Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDiminished Diversity-of-Thought in a Standard Large Language Model
We test whether Large Language Models (LLMs) can be used to simulate human participants in social-science studies. To do this, we run replications of 14 studies from the Many Labs 2 replication project with OpenAI's text-davinci-003 model, colloquially known as GPT3.5. Based on our pre-registered analyses, we find that among the eight studies we could analyse, our GPT sample replicated 37.5% of the original results and 37.5% of the Many Labs 2 results. However, we were unable to analyse the remaining six studies due to an unexpected phenomenon we call the "correct answer" effect. Different runs of GPT3.5 answered nuanced questions probing political orientation, economic preference, judgement, and moral philosophy with zero or near-zero variation in responses: with the supposedly "correct answer." In one exploratory follow-up study, we found that a "correct answer" was robust to changing the demographic details that precede the prompt. In another, we found that most but not all "correct answers" were robust to changing the order of answer choices. One of our most striking findings occurred in our replication of the Moral Foundations Theory survey results, where we found GPT3.5 identifying as a political conservative in 99.6% of the cases, and as a liberal in 99.3% of the cases in the reverse-order condition. However, both self-reported 'GPT conservatives' and 'GPT liberals' showed right-leaning moral foundations. Our results cast doubts on the validity of using LLMs as a general replacement for human participants in the social sciences. Our results also raise concerns that a hypothetical AI-led future may be subject to a diminished diversity-of-thought.
Tailoring Vaccine Messaging with Common-Ground Opinions
One way to personalize chatbot interactions is by establishing common ground with the intended reader. A domain where establishing mutual understanding could be particularly impactful is vaccine concerns and misinformation. Vaccine interventions are forms of messaging which aim to answer concerns expressed about vaccination. Tailoring responses in this domain is difficult, since opinions often have seemingly little ideological overlap. We define the task of tailoring vaccine interventions to a Common-Ground Opinion (CGO). Tailoring responses to a CGO involves meaningfully improving the answer by relating it to an opinion or belief the reader holds. In this paper we introduce TAILOR-CGO, a dataset for evaluating how well responses are tailored to provided CGOs. We benchmark several major LLMs on this task; finding GPT-4-Turbo performs significantly better than others. We also build automatic evaluation metrics, including an efficient and accurate BERT model that outperforms finetuned LLMs, investigate how to successfully tailor vaccine messaging to CGOs, and provide actionable recommendations from this investigation. Code and model weights: https://github.com/rickardstureborg/tailor-cgo Dataset: https://huggingface.co/datasets/DukeNLP/tailor-cgo
Reliability Check: An Analysis of GPT-3's Response to Sensitive Topics and Prompt Wording
Large language models (LLMs) have become mainstream technology with their versatile use cases and impressive performance. Despite the countless out-of-the-box applications, LLMs are still not reliable. A lot of work is being done to improve the factual accuracy, consistency, and ethical standards of these models through fine-tuning, prompting, and Reinforcement Learning with Human Feedback (RLHF), but no systematic analysis of the responses of these models to different categories of statements, or on their potential vulnerabilities to simple prompting changes is available. In this work, we analyze what confuses GPT-3: how the model responds to certain sensitive topics and what effects the prompt wording has on the model response. We find that GPT-3 correctly disagrees with obvious Conspiracies and Stereotypes but makes mistakes with common Misconceptions and Controversies. The model responses are inconsistent across prompts and settings, highlighting GPT-3's unreliability. Dataset and code of our analysis is available in https://github.com/tanny411/GPT3-Reliability-Check.
Galaxy Zoo DESI: Detailed Morphology Measurements for 8.7M Galaxies in the DESI Legacy Imaging Surveys
We present detailed morphology measurements for 8.67 million galaxies in the DESI Legacy Imaging Surveys (DECaLS, MzLS, and BASS, plus DES). These are automated measurements made by deep learning models trained on Galaxy Zoo volunteer votes. Our models typically predict the fraction of volunteers selecting each answer to within 5-10\% for every answer to every GZ question. The models are trained on newly-collected votes for DESI-LS DR8 images as well as historical votes from GZ DECaLS. We also release the newly-collected votes. Extending our morphology measurements outside of the previously-released DECaLS/SDSS intersection increases our sky coverage by a factor of 4 (5,000 to 19,000 deg^2) and allows for full overlap with complementary surveys including ALFALFA and MaNGA.
Evaluation of GPT-3.5 and GPT-4 for supporting real-world information needs in healthcare delivery
Despite growing interest in using large language models (LLMs) in healthcare, current explorations do not assess the real-world utility and safety of LLMs in clinical settings. Our objective was to determine whether two LLMs can serve information needs submitted by physicians as questions to an informatics consultation service in a safe and concordant manner. Sixty six questions from an informatics consult service were submitted to GPT-3.5 and GPT-4 via simple prompts. 12 physicians assessed the LLM responses' possibility of patient harm and concordance with existing reports from an informatics consultation service. Physician assessments were summarized based on majority vote. For no questions did a majority of physicians deem either LLM response as harmful. For GPT-3.5, responses to 8 questions were concordant with the informatics consult report, 20 discordant, and 9 were unable to be assessed. There were 29 responses with no majority on "Agree", "Disagree", and "Unable to assess". For GPT-4, responses to 13 questions were concordant, 15 discordant, and 3 were unable to be assessed. There were 35 responses with no majority. Responses from both LLMs were largely devoid of overt harm, but less than 20% of the responses agreed with an answer from an informatics consultation service, responses contained hallucinated references, and physicians were divided on what constitutes harm. These results suggest that while general purpose LLMs are able to provide safe and credible responses, they often do not meet the specific information need of a given question. A definitive evaluation of the usefulness of LLMs in healthcare settings will likely require additional research on prompt engineering, calibration, and custom-tailoring of general purpose models.
LLMs Can Generate a Better Answer by Aggregating Their Own Responses
Large Language Models (LLMs) have shown remarkable capabilities across tasks, yet they often require additional prompting techniques when facing complex problems. While approaches like self-correction and response selection have emerged as popular solutions, recent studies have shown these methods perform poorly when relying on the LLM itself to provide feedback or selection criteria. We argue this limitation stems from the fact that common LLM post-training procedures lack explicit supervision for discriminative judgment tasks. In this paper, we propose Generative Self-Aggregation (GSA), a novel prompting method that improves answer quality without requiring the model's discriminative capabilities. GSA first samples multiple diverse responses from the LLM, then aggregates them to obtain an improved solution. Unlike previous approaches, our method does not require the LLM to correct errors or compare response quality; instead, it leverages the model's generative abilities to synthesize a new response based on the context of multiple samples. While GSA shares similarities with the self-consistency (SC) approach for response aggregation, SC requires specific verifiable tokens to enable majority voting. In contrast, our approach is more general and can be applied to open-ended tasks. Empirical evaluation demonstrates that GSA effectively improves response quality across various tasks, including mathematical reasoning, knowledge-based problems, and open-ended generation tasks such as code synthesis and conversational responses.
GPT-4o System Card
GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.
GooAQ: Open Question Answering with Diverse Answer Types
While day-to-day questions come with a variety of answer types, the current question-answering (QA) literature has failed to adequately address the answer diversity of questions. To this end, we present GooAQ, a large-scale dataset with a variety of answer types. This dataset contains over 5 million questions and 3 million answers collected from Google. GooAQ questions are collected semi-automatically from the Google search engine using its autocomplete feature. This results in naturalistic questions of practical interest that are nonetheless short and expressed using simple language. GooAQ answers are mined from Google's responses to our collected questions, specifically from the answer boxes in the search results. This yields a rich space of answer types, containing both textual answers (short and long) as well as more structured ones such as collections. We benchmarkT5 models on GooAQ and observe that: (a) in line with recent work, LM's strong performance on GooAQ's short-answer questions heavily benefit from annotated data; however, (b) their quality in generating coherent and accurate responses for questions requiring long responses (such as 'how' and 'why' questions) is less reliant on observing annotated data and mainly supported by their pre-training. We release GooAQ to facilitate further research on improving QA with diverse response types.
Questioning the Survey Responses of Large Language Models
As large language models increase in capability, researchers have started to conduct surveys of all kinds on these models with varying scientific motivations. In this work, we examine what we can learn from a model's survey responses on the basis of the well-established American Community Survey (ACS) by the U.S. Census Bureau. Evaluating more than a dozen different models, varying in size from a few hundred million to ten billion parameters, hundreds of thousands of times each on questions from the ACS, we systematically establish two dominant patterns. First, smaller models have a significant position and labeling bias, for example, towards survey responses labeled with the letter "A". This A-bias diminishes, albeit slowly, as model size increases. Second, when adjusting for this labeling bias through randomized answer ordering, models still do not trend toward US population statistics or those of any cognizable population. Rather, models across the board trend toward uniformly random aggregate statistics over survey responses. This pattern is robust to various different ways of prompting the model, including what is the de-facto standard. Our findings demonstrate that aggregate statistics of a language model's survey responses lack the signals found in human populations. This absence of statistical signal cautions about the use of survey responses from large language models at present time.
Should we tweet this? Generative response modeling for predicting reception of public health messaging on Twitter
The way people respond to messaging from public health organizations on social media can provide insight into public perceptions on critical health issues, especially during a global crisis such as COVID-19. It could be valuable for high-impact organizations such as the US Centers for Disease Control and Prevention (CDC) or the World Health Organization (WHO) to understand how these perceptions impact reception of messaging on health policy recommendations. We collect two datasets of public health messages and their responses from Twitter relating to COVID-19 and Vaccines, and introduce a predictive method which can be used to explore the potential reception of such messages. Specifically, we harness a generative model (GPT-2) to directly predict probable future responses and demonstrate how it can be used to optimize expected reception of important health guidance. Finally, we introduce a novel evaluation scheme with extensive statistical testing which allows us to conclude that our models capture the semantics and sentiment found in actual public health responses.
Revealing Fine-Grained Values and Opinions in Large Language Models
Uncovering latent values and opinions in large language models (LLMs) can help identify biases and mitigate potential harm. Recently, this has been approached by presenting LLMs with survey questions and quantifying their stances towards morally and politically charged statements. However, the stances generated by LLMs can vary greatly depending on how they are prompted, and there are many ways to argue for or against a given position. In this work, we propose to address this by analysing a large and robust dataset of 156k LLM responses to the 62 propositions of the Political Compass Test (PCT) generated by 6 LLMs using 420 prompt variations. We perform coarse-grained analysis of their generated stances and fine-grained analysis of the plain text justifications for those stances. For fine-grained analysis, we propose to identify tropes in the responses: semantically similar phrases that are recurrent and consistent across different prompts, revealing patterns in the text that a given LLM is prone to produce. We find that demographic features added to prompts significantly affect outcomes on the PCT, reflecting bias, as well as disparities between the results of tests when eliciting closed-form vs. open domain responses. Additionally, patterns in the plain text rationales via tropes show that similar justifications are repeatedly generated across models and prompts even with disparate stances.
Are international happiness rankings reliable?
Global comparisons of wellbeing increasingly rely on survey questions that ask respondents to evaluate their lives, most commonly in the form of "life satisfaction" and "Cantril ladder" items. These measures underpin international rankings such as the World Happiness Report and inform policy initiatives worldwide, yet their comparability has not been established with contemporary global data. Using the Gallup World Poll, Global Flourishing Study, and World Values Survey, I show that the two question formats yield divergent distributions, rankings, and response patterns that vary across countries and surveys, defying simple explanations. To explore differences in respondents' cognitive interpretations, I compare regression coefficients from the Global Flourishing Study, analyzing how each question wording relates to life circumstances. While international rankings of wellbeing are unstable, the scientific study of the determinants of life evaluations appears more robust. Together, the findings underscore the need for a renewed research agenda on critical limitations to cross-country comparability of wellbeing.
Model Analysis & Evaluation for Ambiguous Question Answering
Ambiguous questions are a challenge for Question Answering models, as they require answers that cover multiple interpretations of the original query. To this end, these models are required to generate long-form answers that often combine conflicting pieces of information. Although recent advances in the field have shown strong capabilities in generating fluent responses, certain research questions remain unanswered. Does model/data scaling improve the answers' quality? Do automated metrics align with human judgment? To what extent do these models ground their answers in evidence? In this study, we aim to thoroughly investigate these aspects, and provide valuable insights into the limitations of the current approaches. To aid in reproducibility and further extension of our work, we open-source our code at https://github.com/din0s/ambig_lfqa.
Measuring General Intelligence with Generated Games
We present gg-bench, a collection of game environments designed to evaluate general reasoning capabilities in language models. Unlike most static benchmarks, gg-bench is a data generating process where new evaluation instances can be generated at will. In particular, gg-bench is synthetically generated by (1) using a large language model (LLM) to generate natural language descriptions of novel games, (2) using the LLM to implement each game in code as a Gym environment, and (3) training reinforcement learning (RL) agents via self-play on the generated games. We evaluate language models by their winrate against these RL agents by prompting models with the game description, current board state, and a list of valid moves, after which models output the moves they wish to take. gg-bench is challenging: state-of-the-art LLMs such as GPT-4o and Claude 3.7 Sonnet achieve winrates of 7-9% on gg-bench using in-context learning, while reasoning models such as o1, o3-mini and DeepSeek-R1 achieve average winrates of 31-36%. We release the generated games, data generation process, and evaluation code in order to support future modeling work and expansion of our benchmark.
An Empirical Study of AI Generated Text Detection Tools
Since ChatGPT has emerged as a major AIGC model, providing high-quality responses across a wide range of applications (including software development and maintenance), it has attracted much interest from many individuals. ChatGPT has great promise, but there are serious problems that might arise from its misuse, especially in the realms of education and public safety. Several AIGC detectors are available, and they have all been tested on genuine text. However, more study is needed to see how effective they are for multi-domain ChatGPT material. This study aims to fill this need by creating a multi-domain dataset for testing the state-of-the-art APIs and tools for detecting artificially generated information used by universities and other research institutions. A large dataset consisting of articles, abstracts, stories, news, and product reviews was created for this study. The second step is to use the newly created dataset to put six tools through their paces. Six different artificial intelligence (AI) text identification systems, including "GPTkit," "GPTZero," "Originality," "Sapling," "Writer," and "Zylalab," have accuracy rates between 55.29 and 97.0%. Although all the tools fared well in the evaluations, originality was particularly effective across the board.
Using Language Models to Detect Alarming Student Responses
This article details the advances made to a system that uses artificial intelligence to identify alarming student responses. This system is built into our assessment platform to assess whether a student's response indicates they are a threat to themselves or others. Such responses may include details concerning threats of violence, severe depression, suicide risks, and descriptions of abuse. Driven by advances in natural language processing, the latest model is a fine-tuned language model trained on a large corpus consisting of student responses and supplementary texts. We demonstrate that the use of a language model delivers a substantial improvement in accuracy over the previous iterations of this system.
