose a structured iterative pruning procedure, to remove redundant channels and heads. Extensive experimental results demonstrate the superior performance of our LoRAPrune over existing approaches on the LLaMA series models. For instance, at a 50\% compression rate, LoRAPrune outperforms LLM-Pruner by a perplexity reduction of 8.0 on WikiText2 and 16.05 on PTB datasets, while concurrently reducing memory usage by 52.6\%. The code will be released after review

  • 7 authors
·
May 28, 2023

Deep Learning on a Data Diet: Finding Important Examples Early in Training

Recent success in deep learning has partially been driven by training increasingly overparametrized networks on ever larger datasets. It is therefore natural to ask: how much of the data is superfluous, which examples are important for generalization, and how do we find them? In this work, we make the striking observation that, in standard vision datasets, simple scores averaged over several weight initializations can be used to identify important examples very early in training. We propose two such scores -- the Gradient Normed (GraNd) and the Error L2-Norm (EL2N) scores -- and demonstrate their efficacy on a range of architectures and datasets by pruning significant fractions of training data without sacrificing test accuracy. In fact, using EL2N scores calculated a few epochs into training, we can prune half of the CIFAR10 training set while slightly improving test accuracy. Furthermore, for a given dataset, EL2N scores from one architecture or hyperparameter configuration generalize to other configurations. Compared to recent work that prunes data by discarding examples that are rarely forgotten over the course of training, our scores use only local information early in training. We also use our scores to detect noisy examples and study training dynamics through the lens of important examples -- we investigate how the data distribution shapes the loss surface and identify subspaces of the model's data representation that are relatively stable over training.

  • 3 authors
·
Jul 14, 2021

PELA: Learning Parameter-Efficient Models with Low-Rank Approximation

Applying a pre-trained large model to downstream tasks is prohibitive under resource-constrained conditions. Recent dominant approaches for addressing efficiency issues involve adding a few learnable parameters to the fixed backbone model. This strategy, however, leads to more challenges in loading large models for downstream fine-tuning with limited resources. In this paper, we propose a novel method for increasing the parameter efficiency of pre-trained models by introducing an intermediate pre-training stage. To this end, we first employ low-rank approximation to compress the original large model and then devise a feature distillation module and a weight perturbation regularization module. These modules are specifically designed to enhance the low-rank model. In particular, we update only the low-rank model while freezing the backbone parameters during pre-training. This allows for direct and efficient utilization of the low-rank model for downstream fine-tuning tasks. The proposed method achieves both efficiencies in terms of required parameters and computation time while maintaining comparable results with minimal modifications to the backbone architecture. Specifically, when applied to three vision-only and one vision-language Transformer models, our approach often demonstrates a merely sim0.6 point decrease in performance while reducing the original parameter size by 1/3 to 2/3.

  • 3 authors
·
Oct 16, 2023