Teaching language models to support answers with verified quotes
Recent large language models often answer factual questions correctly. But users can't trust any given claim a model makes without fact-checking, because language models can hallucinate convincing nonsense. In this work we use reinforcement learning from human preferences (RLHP) to train "open-book" QA models that generate answers whilst also citing specific evidence for their claims, which aids in the appraisal of correctness. Supporting evidence is drawn from multiple documents found via a search engine, or from a single user-provided document. Our 280 billion parameter model, GopherCite, is able to produce answers with high quality supporting evidence and abstain from answering when unsure. We measure the performance of GopherCite by conducting human evaluation of answers to questions in a subset of the NaturalQuestions and ELI5 datasets. The model's response is found to be high-quality 80\% of the time on this Natural Questions subset, and 67\% of the time on the ELI5 subset. Abstaining from the third of questions for which it is most unsure improves performance to 90\% and 80\% respectively, approaching human baselines. However, analysis on the adversarial TruthfulQA dataset shows why citation is only one part of an overall strategy for safety and trustworthiness: not all claims supported by evidence are true.
WebGPT: Browser-assisted question-answering with human feedback
We fine-tune GPT-3 to answer long-form questions using a text-based web-browsing environment, which allows the model to search and navigate the web. By setting up the task so that it can be performed by humans, we are able to train models on the task using imitation learning, and then optimize answer quality with human feedback. To make human evaluation of factual accuracy easier, models must collect references while browsing in support of their answers. We train and evaluate our models on ELI5, a dataset of questions asked by Reddit users. Our best model is obtained by fine-tuning GPT-3 using behavior cloning, and then performing rejection sampling against a reward model trained to predict human preferences. This model's answers are preferred by humans 56% of the time to those of our human demonstrators, and 69% of the time to the highest-voted answer from Reddit.
Global Wheat Head Dataset 2021: more diversity to improve the benchmarking of wheat head localization methods
The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4,700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated competition hosted in Kaggle, GWHD has successfully attracted attention from both the computer vision and agricultural science communities. From this first experience in 2020, a few avenues for improvements have been identified, especially from the perspective of data size, head diversity and label reliability. To address these issues, the 2020 dataset has been reexamined, relabeled, and augmented by adding 1,722 images from 5 additional countries, allowing for 81,553 additional wheat heads to be added. We now release a new version of the Global Wheat Head Detection (GWHD) dataset in 2021, which is bigger, more diverse, and less noisy than the 2020 version. The GWHD 2021 is now publicly available at http://www.global-wheat.com/ and a new data challenge has been organized on AIcrowd to make use of this updated dataset.
Evaluating GPT-3.5 and GPT-4 Models on Brazilian University Admission Exams
The present study aims to explore the capabilities of Language Models (LMs) in tackling high-stakes multiple-choice tests, represented here by the Exame Nacional do Ensino M\'edio (ENEM), a multidisciplinary entrance examination widely adopted by Brazilian universities. This exam poses challenging tasks for LMs, since its questions may span into multiple fields of knowledge, requiring understanding of information from diverse domains. For instance, a question may require comprehension of both statistics and biology to be solved. This work analyzed responses generated by GPT-3.5 and GPT-4 models for questions presented in the 2009-2017 exams, as well as for questions of the 2022 exam, which were made public after the training of the models was completed. Furthermore, different prompt strategies were tested, including the use of Chain-of-Thought (CoT) prompts to generate explanations for answers. On the 2022 edition, the best-performing model, GPT-4 with CoT, achieved an accuracy of 87%, largely surpassing GPT-3.5 by 11 points. The code and data used on experiments are available at https://github.com/piresramon/gpt-4-enem.
Evaluating the Generation Capabilities of Large Chinese Language Models
This paper presents CG-Eval, the first comprehensive evaluation of the generation capabilities of large Chinese language models across a wide range of academic disciplines. The models' performance was assessed based on their ability to generate accurate and relevant responses to different types of questions in six disciplines, namely, Science and Engineering, Humanities and Social Sciences, Mathematical Calculations, Medical Practitioner Qualification Examination, Judicial Examination, and Certified Public Accountant Examination. This paper also presents Gscore, a composite index derived from the weighted sum of multiple metrics to measure the quality of model's generation against a reference. The test data and test results can be found at http://cgeval.besteasy.com/.
RMIT-ADM+S at the SIGIR 2025 LiveRAG Challenge
This paper presents the RMIT--ADM+S participation in the SIGIR 2025 LiveRAG Challenge. Our Generation-Retrieval-Augmented Generation (GRAG) approach relies on generating a hypothetical answer that is used in the retrieval phase, alongside the original question. GRAG also incorporates a pointwise large language model (LLM)-based re-ranking step prior to final answer generation. We describe the system architecture and the rationale behind our design choices. In particular, a systematic evaluation using the Grid of Points (GoP) framework and N-way ANOVA enabled comparison across multiple configurations, including query variant generation, question decomposition, rank fusion strategies, and prompting techniques for answer generation. Our system achieved a Relevance score of 1.199 and a Faithfulness score of 0.477 on the private leaderboard, placing among the top four finalists in the LiveRAG 2025 Challenge.
Managing Escalation in Off-the-Shelf Large Language Models
U.S. national security customers have begun to utilize large language models, including enterprise versions of ``off-the-shelf'' models (e.g., ChatGPT) familiar to the public. This uptake will likely accelerate. However, recent studies suggest that off-the-shelf large language models frequently suggest escalatory actions when prompted with geopolitical or strategic scenarios. We demonstrate two simple, non-technical interventions to control these tendencies. Introducing these interventions into the experimental wargame design of a recent study, we substantially reduce escalation throughout the game. Calls to restrict the use of large language models in national security applications are thus premature. The U.S. government is already, and will continue, employing large language models for scenario planning and suggesting courses of action. Rather than warning against such applications, this study acknowledges the imminent adoption of large language models, and provides actionable measures to align them with national security goals, including escalation management.
WeaverBird: Empowering Financial Decision-Making with Large Language Model, Knowledge Base, and Search Engine
We present WeaverBird, an intelligent dialogue system designed specifically for the finance domain. Our system harnesses a large language model of GPT architecture that has been tuned using extensive corpora of finance-related text. As a result, our system possesses the capability to understand complex financial queries, such as "How should I manage my investments during inflation?", and provide informed responses. Furthermore, our system incorporates a local knowledge base and a search engine to retrieve relevant information. The final responses are conditioned on the search results and include proper citations to the sources, thus enjoying an enhanced credibility. Through a range of finance-related questions, we have demonstrated the superior performance of our system compared to other models. To experience our system firsthand, users can interact with our live demo at https://weaverbird.ttic.edu, as well as watch our 2-min video illustration at https://www.youtube.com/watch?v=fyV2qQkX6Tc.
Rethinking Generative Large Language Model Evaluation for Semantic Comprehension
Despite their sophisticated capabilities, large language models (LLMs) encounter a major hurdle in effective assessment. This paper first revisits the prevalent evaluation method-multiple choice question answering (MCQA), which allows for straightforward accuracy measurement. Through a comprehensive evaluation of 24 models across 11 benchmarks, we highlight several potential drawbacks of MCQA, for instance, the inconsistency between the MCQA evaluation and the generation of open-ended responses in practical scenarios. In response, we introduce an RWQ-Elo rating system, engaging 24 LLMs such as GPT-4, GPT-3.5, Google-Gemini-Pro and LLaMA-1/-2, in a two-player competitive format, with GPT-4 serving as the judge. Each LLM receives an Elo rating thereafter. This system is designed to mirror real-world usage, and for this purpose, we have compiled a new benchmark called ``Real-world questions'' (RWQ), comprising 20,772 authentic user inquiries. Additionally, we thoroughly analyze the characteristics of our system and compare it with prior leaderboards like AlpacaEval and MT-Bench. Our analysis reveals the stability of our RWQ-Elo system, the feasibility of registering new models, and its potential to reshape LLM leaderboards.
GPT-4's assessment of its performance in a USMLE-based case study
This study investigates GPT-4's assessment of its performance in healthcare applications. A simple prompting technique was used to prompt the LLM with questions taken from the United States Medical Licensing Examination (USMLE) questionnaire and it was tasked to evaluate its confidence score before posing the question and after asking the question. The questionnaire was categorized into two groups-questions with feedback (WF) and questions with no feedback(NF) post-question. The model was asked to provide absolute and relative confidence scores before and after each question. The experimental findings were analyzed using statistical tools to study the variability of confidence in WF and NF groups. Additionally, a sequential analysis was conducted to observe the performance variation for the WF and NF groups. Results indicate that feedback influences relative confidence but doesn't consistently increase or decrease it. Understanding the performance of LLM is paramount in exploring its utility in sensitive areas like healthcare. This study contributes to the ongoing discourse on the reliability of AI, particularly of LLMs like GPT-4, within healthcare, offering insights into how feedback mechanisms might be optimized to enhance AI-assisted medical education and decision support.
Towards Measuring the Representation of Subjective Global Opinions in Language Models
Large language models (LLMs) may not equitably represent diverse global perspectives on societal issues. In this paper, we develop a quantitative framework to evaluate whose opinions model-generated responses are more similar to. We first build a dataset, GlobalOpinionQA, comprised of questions and answers from cross-national surveys designed to capture diverse opinions on global issues across different countries. Next, we define a metric that quantifies the similarity between LLM-generated survey responses and human responses, conditioned on country. With our framework, we run three experiments on an LLM trained to be helpful, honest, and harmless with Constitutional AI. By default, LLM responses tend to be more similar to the opinions of certain populations, such as those from the USA, and some European and South American countries, highlighting the potential for biases. When we prompt the model to consider a particular country's perspective, responses shift to be more similar to the opinions of the prompted populations, but can reflect harmful cultural stereotypes. When we translate GlobalOpinionQA questions to a target language, the model's responses do not necessarily become the most similar to the opinions of speakers of those languages. We release our dataset for others to use and build on. Our data is at https://huggingface.co/datasets/Anthropic/llm_global_opinions. We also provide an interactive visualization at https://llmglobalvalues.anthropic.com.
GPT Deciphering Fedspeak: Quantifying Dissent Among Hawks and Doves
Markets and policymakers around the world hang on the consequential monetary policy decisions made by the Federal Open Market Committee (FOMC). Publicly available textual documentation of their meetings provides insight into members' attitudes about the economy. We use GPT-4 to quantify dissent among members on the topic of inflation. We find that transcripts and minutes reflect the diversity of member views about the macroeconomic outlook in a way that is lost or omitted from the public statements. In fact, diverging opinions that shed light upon the committee's "true" attitudes are almost entirely omitted from the final statements. Hence, we argue that forecasting FOMC sentiment based solely on statements will not sufficiently reflect dissent among the hawks and doves.
ReTAG: Retrieval-Enhanced, Topic-Augmented Graph-Based Global Sensemaking
Recent advances in question answering have led to substantial progress in tasks such as multi-hop reasoning. However, global sensemaking-answering questions by synthesizing information from an entire corpus remains a significant challenge. A prior graph-based approach to global sensemaking lacks retrieval mechanisms, topic specificity, and incurs high inference costs. To address these limitations, we propose ReTAG, a Retrieval-Enhanced, Topic-Augmented Graph framework that constructs topic-specific subgraphs and retrieves the relevant summaries for response generation. Experiments show that ReTAG improves response quality while significantly reducing inference time compared to the baseline. Our code is available at https://github.com/bykimby/retag.
Towards best practices in AGI safety and governance: A survey of expert opinion
A number of leading AI companies, including OpenAI, Google DeepMind, and Anthropic, have the stated goal of building artificial general intelligence (AGI) - AI systems that achieve or exceed human performance across a wide range of cognitive tasks. In pursuing this goal, they may develop and deploy AI systems that pose particularly significant risks. While they have already taken some measures to mitigate these risks, best practices have not yet emerged. To support the identification of best practices, we sent a survey to 92 leading experts from AGI labs, academia, and civil society and received 51 responses. Participants were asked how much they agreed with 50 statements about what AGI labs should do. Our main finding is that participants, on average, agreed with all of them. Many statements received extremely high levels of agreement. For example, 98% of respondents somewhat or strongly agreed that AGI labs should conduct pre-deployment risk assessments, dangerous capabilities evaluations, third-party model audits, safety restrictions on model usage, and red teaming. Ultimately, our list of statements may serve as a helpful foundation for efforts to develop best practices, standards, and regulations for AGI labs.
OlympicArena Medal Ranks: Who Is the Most Intelligent AI So Far?
In this report, we pose the following question: Who is the most intelligent AI model to date, as measured by the OlympicArena (an Olympic-level, multi-discipline, multi-modal benchmark for superintelligent AI)? We specifically focus on the most recently released models: Claude-3.5-Sonnet, Gemini-1.5-Pro, and GPT-4o. For the first time, we propose using an Olympic medal Table approach to rank AI models based on their comprehensive performance across various disciplines. Empirical results reveal: (1) Claude-3.5-Sonnet shows highly competitive overall performance over GPT-4o, even surpassing GPT-4o on a few subjects (i.e., Physics, Chemistry, and Biology). (2) Gemini-1.5-Pro and GPT-4V are ranked consecutively just behind GPT-4o and Claude-3.5-Sonnet, but with a clear performance gap between them. (3) The performance of AI models from the open-source community significantly lags behind these proprietary models. (4) The performance of these models on this benchmark has been less than satisfactory, indicating that we still have a long way to go before achieving superintelligence. We remain committed to continuously tracking and evaluating the performance of the latest powerful models on this benchmark (available at https://github.com/GAIR-NLP/OlympicArena).
Is ChatGPT a Biomedical Expert? -- Exploring the Zero-Shot Performance of Current GPT Models in Biomedical Tasks
We assessed the performance of commercial Large Language Models (LLMs) GPT-3.5-Turbo and GPT-4 on tasks from the 2023 BioASQ challenge. In Task 11b Phase B, which is focused on answer generation, both models demonstrated competitive abilities with leading systems. Remarkably, they achieved this with simple zero-shot learning, grounded with relevant snippets. Even without relevant snippets, their performance was decent, though not on par with the best systems. Interestingly, the older and cheaper GPT-3.5-Turbo system was able to compete with GPT-4 in the grounded Q&A setting on factoid and list answers. In Task 11b Phase A, focusing on retrieval, query expansion through zero-shot learning improved performance, but the models fell short compared to other systems. The code needed to rerun these experiments is available through GitHub.
Graph-Based Tri-Attention Network for Answer Ranking in CQA
In community-based question answering (CQA) platforms, automatic answer ranking for a given question is critical for finding potentially popular answers in early times. The mainstream approaches learn to generate answer ranking scores based on the matching degree between question and answer representations as well as the influence of respondents. However, they encounter two main limitations: (1) Correlations between answers in the same question are often overlooked. (2) Question and respondent representations are built independently of specific answers before affecting answer representations. To address the limitations, we devise a novel graph-based tri-attention network, namely GTAN, which has two innovations. First, GTAN proposes to construct a graph for each question and learn answer correlations from each graph through graph neural networks (GNNs). Second, based on the representations learned from GNNs, an alternating tri-attention method is developed to alternatively build target-aware respondent representations, answer-specific question representations, and context-aware answer representations by attention computation. GTAN finally integrates the above representations to generate answer ranking scores. Experiments on three real-world CQA datasets demonstrate GTAN significantly outperforms state-of-the-art answer ranking methods, validating the rationality of the network architecture.
Cyber Security Operations Educational Gamification Application Listing
This listing contains a total of 80 gamification applications (GA)s used in cyber security operations (CSO) undergraduate education, from 74 publications, published between 2007 and June 2022. The listing outlines each GA identified and provides a short overview of each. This listing serves as both a comprehensive repository of existing GAs in cybersecurity undergraduate education, and as a starting point for adding new CSO GAs to the list. Contact the first author to add a CSO GA to the next version of the list.
CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models
This paper introduces the "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset, designed to evaluate the social and cultural variation of Large Language Models (LLMs) across multiple languages and value-sensitive topics. We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy. CIVICS is designed to generate responses showing LLMs' encoded and implicit values. Through our dynamic annotation processes, tailored prompt design, and experiments, we investigate how open-weight LLMs respond to value-sensitive issues, exploring their behavior across diverse linguistic and cultural contexts. Using two experimental set-ups based on log-probabilities and long-form responses, we show social and cultural variability across different LLMs. Specifically, experiments involving long-form responses demonstrate that refusals are triggered disparately across models, but consistently and more frequently in English or translated statements. Moreover, specific topics and sources lead to more pronounced differences across model answers, particularly on immigration, LGBTQI rights, and social welfare. As shown by our experiments, the CIVICS dataset aims to serve as a tool for future research, promoting reproducibility and transparency across broader linguistic settings, and furthering the development of AI technologies that respect and reflect global cultural diversities and value pluralism. The CIVICS dataset and tools will be made available upon publication under open licenses; an anonymized version is currently available at https://huggingface.co/CIVICS-dataset.
Comparing the Efficacy of GPT-4 and Chat-GPT in Mental Health Care: A Blind Assessment of Large Language Models for Psychological Support
Background: Rapid advancements in natural language processing have led to the development of large language models with the potential to revolutionize mental health care. These models have shown promise in assisting clinicians and providing support to individuals experiencing various psychological challenges. Objective: This study aims to compare the performance of two large language models, GPT-4 and Chat-GPT, in responding to a set of 18 psychological prompts, to assess their potential applicability in mental health care settings. Methods: A blind methodology was employed, with a clinical psychologist evaluating the models' responses without knowledge of their origins. The prompts encompassed a diverse range of mental health topics, including depression, anxiety, and trauma, to ensure a comprehensive assessment. Results: The results demonstrated a significant difference in performance between the two models (p > 0.05). GPT-4 achieved an average rating of 8.29 out of 10, while Chat-GPT received an average rating of 6.52. The clinical psychologist's evaluation suggested that GPT-4 was more effective at generating clinically relevant and empathetic responses, thereby providing better support and guidance to potential users. Conclusions: This study contributes to the growing body of literature on the applicability of large language models in mental health care settings. The findings underscore the importance of continued research and development in the field to optimize these models for clinical use. Further investigation is necessary to understand the specific factors underlying the performance differences between the two models and to explore their generalizability across various populations and mental health conditions.
WikiWhy: Answering and Explaining Cause-and-Effect Questions
As large language models (LLMs) grow larger and more sophisticated, assessing their "reasoning" capabilities in natural language grows more challenging. Recent question answering (QA) benchmarks that attempt to assess reasoning are often limited by a narrow scope of covered situations and subject matters. We introduce WikiWhy, a QA dataset built around a novel auxiliary task: explaining why an answer is true in natural language. WikiWhy contains over 9,000 "why" question-answer-rationale triples, grounded on Wikipedia facts across a diverse set of topics. Each rationale is a set of supporting statements connecting the question to the answer. WikiWhy serves as a benchmark for the reasoning capabilities of LLMs because it demands rigorous explicit rationales for each answer to demonstrate the acquisition of implicit commonsense knowledge, which is unlikely to be easily memorized. GPT-3 baselines achieve only 38.7% human-evaluated correctness in the end-to-end answer & explain condition, leaving significant room for future improvements.
WIQA: A dataset for "What if..." reasoning over procedural text
We introduce WIQA, the first large-scale dataset of "What if..." questions over procedural text. WIQA contains three parts: a collection of paragraphs each describing a process, e.g., beach erosion; a set of crowdsourced influence graphs for each paragraph, describing how one change affects another; and a large (40k) collection of "What if...?" multiple-choice questions derived from the graphs. For example, given a paragraph about beach erosion, would stormy weather result in more or less erosion (or have no effect)? The task is to answer the questions, given their associated paragraph. WIQA contains three kinds of questions: perturbations to steps mentioned in the paragraph; external (out-of-paragraph) perturbations requiring commonsense knowledge; and irrelevant (no effect) perturbations. We find that state-of-the-art models achieve 73.8% accuracy, well below the human performance of 96.3%. We analyze the challenges, in particular tracking chains of influences, and present the dataset as an open challenge to the community.
A Stylometric Application of Large Language Models
We show that large language models (LLMs) can be used to distinguish the writings of different authors. Specifically, an individual GPT-2 model, trained from scratch on the works of one author, will predict held-out text from that author more accurately than held-out text from other authors. We suggest that, in this way, a model trained on one author's works embodies the unique writing style of that author. We first demonstrate our approach on books written by eight different (known) authors. We also use this approach to confirm R. P. Thompson's authorship of the well-studied 15th book of the Oz series, originally attributed to F. L. Baum.
Is GPT-4 a reliable rater? Evaluating Consistency in GPT-4 Text Ratings
This study investigates the consistency of feedback ratings generated by OpenAI's GPT-4, a state-of-the-art artificial intelligence language model, across multiple iterations, time spans and stylistic variations. The model rated responses to tasks within the Higher Education (HE) subject domain of macroeconomics in terms of their content and style. Statistical analysis was conducted in order to learn more about the interrater reliability, consistency of the ratings across iterations and the correlation between ratings in terms of content and style. The results revealed a high interrater reliability with ICC scores ranging between 0.94 and 0.99 for different timespans, suggesting that GPT-4 is capable of generating consistent ratings across repetitions with a clear prompt. Style and content ratings show a high correlation of 0.87. When applying a non-adequate style the average content ratings remained constant, while style ratings decreased, which indicates that the large language model (LLM) effectively distinguishes between these two criteria during evaluation. The prompt used in this study is furthermore presented and explained. Further research is necessary to assess the robustness and reliability of AI models in various use cases.
Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent performance across multiple interaction rounds. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. First, we propose a novel Position-Weighted Consistency (PWC) score that captures both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by incorporating model confidence signals into the generation process. Empirical results demonstrate that CARG significantly improves response stability without sacrificing accuracy, underscoring its potential for reliable LLM deployment in critical applications.
Linguistic Properties of Truthful Response
We investigate the phenomenon of an LLM's untruthful response using a large set of 220 handcrafted linguistic features. We focus on GPT-3 models and find that the linguistic profiles of responses are similar across model sizes. That is, how varying-sized LLMs respond to given prompts stays similar on the linguistic properties level. We expand upon this finding by training support vector machines that rely only upon the stylistic components of model responses to classify the truthfulness of statements. Though the dataset size limits our current findings, we present promising evidence that truthfulness detection is possible without evaluating the content itself.
GCPO: When Contrast Fails, Go Gold
Reinforcement learning has been widely applied to enhance the reasoning capabilities of large language models. Extending the inference limits of smaller models has become a prominent research focus. However, algorithms such as Group Relative Policy Optimization (GRPO) suffer from a clear drawback: the upper bound of a model's rollout responses is entirely determined by the model itself, preventing the acquisition of knowledge from samples that are either all incorrect or all correct. In this paper, we introduce Group Contrastive Policy Optimization (GCPO), a method that incorporates external standard reference answers. When the model cannot solve a problem, the reference answer supplies the correct response, steering the model toward an unequivocally accurate update direction. This approach offers two main advantages: (1) it improves training efficiency by fully utilizing every sample; (2) it enables the model to emulate the problem solving strategy of the reference answer during training, thereby enhancing generalization in reasoning. GCPO achieves outstanding results across multiple benchmark datasets, yielding substantial improvements over the baseline model. Our code is available at: https://github.com/AchoWu/GCPO.
Exploring Boundary of GPT-4V on Marine Analysis: A Preliminary Case Study
Large language models (LLMs) have demonstrated a powerful ability to answer various queries as a general-purpose assistant. The continuous multi-modal large language models (MLLM) empower LLMs with the ability to perceive visual signals. The launch of GPT-4 (Generative Pre-trained Transformers) has generated significant interest in the research communities. GPT-4V(ison) has demonstrated significant power in both academia and industry fields, as a focal point in a new artificial intelligence generation. Though significant success was achieved by GPT-4V, exploring MLLMs in domain-specific analysis (e.g., marine analysis) that required domain-specific knowledge and expertise has gained less attention. In this study, we carry out the preliminary and comprehensive case study of utilizing GPT-4V for marine analysis. This report conducts a systematic evaluation of existing GPT-4V, assessing the performance of GPT-4V on marine research and also setting a new standard for future developments in MLLMs. The experimental results of GPT-4V show that the responses generated by GPT-4V are still far away from satisfying the domain-specific requirements of the marine professions. All images and prompts used in this study will be available at https://github.com/hkust-vgd/Marine_GPT-4V_Eval
ExpertQA: Expert-Curated Questions and Attributed Answers
As language models are adapted by a more sophisticated and diverse set of users, the importance of guaranteeing that they provide factually correct information supported by verifiable sources is critical across fields of study & professions. This is especially the case for high-stakes fields, such as medicine and law, where the risk of propagating false information is high and can lead to undesirable societal consequences. Previous work studying factuality and attribution has not focused on analyzing these characteristics of language model outputs in domain-specific scenarios. In this work, we present an evaluation study analyzing various axes of factuality and attribution provided in responses from a few systems, by bringing domain experts in the loop. Specifically, we first collect expert-curated questions from 484 participants across 32 fields of study, and then ask the same experts to evaluate generated responses to their own questions. We also ask experts to revise answers produced by language models, which leads to ExpertQA, a high-quality long-form QA dataset with 2177 questions spanning 32 fields, along with verified answers and attributions for claims in the answers.
Embedding Trust: Semantic Isotropy Predicts Nonfactuality in Long-Form Text Generation
To deploy large language models (LLMs) in high-stakes application domains that require substantively accurate responses to open-ended prompts, we need reliable, computationally inexpensive methods that assess the trustworthiness of long-form responses generated by LLMs. However, existing approaches often rely on claim-by-claim fact-checking, which is computationally expensive and brittle in long-form responses to open-ended prompts. In this work, we introduce semantic isotropy -- the degree of uniformity across normalized text embeddings on the unit sphere -- and use it to assess the trustworthiness of long-form responses generated by LLMs. To do so, we generate several long-form responses, embed them, and estimate the level of semantic isotropy of these responses as the angular dispersion of the embeddings on the unit sphere. We find that higher semantic isotropy -- that is, greater embedding dispersion -- reliably signals lower factual consistency across samples. Our approach requires no labeled data, no fine-tuning, and no hyperparameter selection, and can be used with open- or closed-weight embedding models. Across multiple domains, our method consistently outperforms existing approaches in predicting nonfactuality in long-form responses using only a handful of samples -- offering a practical, low-cost approach for integrating trust assessment into real-world LLM workflows.
Shepherd: A Critic for Language Model Generation
As large language models improve, there is increasing interest in techniques that leverage these models' capabilities to refine their own outputs. In this work, we introduce Shepherd, a language model specifically tuned to critique responses and suggest refinements, extending beyond the capabilities of an untuned model to identify diverse errors and provide suggestions to remedy them. At the core of our approach is a high quality feedback dataset, which we curate from community feedback and human annotations. Even though Shepherd is small (7B parameters), its critiques are either equivalent or preferred to those from established models including ChatGPT. Using GPT-4 for evaluation, Shepherd reaches an average win-rate of 53-87% compared to competitive alternatives. In human evaluation, Shepherd strictly outperforms other models and on average closely ties with ChatGPT.
A Collection of Question Answering Datasets for Norwegian
This paper introduces a new suite of question answering datasets for Norwegian; NorOpenBookQA, NorCommonSenseQA, NorTruthfulQA, and NRK-Quiz-QA. The data covers a wide range of skills and knowledge domains, including world knowledge, commonsense reasoning, truthfulness, and knowledge about Norway. Covering both of the written standards of Norwegian - Bokm{\aa}l and Nynorsk - our datasets comprise over 10k question-answer pairs, created by native speakers. We detail our dataset creation approach and present the results of evaluating 11 language models (LMs) in zero- and few-shot regimes. Most LMs perform better in Bokm{\aa}l than Nynorsk, struggle most with commonsense reasoning, and are often untruthful in generating answers to questions. All our datasets and annotation materials are publicly available.
Pron vs Prompt: Can Large Language Models already Challenge a World-Class Fiction Author at Creative Text Writing?
It has become routine to report research results where Large Language Models (LLMs) outperform average humans in a wide range of language-related tasks, and creative text writing is no exception. It seems natural, then, to raise the bid: Are LLMs ready to compete in creative writing skills with a top (rather than average) novelist? To provide an initial answer for this question, we have carried out a contest between Patricio Pron (an awarded novelist, considered one of the best of his generation) and GPT-4 (one of the top performing LLMs), in the spirit of AI-human duels such as DeepBlue vs Kasparov and AlphaGo vs Lee Sidol. We asked Pron and GPT-4 to provide thirty titles each, and then to write short stories for both their titles and their opponent's. Then, we prepared an evaluation rubric inspired by Boden's definition of creativity, and we collected 5,400 manual assessments provided by literature critics and scholars. The results of our experimentation indicate that LLMs are still far from challenging a top human creative writer, and that reaching such level of autonomous creative writing skills probably cannot be reached simply with larger language models.
OpinionGPT: Modelling Explicit Biases in Instruction-Tuned LLMs
Instruction-tuned Large Language Models (LLMs) have recently showcased remarkable ability to generate fitting responses to natural language instructions. However, an open research question concerns the inherent biases of trained models and their responses. For instance, if the data used to tune an LLM is dominantly written by persons with a specific political bias, we might expect generated answers to share this bias. Current research work seeks to de-bias such models, or suppress potentially biased answers. With this demonstration, we take a different view on biases in instruction-tuning: Rather than aiming to suppress them, we aim to make them explicit and transparent. To this end, we present OpinionGPT, a web demo in which users can ask questions and select all biases they wish to investigate. The demo will answer this question using a model fine-tuned on text representing each of the selected biases, allowing side-by-side comparison. To train the underlying model, we identified 11 different biases (political, geographic, gender, age) and derived an instruction-tuning corpus in which each answer was written by members of one of these demographics. This paper presents OpinionGPT, illustrates how we trained the bias-aware model and showcases the web application (available at https://opiniongpt.informatik.hu-berlin.de).
Human Latency Conversational Turns for Spoken Avatar Systems
A problem with many current Large Language Model (LLM) driven spoken dialogues is the response time. Some efforts such as Groq address this issue by lightning fast processing of the LLM, but we know from the cognitive psychology literature that in human-to-human dialogue often responses occur prior to the speaker completing their utterance. No amount of delay for LLM processing is acceptable if we wish to maintain human dialogue latencies. In this paper, we discuss methods for understanding an utterance in close to real time and generating a response so that the system can comply with human-level conversational turn delays. This means that the information content of the final part of the speaker's utterance is lost to the LLM. Using the Google NaturalQuestions (NQ) database, our results show GPT-4 can effectively fill in missing context from a dropped word at the end of a question over 60% of the time. We also provide some examples of utterances and the impacts of this information loss on the quality of LLM response in the context of an avatar that is currently under development. These results indicate that a simple classifier could be used to determine whether a question is semantically complete, or requires a filler phrase to allow a response to be generated within human dialogue time constraints.
Do Stop Me Now: Detecting Boilerplate Responses with a Single Iteration
Large Language Models (LLMs) often expend significant computational resources generating boilerplate responses, such as refusals, simple acknowledgements and casual greetings, which adds unnecessary cost and latency. To address this inefficiency, we propose a simple yet highly effective method for detecting such responses after only a single generation step. We demonstrate that the log-probability distribution of the first generated token serves as a powerful signal for classifying the nature of the entire subsequent response. Our experiments, conducted across a diverse range of small, large, and reasoning-specialized models, show that the first-token log-probability vectors form distinctly separable clusters for different response types. Using a lightweight k-NN classifier, we achieve high accuracy in predicting whether a response will be a substantive answer or a form of boilerplate response, including user-specified refusals. The primary implication is a practical, computationally trivial technique, optimizing LLM inference by enabling early termination or redirection to a smaller model, thereby yielding significant savings in computational cost. This work presents a direct path toward more efficient and sustainable LLM deployment.
The threat of analytic flexibility in using large language models to simulate human data: A call to attention
Social scientists are now using large language models to create "silicon samples" - synthetic datasets intended to stand in for human respondents, aimed at revolutionising human subjects research. However, there are many analytic choices which must be made to produce these samples. Though many of these choices are defensible, their impact on sample quality is poorly understood. I map out these analytic choices and demonstrate how a very small number of decisions can dramatically change the correspondence between silicon samples and human data. Configurations (N = 252) varied substantially in their capacity to estimate (i) rank ordering of participants, (ii) response distributions, and (iii) between-scale correlations. Most critically, configurations were not consistent in quality: those that performed well on one dimension often performed poorly on another, implying that there is no "one-size-fits-all" configuration that optimises the accuracy of these samples. I call for greater attention to the threat of analytic flexibility in using silicon samples.
Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models
Much recent work seeks to evaluate values and opinions in large language models (LLMs) using multiple-choice surveys and questionnaires. Most of this work is motivated by concerns around real-world LLM applications. For example, politically-biased LLMs may subtly influence society when they are used by millions of people. Such real-world concerns, however, stand in stark contrast to the artificiality of current evaluations: real users do not typically ask LLMs survey questions. Motivated by this discrepancy, we challenge the prevailing constrained evaluation paradigm for values and opinions in LLMs and explore more realistic unconstrained evaluations. As a case study, we focus on the popular Political Compass Test (PCT). In a systematic review, we find that most prior work using the PCT forces models to comply with the PCT's multiple-choice format. We show that models give substantively different answers when not forced; that answers change depending on how models are forced; and that answers lack paraphrase robustness. Then, we demonstrate that models give different answers yet again in a more realistic open-ended answer setting. We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
The Gravitational Wave Bias Parameter from Angular Power Spectra: Bridging Between Galaxies and Binary Black Holes
This study presents the modeling of the gravitational wave (GW) bias parameter by bridging a connection between simulated GW sources and galaxies in low redshift galaxy surveys 2MPZ and WISExSCOS (WISC). We study this connection by creating a mock GW catalog, populating galaxy surveys with binary black holes (BBHs) for different scenarios of the GW host-galaxy probability as a function of the galaxy stellar mass. We probe the observable consequences of this connection by exploring the spatial clustering of the GW sources in terms of the GW bias parameter. We consider a phenomenological broken power law model for the host-galaxy probability function, with a potential turnover M_{K} at high stellar mass (10^{11} M_{odot} in the fiducial model) where the star formation efficiency begins to drop. We vary the parameters of the GW host-galaxy probability function and find that generically the GW bias increases as M_{K} increases (and gets suppressed as M_{K} decreases). The change in the GW bias parameter shows a maximum change of about 30% for different scenarios explored in this work in comparison to the galaxy bias. Future measurements of the GW bias can help constrain M_{K} and the slopes of the host-galaxy probability function and thus offer insights into the underlying astrophysical processes.
First Light And Reionization Epoch Simulations (FLARES) -- XIX: Supermassive black hole mergers in the early Universe and their environmental dependence
The upcoming space-based gravitational wave (GW) observatory, LISA, is expected to detect GW signals from supermassive black hole (SMBH) mergers occurring at high redshifts. However, understanding the origin and growth of SMBHs in the early Universe remains an open problem in astrophysics. In this work, we utilize the First Light And Reionization Epoch Simulations (FLARES), a suite of cosmological hydrodynamical zoom-in simulations, to study SMBH mergers at 5 lesssim z lesssim 10 across a wide range of environments. Most mergers in FLARES involve secondary SMBHs near the seed mass (m_{seed} approx 1.5 times 10^{5} M_{odot}) while primary SMBHs span up to 10^{9} M_{odot}, resulting in mass ratios from q sim 10^{-4} to 1, with a peak at q sim 1. The number of mergers increases rapidly towards lower redshifts, and the comoving total number density scales with overdensity as n_{merger} = 10^{-3.80} (1 + delta)^{4.56}. Denser regions host more massive mergers, with higher merger redshifts and lower mass ratios. Within the FLARES redshift range, LISA is expected to detect mergers with 10^{5} lesssim M_{tot} / M_{odot} lesssim 10^{8} and q gtrsim 10^{-2}, corresponding to a detection rate of 0.030 yr^{-1} for events with signal-to-noise ratio SNR geq 10. Our study demonstrates the sensitivity of GW predictions at high redshifts to SMBH seed models and merger time delays, highlighting the need for improved modeling in future cosmological simulations to maximize LISA's scientific return.
AGI Safety Literature Review
The development of Artificial General Intelligence (AGI) promises to be a major event. Along with its many potential benefits, it also raises serious safety concerns (Bostrom, 2014). The intention of this paper is to provide an easily accessible and up-to-date collection of references for the emerging field of AGI safety. A significant number of safety problems for AGI have been identified. We list these, and survey recent research on solving them. We also cover works on how best to think of AGI from the limited knowledge we have today, predictions for when AGI will first be created, and what will happen after its creation. Finally, we review the current public policy on AGI.
GAIA: a benchmark for General AI Assistants
We introduce GAIA, a benchmark for General AI Assistants that, if solved, would represent a milestone in AI research. GAIA proposes real-world questions that require a set of fundamental abilities such as reasoning, multi-modality handling, web browsing, and generally tool-use proficiency. GAIA questions are conceptually simple for humans yet challenging for most advanced AIs: we show that human respondents obtain 92\% vs. 15\% for GPT-4 equipped with plugins. This notable performance disparity contrasts with the recent trend of LLMs outperforming humans on tasks requiring professional skills in e.g. law or chemistry. GAIA's philosophy departs from the current trend in AI benchmarks suggesting to target tasks that are ever more difficult for humans. We posit that the advent of Artificial General Intelligence (AGI) hinges on a system's capability to exhibit similar robustness as the average human does on such questions. Using GAIA's methodology, we devise 466 questions and their answer. We release our questions while retaining answers to 300 of them to power a leader-board available at https://huggingface.co/gaia-benchmark.
Probing the axion-photon coupling with space-based gravitational waves detectors
We propose a simple modification of space-based gravitational wave (GW) detector optical benches which would enable the measurement of vacuum birefringence of light induced by axion dark matterthrough its coupling to electromagnetism. Specifically, we propose to change a half-wave plate by a circular polarizer. While marginally affecting the sensitivity to GW by a factor 2, we show that such an adjustment would make future detectors such as LISA, TianQin, Taiji and Big-Bang Observer the most sensitive experiments at low axion masses
VANiLLa : Verbalized Answers in Natural Language at Large Scale
In the last years, there have been significant developments in the area of Question Answering over Knowledge Graphs (KGQA). Despite all the notable advancements, current KGQA datasets only provide the answers as the direct output result of the formal query, rather than full sentences incorporating question context. For achieving coherent answers sentence with the question's vocabulary, template-based verbalization so are usually employed for a better representation of answers, which in turn require extensive expert intervention. Thus, making way for machine learning approaches; however, there is a scarcity of datasets that empower machine learning models in this area. Hence, we provide the VANiLLa dataset which aims at reducing this gap by offering answers in natural language sentences. The answer sentences in this dataset are syntactically and semantically closer to the question than to the triple fact. Our dataset consists of over 100k simple questions adapted from the CSQA and SimpleQuestionsWikidata datasets and generated using a semi-automatic framework. We also present results of training our dataset on multiple baseline models adapted from current state-of-the-art Natural Language Generation (NLG) architectures. We believe that this dataset will allow researchers to focus on finding suitable methodologies and architectures for answer verbalization.
Gaia Data Release 3: Summary of the content and survey properties
We present the third data release of the European Space Agency's Gaia mission, GDR3. The GDR3 catalogue is the outcome of the processing of raw data collected with the Gaia instruments during the first 34 months of the mission by the Gaia Data Processing and Analysis Consortium. The GDR3 catalogue contains the same source list, celestial positions, proper motions, parallaxes, and broad band photometry in the G, G_{BP}, and G_{RP} pass-bands already present in the Early Third Data Release. GDR3 introduces an impressive wealth of new data products. More than 33 million objects in the ranges G_{rvs} < 14 and 3100 <T_{eff} <14500 , have new determinations of their mean radial velocities based on data collected by Gaia. We provide G_{rvs} magnitudes for most sources with radial velocities, and a line broadening parameter is listed for a subset of these. Mean Gaia spectra are made available to the community. The GDR3 catalogue includes about 1 million mean spectra from the radial velocity spectrometer, and about 220 million low-resolution blue and red prism photometer BPRP mean spectra. The results of the analysis of epoch photometry are provided for some 10 million sources across 24 variability types. GDR3 includes astrophysical parameters and source class probabilities for about 470 million and 1500 million sources, respectively, including stars, galaxies, and quasars. Orbital elements and trend parameters are provided for some 800,000 astrometric, spectroscopic and eclipsing binaries. More than 150,000 Solar System objects, including new discoveries, with preliminary orbital solutions and individual epoch observations are part of this release. Reflectance spectra derived from the epoch BPRP spectral data are published for about 60\,000 asteroids. Finally, an additional data set is provided, namely the Gaia Andromeda Photometric Survey (abridged)
RADE: Reference-Assisted Dialogue Evaluation for Open-Domain Dialogue
Evaluating open-domain dialogue systems is challenging for reasons such as the one-to-many problem, i.e., many appropriate responses other than just the golden response. As of now, automatic evaluation methods need better consistency with humans, while reliable human evaluation can be time- and cost-intensive. To this end, we propose the Reference-Assisted Dialogue Evaluation (RADE) approach under the multi-task learning framework, which leverages the pre-created utterance as reference other than the gold response to relief the one-to-many problem. Specifically, RADE explicitly compares reference and the candidate response to predict their overall scores. Moreover, an auxiliary response generation task enhances prediction via a shared encoder. To support RADE, we extend three datasets with additional rated responses other than just a golden response by human annotation. Experiments on our three datasets and two existing benchmarks demonstrate the effectiveness of our method, where Pearson, Spearman, and Kendall correlations with human evaluation outperform state-of-the-art baselines.
SimpleToM: Exposing the Gap between Explicit ToM Inference and Implicit ToM Application in LLMs
While prior work has explored whether large language models (LLMs) possess a "theory of mind" (ToM) - the ability to attribute mental states to oneself and others - there has been little work testing whether LLMs can implicitly apply such knowledge to predict behavior, or to judge whether an observed behavior is rational. Such skills are critical for appropriate interaction in social environments. We create a new dataset, SimpleTom, containing concise, diverse stories (e.g., "The can of Pringles has moldy chips in it. Mary picks up the can in the supermarket and walks to the cashier."), each with three questions that test different degrees of ToM reasoning, asking models to predict (a) mental state ("Is Mary aware of the mold?"), (b) behavior ("Will Mary pay for the chips or report the mold?"), and (c) judgment ("Mary paid for the chips. Was that reasonable?"). To our knowledge, SimpleToM is the first dataset to systematically explore downstream reasoning requiring knowledge of mental states in realistic scenarios. Our experimental results are intriguing: While most models can reliably predict mental state on our dataset (a), they often fail to correctly predict the behavior (b), and fare even worse at judging whether given behaviors are reasonable (c), despite being correctly aware of the protagonist's mental state should make such secondary predictions obvious. We further show that we can help models do better at (b) and (c) via interventions such as reminding the model of its earlier mental state answer and mental-state-specific chain-of-thought prompting, raising the action prediction accuracies (e.g., from 49.5% to 93.5% for GPT-4o) and judgment accuracies (e.g., from 15.3% to 94.7% in GPT-4o). While this shows that models can be coaxed to perform well, it requires task-specific interventions, and the natural model performances remain low, a cautionary tale for LLM deployment.
A Dynamic Fusion Model for Consistent Crisis Response
In response to the urgent need for effective communication with crisis-affected populations, automated responses driven by language models have been proposed to assist in crisis communications. A critical yet often overlooked factor is the consistency of response style, which could affect the trust of affected individuals in responders. Despite its importance, few studies have explored methods for maintaining stylistic consistency across generated responses. To address this gap, we propose a novel metric for evaluating style consistency and introduce a fusion-based generation approach grounded in this metric. Our method employs a two-stage process: it first assesses the style of candidate responses and then optimizes and integrates them at the instance level through a fusion process. This enables the generation of high-quality responses while significantly reducing stylistic variation between instances. Experimental results across multiple datasets demonstrate that our approach consistently outperforms baselines in both response quality and stylistic uniformity.
Healthy LLMs? Benchmarking LLM Knowledge of UK Government Public Health Information
As Large Language Models (LLMs) become widely accessible, a detailed understanding of their knowledge within specific domains becomes necessary for successful real world use. This is particularly critical in public health, where failure to retrieve relevant, accurate, and current information could significantly impact UK residents. However, currently little is known about LLM knowledge of UK Government public health information. To address this issue, this paper introduces a new benchmark, PubHealthBench, with over 8000 questions for evaluating LLMs' Multiple Choice Question Answering (MCQA) and free form responses to public health queries, created via an automated pipeline. We also release a new dataset of the extracted UK Government public health guidance documents used as source text for PubHealthBench. Assessing 24 LLMs on PubHealthBench we find the latest private LLMs (GPT-4.5, GPT-4.1 and o1) have a high degree of knowledge, achieving >90% in the MCQA setup, and outperform humans with cursory search engine use. However, in the free form setup we see lower performance with no model scoring >75%. Therefore, whilst there are promising signs that state of the art (SOTA) LLMs are an increasingly accurate source of public health information, additional safeguards or tools may still be needed when providing free form responses on public health topics.
HelpSteer: Multi-attribute Helpfulness Dataset for SteerLM
Existing open-source helpfulness preference datasets do not specify what makes some responses more helpful and others less so. Models trained on these datasets can incidentally learn to model dataset artifacts (e.g. preferring longer but unhelpful responses only due to their length). To alleviate this problem, we collect HelpSteer, a multi-attribute helpfulness dataset annotated for the various aspects that make responses helpful. Specifically, our 37k-sample dataset has annotations for correctness, coherence, complexity, and verbosity in addition to overall helpfulness of responses. Training Llama 2 70B using the HelpSteer dataset with SteerLM technique produces a model that scores 7.54 on MT Bench, which is currently the highest score for open models that do not require training data from more powerful models (e.g. GPT4). We release this dataset with CC-BY-4.0 license at https://huggingface.co/datasets/nvidia/HelpSteer
Construction of a Japanese Financial Benchmark for Large Language Models
With the recent development of large language models (LLMs), models that focus on certain domains and languages have been discussed for their necessity. There is also a growing need for benchmarks to evaluate the performance of current LLMs in each domain. Therefore, in this study, we constructed a benchmark comprising multiple tasks specific to the Japanese and financial domains and performed benchmark measurements on some models. Consequently, we confirmed that GPT-4 is currently outstanding, and that the constructed benchmarks function effectively. According to our analysis, our benchmark can differentiate benchmark scores among models in all performance ranges by combining tasks with different difficulties.
Corrective or Backfire: Characterizing and Predicting User Response to Social Correction
Online misinformation poses a global risk with harmful implications for society. Ordinary social media users are known to actively reply to misinformation posts with counter-misinformation messages, which is shown to be effective in containing the spread of misinformation. Such a practice is defined as "social correction". Nevertheless, it remains unknown how users respond to social correction in real-world scenarios, especially, will it have a corrective or backfire effect on users. Investigating this research question is pivotal for developing and refining strategies that maximize the efficacy of social correction initiatives. To fill this gap, we conduct an in-depth study to characterize and predict the user response to social correction in a data-driven manner through the lens of X (Formerly Twitter), where the user response is instantiated as the reply that is written toward a counter-misinformation message. Particularly, we first create a novel dataset with 55, 549 triples of misinformation tweets, counter-misinformation replies, and responses to counter-misinformation replies, and then curate a taxonomy to illustrate different kinds of user responses. Next, fine-grained statistical analysis of reply linguistic and engagement features as well as repliers' user attributes is conducted to illustrate the characteristics that are significant in determining whether a reply will have a corrective or backfire effect. Finally, we build a user response prediction model to identify whether a social correction will be corrective, neutral, or have a backfire effect, which achieves a promising F1 score of 0.816. Our work enables stakeholders to monitor and predict user responses effectively, thus guiding the use of social correction to maximize their corrective impact and minimize backfire effects. The code and data is accessible on https://github.com/claws-lab/response-to-social-correction.
SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models
Generative Large Language Models (LLMs) such as GPT-3 are capable of generating highly fluent responses to a wide variety of user prompts. However, LLMs are known to hallucinate facts and make non-factual statements which can undermine trust in their output. Existing fact-checking approaches either require access to token-level output probability distribution (which may not be available for systems such as ChatGPT) or external databases that are interfaced via separate, often complex, modules. In this work, we propose "SelfCheckGPT", a simple sampling-based approach that can be used to fact-check black-box models in a zero-resource fashion, i.e. without an external database. SelfCheckGPT leverages the simple idea that if a LLM has knowledge of a given concept, sampled responses are likely to be similar and contain consistent facts. However, for hallucinated facts, stochastically sampled responses are likely to diverge and contradict one another. We investigate this approach by using GPT-3 to generate passages about individuals from the WikiBio dataset, and manually annotate the factuality of the generated passages. We demonstrate that SelfCheckGPT can: i) detect non-factual and factual sentences; and ii) rank passages in terms of factuality. We compare our approach to several existing baselines and show that in sentence hallucination detection, our approach has AUC-PR scores comparable to grey-box methods, while SelfCheckGPT is best at passage factuality assessment.
GDC Cohort Copilot: An AI Copilot for Curating Cohorts from the Genomic Data Commons
Motivation: The Genomic Data Commons (GDC) provides access to high quality, harmonized cancer genomics data through a unified curation and analysis platform centered around patient cohorts. While GDC users can interactively create complex cohorts through the graphical Cohort Builder, users (especially new ones) may struggle to find specific cohort descriptors across hundreds of possible fields and properties. However, users may be better able to describe their desired cohort in free-text natural language. Results: We introduce GDC Cohort Copilot, an open-source copilot tool for curating cohorts from the GDC. GDC Cohort Copilot automatically generates the GDC cohort filter corresponding to a user-input natural language description of their desired cohort, before exporting the cohort back to the GDC for further analysis. An interactive user interface allows users to further refine the generated cohort. We develop and evaluate multiple large language models (LLMs) for GDC Cohort Copilot and demonstrate that our locally-served, open-source GDC Cohort LLM achieves better results than GPT-4o prompting in generating GDC cohorts. Availability and implementation: The standalone docker image for GDC Cohort Copilot is available at https://quay.io/repository/cdis/gdc-cohort-copilot. Source code is available at https://github.com/uc-cdis/gdc-cohort-copilot. GDC Cohort LLM weights are available at https://huggingface.co/uc-ctds.
SocialIQA: Commonsense Reasoning about Social Interactions
We introduce Social IQa, the first largescale benchmark for commonsense reasoning about social situations. Social IQa contains 38,000 multiple choice questions for probing emotional and social intelligence in a variety of everyday situations (e.g., Q: "Jordan wanted to tell Tracy a secret, so Jordan leaned towards Tracy. Why did Jordan do this?" A: "Make sure no one else could hear"). Through crowdsourcing, we collect commonsense questions along with correct and incorrect answers about social interactions, using a new framework that mitigates stylistic artifacts in incorrect answers by asking workers to provide the right answer to a different but related question. Empirical results show that our benchmark is challenging for existing question-answering models based on pretrained language models, compared to human performance (>20% gap). Notably, we further establish Social IQa as a resource for transfer learning of commonsense knowledge, achieving state-of-the-art performance on multiple commonsense reasoning tasks (Winograd Schemas, COPA).
Measuring the Quality of Answers in Political Q&As with Large Language Models
This article proposes a new approach for assessing the quality of answers in political question-and-answer sessions. We measure the quality of an answer based on how easily and accurately it can be recognized in a random set of candidate answers given the question's text. This measure reflects the answer's relevance and depth of engagement with the question. Like semantic search, we can implement this approach by training a language model on the corpus of observed questions and answers without additional human-labeled data. We showcase and validate our methodology within the context of the Question Period in the Canadian House of Commons. Our analysis reveals that while some answers have a weak semantic connection to questions, hinting at some evasion or obfuscation, they are generally at least moderately relevant, far exceeding what we would expect from random replies. We also find a meaningful correlation between answer quality and the party affiliation of the members of Parliament asking the questions.
The Second Conversational Intelligence Challenge (ConvAI2)
We describe the setting and results of the ConvAI2 NeurIPS competition that aims to further the state-of-the-art in open-domain chatbots. Some key takeaways from the competition are: (i) pretrained Transformer variants are currently the best performing models on this task, (ii) but to improve performance on multi-turn conversations with humans, future systems must go beyond single word metrics like perplexity to measure the performance across sequences of utterances (conversations) -- in terms of repetition, consistency and balance of dialogue acts (e.g. how many questions asked vs. answered).
Supporting Sensemaking of Large Language Model Outputs at Scale
Large language models (LLMs) are capable of generating multiple responses to a single prompt, yet little effort has been expended to help end-users or system designers make use of this capability. In this paper, we explore how to present many LLM responses at once. We design five features, which include both pre-existing and novel methods for computing similarities and differences across textual documents, as well as how to render their outputs. We report on a controlled user study (n=24) and eight case studies evaluating these features and how they support users in different tasks. We find that the features support a wide variety of sensemaking tasks and even make tasks previously considered to be too difficult by our participants now tractable. Finally, we present design guidelines to inform future explorations of new LLM interfaces.
WebGLM: Towards An Efficient Web-Enhanced Question Answering System with Human Preferences
We present WebGLM, a web-enhanced question-answering system based on the General Language Model (GLM). Its goal is to augment a pre-trained large language model (LLM) with web search and retrieval capabilities while being efficient for real-world deployments. To achieve this, we develop WebGLM with strategies for the LLM-augmented retriever, bootstrapped generator, and human preference-aware scorer. Specifically, we identify and address the limitations of WebGPT (OpenAI), through which WebGLM is enabled with accuracy, efficiency, and cost-effectiveness advantages. In addition, we propose systematic criteria for evaluating web-enhanced QA systems. We conduct multi-dimensional human evaluation and quantitative ablation studies, which suggest the outperformance of the proposed WebGLM designs over existing systems. WebGLM with the 10-billion-parameter GLM (10B) is shown to perform better than the similar-sized WebGPT (13B) and even comparably to WebGPT (175B) in human evaluation. The code, demo, and data are at https://github.com/THUDM/WebGLM.
GPTEval: A Survey on Assessments of ChatGPT and GPT-4
The emergence of ChatGPT has generated much speculation in the press about its potential to disrupt social and economic systems. Its astonishing language ability has aroused strong curiosity among scholars about its performance in different domains. There have been many studies evaluating the ability of ChatGPT and GPT-4 in different tasks and disciplines. However, a comprehensive review summarizing the collective assessment findings is lacking. The objective of this survey is to thoroughly analyze prior assessments of ChatGPT and GPT-4, focusing on its language and reasoning abilities, scientific knowledge, and ethical considerations. Furthermore, an examination of the existing evaluation methods is conducted, offering several recommendations for future research in evaluating large language models.
How is ChatGPT's behavior changing over time?
GPT-3.5 and GPT-4 are the two most widely used large language model (LLM) services. However, when and how these models are updated over time is opaque. Here, we evaluate the March 2023 and June 2023 versions of GPT-3.5 and GPT-4 on four diverse tasks: 1) solving math problems, 2) answering sensitive/dangerous questions, 3) generating code and 4) visual reasoning. We find that the performance and behavior of both GPT-3.5 and GPT-4 can vary greatly over time. For example, GPT-4 (March 2023) was very good at identifying prime numbers (accuracy 97.6%) but GPT-4 (June 2023) was very poor on these same questions (accuracy 2.4%). Interestingly GPT-3.5 (June 2023) was much better than GPT-3.5 (March 2023) in this task. GPT-4 was less willing to answer sensitive questions in June than in March, and both GPT-4 and GPT-3.5 had more formatting mistakes in code generation in June than in March. Overall, our findings shows that the behavior of the same LLM service can change substantially in a relatively short amount of time, highlighting the need for continuous monitoring of LLM quality.
ChatGPT is a Knowledgeable but Inexperienced Solver: An Investigation of Commonsense Problem in Large Language Models
Large language models (LLMs) such as ChatGPT and GPT-4 have made significant progress in NLP. However, their ability to memorize, represent, and leverage commonsense knowledge has been a well-known pain point for LLMs. It remains unclear that: (1) Can GPTs effectively answer commonsense questions? (2) Are GPTs knowledgeable in commonsense? (3) Are GPTs aware of the underlying commonsense knowledge for answering a specific question? (4) Can GPTs effectively leverage commonsense for answering questions? To evaluate the above commonsense problems, we conduct a series of experiments to evaluate ChatGPT's commonsense abilities, and the experimental results show that: (1) GPTs can achieve good QA accuracy in commonsense tasks, while they still struggle with certain types of knowledge. (2) ChatGPT is knowledgeable, and can accurately generate most of the commonsense knowledge using knowledge prompts. (3) Despite its knowledge, ChatGPT is an inexperienced commonsense problem solver, which cannot precisely identify the needed commonsense knowledge for answering a specific question, i.e., ChatGPT does not precisely know what commonsense knowledge is required to answer a question. The above findings raise the need to investigate better mechanisms for utilizing commonsense knowledge in LLMs, such as instruction following, better commonsense guidance, etc.
Contextualized Evaluations: Taking the Guesswork Out of Language Model Evaluations
Language model users often issue queries that lack specification, where the context under which a query was issued -- such as the user's identity, the query's intent, and the criteria for a response to be useful -- is not explicit. For instance, a good response to a subjective query like "What book should I read next?" would depend on the user's preferences, and a good response to an open-ended query like "How do antibiotics work against bacteria?" would depend on the user's expertise. This makes evaluation of responses to such queries an ill-posed task, as evaluators may make arbitrary judgments about the response quality. To remedy this, we present contextualized evaluations, a protocol that synthetically constructs context surrounding an underspecified query and provides it during evaluation. We find that the presence of context can 1) alter conclusions drawn from evaluation, even flipping win rates between model pairs, 2) nudge evaluators to make fewer judgments based on surface-level criteria, like style, and 3) provide new insights about model behavior across diverse contexts. Specifically, our procedure uncovers an implicit bias towards WEIRD contexts in models' "default" responses and we find that models are not equally sensitive to following different contexts, even when they are provided in prompts.
The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background
We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9-year data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. We set upper limits for a GWB from supermassive black hole binaries under power law, broken power law, and free spectral coefficient GW spectrum models. We place a 95\% upper limit on the strain amplitude (at a frequency of yr^{-1}) in the power law model of A_{rm gw} < 1.5times 10^{-15}. For a broken power law model, we place priors on the strain amplitude derived from simulations of Sesana (2013) and McWilliams et al. (2014). We find that the data favor a broken power law to a pure power law with odds ratios of 22 and 2.2 to one for the McWilliams and Sesana prior models, respectively. The McWilliams model is essentially ruled out by the data, and the Sesana model is in tension with the data under the assumption of a pure power law. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. We then place the most stringent limits so far on the energy density of relic GWs, Omega_gw(f),h^2 < 4.2 times 10^{-10}, yielding a limit on the Hubble parameter during inflation of H_*=1.6times10^{-2}~m_{Pl}, where m_{Pl} is the Planck mass. Our limit on the cosmic string GWB, Omega_gw(f), h^2 < 2.2 times 10^{-10}, translates to a conservative limit of Gmu<3.3times 10^{-8} - a factor of 4 better than the joint Planck and high-l CMB data from other experiments.
Profiling News Media for Factuality and Bias Using LLMs and the Fact-Checking Methodology of Human Experts
In an age characterized by the proliferation of mis- and disinformation online, it is critical to empower readers to understand the content they are reading. Important efforts in this direction rely on manual or automatic fact-checking, which can be challenging for emerging claims with limited information. Such scenarios can be handled by assessing the reliability and the political bias of the source of the claim, i.e., characterizing entire news outlets rather than individual claims or articles. This is an important but understudied research direction. While prior work has looked into linguistic and social contexts, we do not analyze individual articles or information in social media. Instead, we propose a novel methodology that emulates the criteria that professional fact-checkers use to assess the factuality and political bias of an entire outlet. Specifically, we design a variety of prompts based on these criteria and elicit responses from large language models (LLMs), which we aggregate to make predictions. In addition to demonstrating sizable improvements over strong baselines via extensive experiments with multiple LLMs, we provide an in-depth error analysis of the effect of media popularity and region on model performance. Further, we conduct an ablation study to highlight the key components of our dataset that contribute to these improvements. To facilitate future research, we released our dataset and code at https://github.com/mbzuai-nlp/llm-media-profiling.
How (un)ethical are instruction-centric responses of LLMs? Unveiling the vulnerabilities of safety guardrails to harmful queries
In this study, we tackle a growing concern around the safety and ethical use of large language models (LLMs). Despite their potential, these models can be tricked into producing harmful or unethical content through various sophisticated methods, including 'jailbreaking' techniques and targeted manipulation. Our work zeroes in on a specific issue: to what extent LLMs can be led astray by asking them to generate responses that are instruction-centric such as a pseudocode, a program or a software snippet as opposed to vanilla text. To investigate this question, we introduce TechHazardQA, a dataset containing complex queries which should be answered in both text and instruction-centric formats (e.g., pseudocodes), aimed at identifying triggers for unethical responses. We query a series of LLMs -- Llama-2-13b, Llama-2-7b, Mistral-V2 and Mistral 8X7B -- and ask them to generate both text and instruction-centric responses. For evaluation we report the harmfulness score metric as well as judgements from GPT-4 and humans. Overall, we observe that asking LLMs to produce instruction-centric responses enhances the unethical response generation by ~2-38% across the models. As an additional objective, we investigate the impact of model editing using the ROME technique, which further increases the propensity for generating undesirable content. In particular, asking edited LLMs to generate instruction-centric responses further increases the unethical response generation by ~3-16% across the different models.
COVID-19 what have we learned? The rise of social machines and connected devices in pandemic management following the concepts of predictive, preventive and personalised medicine
A comprehensive bibliographic review with R statistical methods of the COVID pandemic in PubMed literature and Web of Science Core Collection, supported with Google Scholar search. In addition, a case study review of emerging new approaches in different regions, using medical literature, academic literature, news articles and other reliable data sources. Public responses of mistrust about privacy data misuse differ across countries, depending on the chosen public communication strategy.
GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages scene graph structures to create 22M diverse reasoning questions, all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. An extensive analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We strongly hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding for images and language.
CLIFT: Analysing Natural Distribution Shift on Question Answering Models in Clinical Domain
This paper introduces a new testbed CLIFT (Clinical Shift) for the clinical domain Question-answering task. The testbed includes 7.5k high-quality question answering samples to provide a diverse and reliable benchmark. We performed a comprehensive experimental study and evaluated several QA deep-learning models under the proposed testbed. Despite impressive results on the original test set, the performance degrades when applied to new test sets, which shows the distribution shift. Our findings emphasize the need for and the potential for increasing the robustness of clinical domain models under distributional shifts. The testbed offers one way to track progress in that direction. It also highlights the necessity of adopting evaluation metrics that consider robustness to natural distribution shifts. We plan to expand the corpus by adding more samples and model results. The full paper and the updated benchmark are available at github.com/openlifescience-ai/clift
The StatCan Dialogue Dataset: Retrieving Data Tables through Conversations with Genuine Intents
We introduce the StatCan Dialogue Dataset consisting of 19,379 conversation turns between agents working at Statistics Canada and online users looking for published data tables. The conversations stem from genuine intents, are held in English or French, and lead to agents retrieving one of over 5000 complex data tables. Based on this dataset, we propose two tasks: (1) automatic retrieval of relevant tables based on a on-going conversation, and (2) automatic generation of appropriate agent responses at each turn. We investigate the difficulty of each task by establishing strong baselines. Our experiments on a temporal data split reveal that all models struggle to generalize to future conversations, as we observe a significant drop in performance across both tasks when we move from the validation to the test set. In addition, we find that response generation models struggle to decide when to return a table. Considering that the tasks pose significant challenges to existing models, we encourage the community to develop models for our task, which can be directly used to help knowledge workers find relevant tables for live chat users.
Counterfactual Token Generation in Large Language Models
"Sure, I am happy to generate a story for you: Captain Lyra stood at the helm of her trusty ship, the Maelstrom's Fury, gazing out at the endless sea. [...] Lyra's eyes welled up with tears as she realized the bitter truth - she had sacrificed everything for fleeting riches, and lost the love of her crew, her family, and herself." Although this story, generated by a large language model, is captivating, one may wonder -- how would the story have unfolded if the model had chosen "Captain Maeve" as the protagonist instead? We cannot know. State-of-the-art large language models are stateless -- they maintain no internal memory or state. Given a prompt, they generate a sequence of tokens as an output using an autoregressive process. As a consequence, they cannot reason about counterfactual alternatives to tokens they have generated in the past. In this work, our goal is to enhance them with this functionality. To this end, we develop a causal model of token generation that builds upon the Gumbel-Max structural causal model. Our model allows any large language model to perform counterfactual token generation at almost no cost in comparison with vanilla token generation, it is embarrassingly simple to implement, and it does not require any fine-tuning nor prompt engineering. We implement our model on Llama 3 8B-Instruct and Ministral-8B-Instruct and conduct a qualitative and a quantitative analysis of counterfactually generated text. We conclude with a demonstrative application of counterfactual token generation for bias detection, unveiling interesting insights about the model of the world constructed by large language models.
Evaluating the Moral Beliefs Encoded in LLMs
This paper presents a case study on the design, administration, post-processing, and evaluation of surveys on large language models (LLMs). It comprises two components: (1) A statistical method for eliciting beliefs encoded in LLMs. We introduce statistical measures and evaluation metrics that quantify the probability of an LLM "making a choice", the associated uncertainty, and the consistency of that choice. (2) We apply this method to study what moral beliefs are encoded in different LLMs, especially in ambiguous cases where the right choice is not obvious. We design a large-scale survey comprising 680 high-ambiguity moral scenarios (e.g., "Should I tell a white lie?") and 687 low-ambiguity moral scenarios (e.g., "Should I stop for a pedestrian on the road?"). Each scenario includes a description, two possible actions, and auxiliary labels indicating violated rules (e.g., "do not kill"). We administer the survey to 28 open- and closed-source LLMs. We find that (a) in unambiguous scenarios, most models "choose" actions that align with commonsense. In ambiguous cases, most models express uncertainty. (b) Some models are uncertain about choosing the commonsense action because their responses are sensitive to the question-wording. (c) Some models reflect clear preferences in ambiguous scenarios. Specifically, closed-source models tend to agree with each other.
Sequencing Matters: A Generate-Retrieve-Generate Model for Building Conversational Agents
This paper contains what the Georgetown InfoSense group has done in regard to solving the challenges presented by TREC iKAT 2023. Our submitted runs outperform the median runs by a significant margin, exhibiting superior performance in nDCG across various cut numbers and in overall success rate. Our approach uses a Generate-Retrieve-Generate method, which we've found to greatly outpace Retrieve-Then-Generate approaches for the purposes of iKAT. Our solution involves the use of Large Language Models (LLMs) for initial answers, answer grounding by BM25, passage quality filtering by logistic regression, and answer generation by LLMs again. We leverage several purpose-built Language Models, including BERT, Chat-based, and text-to-transfer-based models, for text understanding, classification, generation, and summarization. The official results of the TREC evaluation contradict our initial self-evaluation, which may suggest that a decrease in the reliance on our retrieval and classification methods is better. Nonetheless, our findings suggest that the sequence of involving these different components matters, where we see an essentiality of using LLMs before using search engines.
Large Language Models are not Fair Evaluators
In this paper, we uncover a systematic bias in the evaluation paradigm of adopting large language models~(LLMs), e.g., GPT-4, as a referee to score and compare the quality of responses generated by candidate models. We find that the quality ranking of candidate responses can be easily hacked by simply altering their order of appearance in the context. This manipulation allows us to skew the evaluation result, making one model appear considerably superior to the other, e.g., Vicuna-13B could beat ChatGPT on 66 over 80 tested queries with ChatGPT as an evaluator. To address this issue, we propose a calibration framework with three simple yet effective strategies: 1) Multiple Evidence Calibration, which requires the evaluator model to generate multiple evaluation evidence before assigning ratings; 2) Balanced Position Calibration, which aggregates results across various orders to determine the final score; 3) Human-in-the-Loop Calibration, which introduces a balanced position diversity entropy to measure the difficulty of each example and seeks human assistance when needed. We also manually annotate the "win/tie/lose" outcomes of responses from ChatGPT and Vicuna-13B in the Vicuna Benchmark's question prompt, and extensive experiments demonstrate that our approach successfully mitigates evaluation bias, resulting in closer alignment with human judgments. We release our code and human annotation at https://github.com/i-Eval/FairEval to facilitate future research.
ArxivBench: Can LLMs Assist Researchers in Conducting Research?
Large language models (LLMs) have demonstrated remarkable effectiveness in completing various tasks such as reasoning, translation, and question answering. However the issue of factual incorrect content in LLM-generated responses remains a persistent challenge. In this study, we evaluate both proprietary and open-source LLMs on their ability to respond with relevant research papers and accurate links to articles hosted on the arXiv platform, based on high level prompts. To facilitate this evaluation, we introduce arXivBench, a benchmark specifically designed to assess LLM performance across eight major subject categories on arXiv and five subfields within computer science, one of the most popular categories among them. Our findings reveal a concerning accuracy of LLM-generated responses depending on the subject, with some subjects experiencing significantly lower accuracy than others. Notably, Claude-3.5-Sonnet exhibits a substantial advantage in generating both relevant and accurate responses. And interestingly, most LLMs achieve a much higher accuracy in the Artificial Intelligence sub-field than other sub-fields. This benchmark provides a standardized tool for evaluating the reliability of LLM-generated scientific responses, promoting more dependable use of LLMs in academic and research environments. Our code is open-sourced at https://github.com/arxivBenchLLM/arXivBench and our dataset is available on huggingface at https://huggingface.co/datasets/arXivBenchLLM/arXivBench.
Self-Judge: Selective Instruction Following with Alignment Self-Evaluation
Pre-trained large language models (LLMs) can be tailored to adhere to human instructions through instruction tuning. However, due to shifts in the distribution of test-time data, they may not always execute instructions accurately, potentially generating factual errors or misaligned content when acting as chat assistants. To enhance the reliability of LLMs in following instructions, we propose the study of selective instruction following, whereby the system declines to execute instructions if the anticipated response quality is low. We train judge models that can predict numerical quality scores for model responses. To address data scarcity, we introduce Self-J, a novel self-training framework for developing judge models without needing human-annotated quality scores. Our method leverages the model's inherent self-evaluation capability to extract information about response quality from labeled instruction-tuning data. It incorporates a gold reference answer to facilitate self-evaluation and recalibrates by assessing the semantic similarity between the response sample and the gold reference. During the training phase, we implement self-distillation as a regularization technique to enhance the capability of reference-free estimation. To validate alignment evaluation on general instruction-following tasks, we collect large-scale high-quality instructions from Hugging Face for model training and evaluation. Extensive experiments on five open-source models show that our method correlates much more with GPT-4 than strong baselines, e.g., supervised models distilled from GPT-4 and GPT-3.5-turbo. Our analysis shows our model's strong generalization across domains. Additionally, our judge models serve as good reward models, e.g., boosting WizardLM-13B-V1.2 from 89.17 to 92.48 and from 12.03 to 15.90 in version v1 and v2 of AlpacaEval respectively using best-of-32 sampling with our judge models.
Can ChatGPT Replace Traditional KBQA Models? An In-depth Analysis of the Question Answering Performance of the GPT LLM Family
ChatGPT is a powerful large language model (LLM) that covers knowledge resources such as Wikipedia and supports natural language question answering using its own knowledge. Therefore, there is growing interest in exploring whether ChatGPT can replace traditional knowledge-based question answering (KBQA) models. Although there have been some works analyzing the question answering performance of ChatGPT, there is still a lack of large-scale, comprehensive testing of various types of complex questions to analyze the limitations of the model. In this paper, we present a framework that follows the black-box testing specifications of CheckList proposed by Ribeiro et. al. We evaluate ChatGPT and its family of LLMs on eight real-world KB-based complex question answering datasets, which include six English datasets and two multilingual datasets. The total number of test cases is approximately 190,000. In addition to the GPT family of LLMs, we also evaluate the well-known FLAN-T5 to identify commonalities between the GPT family and other LLMs. The dataset and code are available at https://github.com/tan92hl/Complex-Question-Answering-Evaluation-of-GPT-family.git
RealTime QA: What's the Answer Right Now?
We introduce REALTIME QA, a dynamic question answering (QA) platform that announces questions and evaluates systems on a regular basis (weekly in this version). REALTIME QA inquires about the current world, and QA systems need to answer questions about novel events or information. It therefore challenges static, conventional assumptions in open-domain QA datasets and pursues instantaneous applications. We build strong baseline models upon large pretrained language models, including GPT-3 and T5. Our benchmark is an ongoing effort, and this paper presents real-time evaluation results over the past year. Our experimental results show that GPT-3 can often properly update its generation results, based on newly-retrieved documents, highlighting the importance of up-to-date information retrieval. Nonetheless, we find that GPT-3 tends to return outdated answers when retrieved documents do not provide sufficient information to find an answer. This suggests an important avenue for future research: can an open-domain QA system identify such unanswerable cases and communicate with the user or even the retrieval module to modify the retrieval results? We hope that REALTIME QA will spur progress in instantaneous applications of question answering and beyond.
Chain-of-Verification Reduces Hallucination in Large Language Models
Generation of plausible yet incorrect factual information, termed hallucination, is an unsolved issue in large language models. We study the ability of language models to deliberate on the responses they give in order to correct their mistakes. We develop the Chain-of-Verification (CoVe) method whereby the model first (i) drafts an initial response; then (ii) plans verification questions to fact-check its draft; (iii) answers those questions independently so the answers are not biased by other responses; and (iv) generates its final verified response. In experiments, we show CoVe decreases hallucinations across a variety of tasks, from list-based questions from Wikidata, closed book MultiSpanQA and longform text generation.
Reformulating Domain Adaptation of Large Language Models as Adapt-Retrieve-Revise
While large language models (LLMs) like GPT-4 have recently demonstrated astonishing zero-shot capabilities in general domain tasks, they often generate content with hallucinations in specific domains such as Chinese law, hindering their application in these areas. This is typically due to the absence of training data that encompasses such a specific domain, preventing GPT-4 from acquiring in-domain knowledge. A pressing challenge is that it's not plausible to continue training LLMs of such scale on in-domain data. This paper introduces a simple and effective domain adaptation framework for GPT-4 by reformulating generation as an adapt-retrieve-revise process. The initial step is to adapt an affordable 7B LLM to the target domain by continuing learning on in-domain data. When solving a task, we leverage the adapted LLM to generate a draft answer given a task query. Then, the draft answer will be used to retrieve supporting evidence candidates from an external in-domain knowledge base. Finally, the draft answer and retrieved evidence are concatenated into a whole prompt to let GPT-4 assess the evidence and revise the draft answer to generate the final answer. Our proposal combines the advantages of the efficiency of adapting a smaller 7B model with the evidence-assessing capability of GPT-4 and effectively prevents GPT-4 from generating hallucinatory content. In the zero-shot setting of four Chinese legal tasks, our method improves accuracy by 33.3\% compared to the direct generation by GPT-4. When compared to two stronger retrieval-based baselines, our method outperforms them by 15.4\% and 23.9\%. Our code will be released
Exploring Language Model Generalization in Low-Resource Extractive QA
In this paper, we investigate Extractive Question Answering (EQA) with Large Language Models (LLMs) under domain drift, i.e., can LLMs generalize to domains that require specific knowledge such as medicine and law in a zero-shot fashion without additional in-domain training? To this end, we devise a series of experiments to explain the performance gap empirically. Our findings suggest that: (a) LLMs struggle with dataset demands of closed domains such as retrieving long answer spans; (b) Certain LLMs, despite showing strong overall performance, display weaknesses in meeting basic requirements as discriminating between domain-specific senses of words which we link to pre-processing decisions; (c) Scaling model parameters is not always effective for cross domain generalization; and (d) Closed-domain datasets are quantitatively much different than open-domain EQA datasets and current LLMs struggle to deal with them. Our findings point out important directions for improving existing LLMs.
Show, Don't Tell: Evaluating Large Language Models Beyond Textual Understanding with ChildPlay
We developed a benchmark set to assess the generalization of state-of-the-art large language models on problems beyond linguistic tasks and evaluate it on a systematic progression of GPT models (GPT-3.5, GPT-4, GPT-4o, GPT-4o-mini). Using simple games like Tic-Tac-Toe, Connect Four, Battleship, and a Shape Recognition Game, all encoded in ASCII, we test strategic capabilities and spatial reasoning, core abilities any artificial intelligence would need to master for solving problems in chemistry. To probe generalization, we introduce two new games for spatial logic: LEGO Connect Language (LCL) and Guess-the-SMILES (GtS), a operationally simple chemistry benchmark. Our results show that GPT models provide meaningful responses for several tasks but, generally, perform poorly. A systematic performance progression with increased model capabilities (GPT-3.5, GPT-4, GPT-4o) is only observed for 4 out of the 7 benchmark tasks. All models consistently struggle with Battleship, LCL, and GtS. This suggests that while GPT models can emulate conversational proficiency and basic rule comprehension, they have limited generalization with respect to strategy and spatial reasoning. Particularly poor performance is observed for interpreting molecular graphs when encoded in ASCII. The results provided by our open-source benchmark suite (https://github.com/BlueVelvetSackOfGoldPotatoes/child-play{ChildPlay GitHub Repository}) caution against claims of emergent intelligence in GPT models, which appear more specialized than general.
PCoQA: Persian Conversational Question Answering Dataset
Humans seek information regarding a specific topic through performing a conversation containing a series of questions and answers. In the pursuit of conversational question answering research, we introduce the PCoQA, the first Persian Conversational Question Answering dataset, a resource comprising information-seeking dialogs encompassing a total of 9,026 contextually-driven questions. Each dialog involves a questioner, a responder, and a document from the Wikipedia; The questioner asks several inter-connected questions from the text and the responder provides a span of the document as the answer for each question. PCoQA is designed to present novel challenges compared to previous question answering datasets including having more open-ended non-factual answers, longer answers, and fewer lexical overlaps. This paper not only presents the comprehensive PCoQA dataset but also reports the performance of various benchmark models. Our models include baseline models and pre-trained models, which are leveraged to boost the performance of the model. The dataset and benchmarks are available at our Github page.
ChatCounselor: A Large Language Models for Mental Health Support
This paper presents ChatCounselor, a large language model (LLM) solution designed to provide mental health support. Unlike generic chatbots, ChatCounselor is distinguished by its foundation in real conversations between consulting clients and professional psychologists, enabling it to possess specialized knowledge and counseling skills in the field of psychology. The training dataset, Psych8k, was constructed from 260 in-depth interviews, each spanning an hour. To assess the quality of counseling responses, the counseling Bench was devised. Leveraging GPT-4 and meticulously crafted prompts based on seven metrics of psychological counseling assessment, the model underwent evaluation using a set of real-world counseling questions. Impressively, ChatCounselor surpasses existing open-source models in the counseling Bench and approaches the performance level of ChatGPT, showcasing the remarkable enhancement in model capability attained through high-quality domain-specific data.
Multi-Messenger Cosmology: A Route to Accurate Inference of Dark Energy Beyond CPL Parametrization from XG Detectors
One of the central challenges in modern cosmology is understanding the nature of dark energy and its evolution throughout the history of the Universe. Dark energy is commonly modeled as a perfect fluid with a time-varying equation-of-state parameter, w(z), often modeled under CPL parametrization using two parameters w_0 and w_a. In this study, we explore both parametric and non-parametric methods to reconstruct the dark energy Equation of State (EoS) using Gravitational Wave (GW) sources, with and without electromagnetic (EM) counterparts called as bright sirens and dark sirens respectively. In the parametric approach, we extend the widely used w_0-w_a model by introducing an additional term, w_b, to better capture the evolving dynamics of dark energy up to high redshift which is accessible from GW sources. This extension provides increased flexibility in modeling the EoS and enables a more detailed investigation of dark energy's evolution. Our analysis indicates that, with five years of observation time and a 75% duty cycle using Cosmic Explorer and the Einstein Telescope, it will be possible to measure the dark energy EoS with remarkable precision better than any other cosmological probes in the coming years from bright standard sirens using multi-messenger avenue. These findings highlight the potential of GW observations in synergy with EM telescopes to offer valuable insights into the nature of dark energy, overcoming the current limitations in cosmological measurements.
Functional Map of the World
We present a new dataset, Functional Map of the World (fMoW), which aims to inspire the development of machine learning models capable of predicting the functional purpose of buildings and land use from temporal sequences of satellite images and a rich set of metadata features. The metadata provided with each image enables reasoning about location, time, sun angles, physical sizes, and other features when making predictions about objects in the image. Our dataset consists of over 1 million images from over 200 countries. For each image, we provide at least one bounding box annotation containing one of 63 categories, including a "false detection" category. We present an analysis of the dataset along with baseline approaches that reason about metadata and temporal views. Our data, code, and pretrained models have been made publicly available.
Effects of Prompt Length on Domain-specific Tasks for Large Language Models
In recent years, Large Language Models have garnered significant attention for their strong performance in various natural language tasks, such as machine translation and question answering. These models demonstrate an impressive ability to generalize across diverse tasks. However, their effectiveness in tackling domain-specific tasks, such as financial sentiment analysis and monetary policy understanding, remains a topic of debate, as these tasks often require specialized knowledge and precise reasoning. To address such challenges, researchers design various prompts to unlock the models' abilities. By carefully crafting input prompts, researchers can guide these models to produce more accurate responses. Consequently, prompt engineering has become a key focus of study. Despite the advancements in both models and prompt engineering, the relationship between the two-specifically, how prompt design impacts models' ability to perform domain-specific tasks-remains underexplored. This paper aims to bridge this research gap.
CommunityLM: Probing Partisan Worldviews from Language Models
As political attitudes have diverged ideologically in the United States, political speech has diverged lingusitically. The ever-widening polarization between the US political parties is accelerated by an erosion of mutual understanding between them. We aim to make these communities more comprehensible to each other with a framework that probes community-specific responses to the same survey questions using community language models CommunityLM. In our framework we identify committed partisan members for each community on Twitter and fine-tune LMs on the tweets authored by them. We then assess the worldviews of the two groups using prompt-based probing of their corresponding LMs, with prompts that elicit opinions about public figures and groups surveyed by the American National Election Studies (ANES) 2020 Exploratory Testing Survey. We compare the responses generated by the LMs to the ANES survey results, and find a level of alignment that greatly exceeds several baseline methods. Our work aims to show that we can use community LMs to query the worldview of any group of people given a sufficiently large sample of their social media discussions or media diet.
Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering
When answering a question, humans utilize the information available across different modalities to synthesize a consistent and complete chain of thought (CoT). This process is normally a black box in the case of deep learning models like large-scale language models. Recently, science question benchmarks have been used to diagnose the multi-hop reasoning ability and interpretability of an AI system. However, existing datasets fail to provide annotations for the answers, or are restricted to the textual-only modality, small scales, and limited domain diversity. To this end, we present Science Question Answering (ScienceQA), a new benchmark that consists of ~21k multimodal multiple choice questions with a diverse set of science topics and annotations of their answers with corresponding lectures and explanations. We further design language models to learn to generate lectures and explanations as the chain of thought (CoT) to mimic the multi-hop reasoning process when answering ScienceQA questions. ScienceQA demonstrates the utility of CoT in language models, as CoT improves the question answering performance by 1.20% in few-shot GPT-3 and 3.99% in fine-tuned UnifiedQA. We also explore the upper bound for models to leverage explanations by feeding those in the input; we observe that it improves the few-shot performance of GPT-3 by 18.96%. Our analysis further shows that language models, similar to humans, benefit from explanations to learn from fewer data and achieve the same performance with just 40% of the data. The data and code are available at https://scienceqa.github.io.
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning
Progress toward the United Nations Sustainable Development Goals (SDGs) has been hindered by a lack of data on key environmental and socioeconomic indicators, which historically have come from ground surveys with sparse temporal and spatial coverage. Recent advances in machine learning have made it possible to utilize abundant, frequently-updated, and globally available data, such as from satellites or social media, to provide insights into progress toward SDGs. Despite promising early results, approaches to using such data for SDG measurement thus far have largely evaluated on different datasets or used inconsistent evaluation metrics, making it hard to understand whether performance is improving and where additional research would be most fruitful. Furthermore, processing satellite and ground survey data requires domain knowledge that many in the machine learning community lack. In this paper, we introduce SustainBench, a collection of 15 benchmark tasks across 7 SDGs, including tasks related to economic development, agriculture, health, education, water and sanitation, climate action, and life on land. Datasets for 11 of the 15 tasks are released publicly for the first time. Our goals for SustainBench are to (1) lower the barriers to entry for the machine learning community to contribute to measuring and achieving the SDGs; (2) provide standard benchmarks for evaluating machine learning models on tasks across a variety of SDGs; and (3) encourage the development of novel machine learning methods where improved model performance facilitates progress towards the SDGs.
Mathematical Capabilities of ChatGPT
We investigate the mathematical capabilities of ChatGPT by testing it on publicly available datasets, as well as hand-crafted ones, and measuring its performance against other models trained on a mathematical corpus, such as Minerva. We also test whether ChatGPT can be a useful assistant to professional mathematicians by emulating various use cases that come up in the daily professional activities of mathematicians (question answering, theorem searching). In contrast to formal mathematics, where large databases of formal proofs are available (e.g., the Lean Mathematical Library), current datasets of natural-language mathematics, used to benchmark language models, only cover elementary mathematics. We address this issue by introducing a new dataset: GHOSTS. It is the first natural-language dataset made and curated by working researchers in mathematics that (1) aims to cover graduate-level mathematics and (2) provides a holistic overview of the mathematical capabilities of language models. We benchmark ChatGPT on GHOSTS and evaluate performance against fine-grained criteria. We make this new dataset publicly available to assist a community-driven comparison of ChatGPT with (future) large language models in terms of advanced mathematical comprehension. We conclude that contrary to many positive reports in the media (a potential case of selection bias), ChatGPT's mathematical abilities are significantly below those of an average mathematics graduate student. Our results show that ChatGPT often understands the question but fails to provide correct solutions. Hence, if your goal is to use it to pass a university exam, you would be better off copying from your average peer!
KIWI: A Dataset of Knowledge-Intensive Writing Instructions for Answering Research Questions
Large language models (LLMs) adapted to follow user instructions are now widely deployed as conversational agents. In this work, we examine one increasingly common instruction-following task: providing writing assistance to compose a long-form answer. To evaluate the capabilities of current LLMs on this task, we construct KIWI, a dataset of knowledge-intensive writing instructions in the scientific domain. Given a research question, an initial model-generated answer and a set of relevant papers, an expert annotator iteratively issues instructions for the model to revise and improve its answer. We collect 1,260 interaction turns from 234 interaction sessions with three state-of-the-art LLMs. Each turn includes a user instruction, a model response, and a human evaluation of the model response. Through a detailed analysis of the collected responses, we find that all models struggle to incorporate new information into an existing answer, and to perform precise and unambiguous edits. Further, we find that models struggle to judge whether their outputs successfully followed user instructions, with accuracy at least 10 points short of human agreement. Our findings indicate that KIWI will be a valuable resource to measure progress and improve LLMs' instruction-following capabilities for knowledge intensive writing tasks.
How Do We Answer Complex Questions: Discourse Structure of Long-form Answers
Long-form answers, consisting of multiple sentences, can provide nuanced and comprehensive answers to a broader set of questions. To better understand this complex and understudied task, we study the functional structure of long-form answers collected from three datasets, ELI5, WebGPT and Natural Questions. Our main goal is to understand how humans organize information to craft complex answers. We develop an ontology of six sentence-level functional roles for long-form answers, and annotate 3.9k sentences in 640 answer paragraphs. Different answer collection methods manifest in different discourse structures. We further analyze model-generated answers -- finding that annotators agree less with each other when annotating model-generated answers compared to annotating human-written answers. Our annotated data enables training a strong classifier that can be used for automatic analysis. We hope our work can inspire future research on discourse-level modeling and evaluation of long-form QA systems.
Exploring the Integration Strategies of Retriever and Large Language Models
The integration of retrieved passages and large language models (LLMs), such as ChatGPTs, has significantly contributed to improving open-domain question answering. However, there is still a lack of exploration regarding the optimal approach for incorporating retrieved passages into the answer generation process. This paper aims to fill this gap by investigating different methods of combining retrieved passages with LLMs to enhance answer generation. We begin by examining the limitations of a commonly-used concatenation approach. Surprisingly, this approach often results in generating "unknown" outputs, even when the correct document is among the top-k retrieved passages. To address this issue, we explore four alternative strategies for integrating the retrieved passages with the LLMs. These strategies include two single-round methods that utilize chain-of-thought reasoning and two multi-round strategies that incorporate feedback loops. Through comprehensive analyses and experiments, we provide insightful observations on how to effectively leverage retrieved passages to enhance the answer generation capability of LLMs.
Solving and Generating NPR Sunday Puzzles with Large Language Models
We explore the ability of large language models to solve and generate puzzles from the NPR Sunday Puzzle game show using PUZZLEQA, a dataset comprising 15 years of on-air puzzles. We evaluate four large language models using PUZZLEQA, in both multiple choice and free response formats, and explore two prompt engineering techniques to improve free response performance: chain-of-thought reasoning and prompt summarization. We find that state-of-the-art large language models can solve many PUZZLEQA puzzles: the best model, GPT-3.5, achieves 50.2% loose accuracy. However, in our few-shot puzzle generation experiment, we find no evidence that models can generate puzzles: GPT-3.5 generates puzzles with answers that do not conform to the generated rules. Puzzle generation remains a challenging task for future work.
Data Authenticity, Consent, & Provenance for AI are all broken: what will it take to fix them?
New capabilities in foundation models are owed in large part to massive, widely-sourced, and under-documented training data collections. Existing practices in data collection have led to challenges in documenting data transparency, tracing authenticity, verifying consent, privacy, representation, bias, copyright infringement, and the overall development of ethical and trustworthy foundation models. In response, regulation is emphasizing the need for training data transparency to understand foundation models' limitations. Based on a large-scale analysis of the foundation model training data landscape and existing solutions, we identify the missing infrastructure to facilitate responsible foundation model development practices. We examine the current shortcomings of common tools for tracing data authenticity, consent, and documentation, and outline how policymakers, developers, and data creators can facilitate responsible foundation model development by adopting universal data provenance standards.
StackOverflowVQA: Stack Overflow Visual Question Answering Dataset
In recent years, people have increasingly used AI to help them with their problems by asking questions on different topics. One of these topics can be software-related and programming questions. In this work, we focus on the questions which need the understanding of images in addition to the question itself. We introduce the StackOverflowVQA dataset, which includes questions from StackOverflow that have one or more accompanying images. This is the first VQA dataset that focuses on software-related questions and contains multiple human-generated full-sentence answers. Additionally, we provide a baseline for answering the questions with respect to images in the introduced dataset using the GIT model. All versions of the dataset are available at https://huggingface.co/mirzaei2114.
Multi-turn Response Selection with Commonsense-enhanced Language Models
As a branch of advanced artificial intelligence, dialogue systems are prospering. Multi-turn response selection is a general research problem in dialogue systems. With the assistance of background information and pre-trained language models, the performance of state-of-the-art methods on this problem gains impressive improvement. However, existing studies neglect the importance of external commonsense knowledge. Hence, we design a Siamese network where a pre-trained Language model merges with a Graph neural network (SinLG). SinLG takes advantage of Pre-trained Language Models (PLMs) to catch the word correlations in the context and response candidates and utilizes a Graph Neural Network (GNN) to reason helpful common sense from an external knowledge graph. The GNN aims to assist the PLM in fine-tuning, and arousing its related memories to attain better performance. Specifically, we first extract related concepts as nodes from an external knowledge graph to construct a subgraph with the context response pair as a super node for each sample. Next, we learn two representations for the context response pair via both the PLM and GNN. A similarity loss between the two representations is utilized to transfer the commonsense knowledge from the GNN to the PLM. Then only the PLM is used to infer online so that efficiency can be guaranteed. Finally, we conduct extensive experiments on two variants of the PERSONA-CHAT dataset, which proves that our solution can not only improve the performance of the PLM but also achieve an efficient inference.
Evaluating Large Language Models on Graphs: Performance Insights and Comparative Analysis
Large Language Models (LLMs) have garnered considerable interest within both academic and industrial. Yet, the application of LLMs to graph data remains under-explored. In this study, we evaluate the capabilities of four LLMs in addressing several analytical problems with graph data. We employ four distinct evaluation metrics: Comprehension, Correctness, Fidelity, and Rectification. Our results show that: 1) LLMs effectively comprehend graph data in natural language and reason with graph topology. 2) GPT models can generate logical and coherent results, outperforming alternatives in correctness. 3) All examined LLMs face challenges in structural reasoning, with techniques like zero-shot chain-of-thought and few-shot prompting showing diminished efficacy. 4) GPT models often produce erroneous answers in multi-answer tasks, raising concerns in fidelity. 5) GPT models exhibit elevated confidence in their outputs, potentially hindering their rectification capacities. Notably, GPT-4 has demonstrated the capacity to rectify responses from GPT-3.5-turbo and its own previous iterations. The code is available at: https://github.com/Ayame1006/LLMtoGraph.
European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background
We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar dataset spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar System ephemeris errors, obtaining a robust 95% upper limit on the dimensionless strain amplitude A of the background of A<3.0times 10^{-15} at a reference frequency of 1yr^{-1} and a spectral index of 13/3, corresponding to a background from inspiralling super-massive black hole binaries, constraining the GW energy density to Omega_gw(f)h^2 < 1.1times10^{-9} at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of sim 5times10^{-9}~Hz. Finally we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95% upper limits on the string tension, Gmu/c^2, characterising a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit Gmu/c^2<1.3times10^{-7}, identical to that set by the {\it Planck} Collaboration, when combining {\it Planck} and high-ell Cosmic Microwave Background data from other experiments. For a stochastic relic background we set a limit of Omega^relic_gw(f)h^2<1.2 times10^{-9}, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.
Evaluating GPT-4 at Grading Handwritten Solutions in Math Exams
Recent advances in generative artificial intelligence (AI) have shown promise in accurately grading open-ended student responses. However, few prior works have explored grading handwritten responses due to a lack of data and the challenge of combining visual and textual information. In this work, we leverage state-of-the-art multi-modal AI models, in particular GPT-4o, to automatically grade handwritten responses to college-level math exams. Using real student responses to questions in a probability theory exam, we evaluate GPT-4o's alignment with ground-truth scores from human graders using various prompting techniques. We find that while providing rubrics improves alignment, the model's overall accuracy is still too low for real-world settings, showing there is significant room for growth in this task.
Exploring the MIT Mathematics and EECS Curriculum Using Large Language Models
We curate a comprehensive dataset of 4,550 questions and solutions from problem sets, midterm exams, and final exams across all MIT Mathematics and Electrical Engineering and Computer Science (EECS) courses required for obtaining a degree. We evaluate the ability of large language models to fulfill the graduation requirements for any MIT major in Mathematics and EECS. Our results demonstrate that GPT-3.5 successfully solves a third of the entire MIT curriculum, while GPT-4, with prompt engineering, achieves a perfect solve rate on a test set excluding questions based on images. We fine-tune an open-source large language model on this dataset. We employ GPT-4 to automatically grade model responses, providing a detailed performance breakdown by course, question, and answer type. By embedding questions in a low-dimensional space, we explore the relationships between questions, topics, and classes and discover which questions and classes are required for solving other questions and classes through few-shot learning. Our analysis offers valuable insights into course prerequisites and curriculum design, highlighting language models' potential for learning and improving Mathematics and EECS education.
Neural network approach to classifying alarming student responses to online assessment
Automated scoring engines are increasingly being used to score the free-form text responses that students give to questions. Such engines are not designed to appropriately deal with responses that a human reader would find alarming such as those that indicate an intention to self-harm or harm others, responses that allude to drug abuse or sexual abuse or any response that would elicit concern for the student writing the response. Our neural network models have been designed to help identify these anomalous responses from a large collection of typical responses that students give. The responses identified by the neural network can be assessed for urgency, severity, and validity more quickly by a team of reviewers than otherwise possible. Given the anomalous nature of these types of responses, our goal is to maximize the chance of flagging these responses for review given the constraint that only a fixed percentage of responses can viably be assessed by a team of reviewers.
SciGraphQA: A Large-Scale Synthetic Multi-Turn Question-Answering Dataset for Scientific Graphs
In this work, we present SciGraphQA, a synthetic multi-turn question-answer dataset related to academic graphs. SciGraphQA is 13 times larger than ChartVQA, the previously largest chart-visual question-answering dataset. It is also the largest open-sourced chart VQA dataset with non-synthetic charts. To build our dataset, we selected 290,000 Computer Science or Machine Learning ArXiv papers published between 2010 and 2020, and then used Palm-2 to generate 295K samples of open-vocabulary multi-turn question-answering dialogues about the graphs. As context, we provided the text-only Palm-2 with paper title, abstract, paragraph mentioning the graph, and rich text contextual data from the graph itself, obtaining dialogues with an average 2.23 question-answer turns for each graph. We asked GPT-4 to assess the matching quality of our question-answer turns given the paper's context, obtaining an average rating of 8.7/10 on our 3K test set. We evaluated the 0-shot capability of the most popular MLLM models such as LLaVa, mPLUGowl, BLIP-2, and openFlamingo's on our dataset, finding LLaVA-13B being the most performant with a CIDEr score of 0.08. We further enriched the question prompts for LLAVA by including the serialized data tables extracted from the graphs using the DePlot model, boosting LLaVA's 0-shot CIDEr to 0.15. To verify the validity of our dataset, we also fine-tuned LLaVa using our dataset, reaching a substantially higher CIDEr score of 0.26. We anticipate further accuracy improvement by including segmentation mask tokens and leveraging larger LLM backbones coupled with emergent prompting techniques. Our code and data are open-sourced.
DoctorGLM: Fine-tuning your Chinese Doctor is not a Herculean Task
The recent progress of large language models (LLMs), including ChatGPT and GPT-4, in comprehending and responding to human instructions has been remarkable. Nevertheless, these models typically perform better in English and have not been explicitly trained for the medical domain, resulting in suboptimal precision in diagnoses, drug recommendations, and other medical advice. Additionally, training and deploying a dialogue model is still believed to be impossible for hospitals, hindering the promotion of LLMs. To tackle these challenges, we have collected databases of medical dialogues in Chinese with ChatGPT's help and adopted several techniques to train an easy-deploy LLM. Remarkably, we were able to fine-tune the ChatGLM-6B on a single A100 80G in 13 hours, which means having a healthcare-purpose LLM can be very affordable. DoctorGLM is currently an early-stage engineering attempt and contain various mistakes. We are sharing it with the broader community to invite feedback and suggestions to improve its healthcare-focused capabilities: https://github.com/xionghonglin/DoctorGLM.
Challenges and Opportunities for time-delay cosmography with multi-messenger gravitational lensing
Strong gravitational lensing of variable sources, such as quasars or supernovae, can be used to constrain cosmological parameters through a technique known as "time-delay cosmography''. Competitive constraints on the Hubble constant have been achieved with electromagnetic observations of lensed quasars and lensed supernovae. Gravitational wave (GW) astronomy may open up a new channel for time-delay cosmography with GW signal replacing the electromagnetic (EM) one. We highlight the similarities of using GW signals to be applied to time-delay cosmography compared to EM signal. We then discuss key differences between GW and EM signals and their resulting advantages and inconveniences from the angle of the current state-of-the-art using quasars and lensed supernovae for time-delay cosmography. We identify the astrometric precision requirement of the images as a key challenge to overcome and highlight the potentially significant impact that near-perfect time-delay measurements of lensed GWs can bring to the table.
FH-SWF SG at GermEval 2021: Using Transformer-Based Language Models to Identify Toxic, Engaging, & Fact-Claiming Comments
In this paper we describe the methods we used for our submissions to the GermEval 2021 shared task on the identification of toxic, engaging, and fact-claiming comments. For all three subtasks we fine-tuned freely available transformer-based models from the Huggingface model hub. We evaluated the performance of various pre-trained models after fine-tuning on 80% of the training data with different hyperparameters and submitted predictions of the two best performing resulting models. We found that this approach worked best for subtask 3, for which we achieved an F1-score of 0.736.
AI-Augmented Surveys: Leveraging Large Language Models and Surveys for Opinion Prediction
Large language models (LLMs) that produce human-like responses have begun to revolutionize research practices in the social sciences. We develop a novel methodological framework that fine-tunes LLMs with repeated cross-sectional surveys to incorporate the meaning of survey questions, individual beliefs, and temporal contexts for opinion prediction. We introduce two new emerging applications of the AI-augmented survey: retrodiction (i.e., predict year-level missing responses) and unasked opinion prediction (i.e., predict entirely missing responses). Among 3,110 binarized opinions from 68,846 Americans in the General Social Survey from 1972 to 2021, our models based on Alpaca-7b excel in retrodiction (AUC = 0.86 for personal opinion prediction, rho = 0.98 for public opinion prediction). These remarkable prediction capabilities allow us to fill in missing trends with high confidence and pinpoint when public attitudes changed, such as the rising support for same-sex marriage. On the other hand, our fine-tuned Alpaca-7b models show modest success in unasked opinion prediction (AUC = 0.73, rho = 0.67). We discuss practical constraints and ethical concerns regarding individual autonomy and privacy when using LLMs for opinion prediction. Our study demonstrates that LLMs and surveys can mutually enhance each other's capabilities: LLMs can broaden survey potential, while surveys can improve the alignment of LLMs.
Multi-Domain Dialogue Acts and Response Co-Generation
Generating fluent and informative responses is of critical importance for task-oriented dialogue systems. Existing pipeline approaches generally predict multiple dialogue acts first and use them to assist response generation. There are at least two shortcomings with such approaches. First, the inherent structures of multi-domain dialogue acts are neglected. Second, the semantic associations between acts and responses are not taken into account for response generation. To address these issues, we propose a neural co-generation model that generates dialogue acts and responses concurrently. Unlike those pipeline approaches, our act generation module preserves the semantic structures of multi-domain dialogue acts and our response generation module dynamically attends to different acts as needed. We train the two modules jointly using an uncertainty loss to adjust their task weights adaptively. Extensive experiments are conducted on the large-scale MultiWOZ dataset and the results show that our model achieves very favorable improvement over several state-of-the-art models in both automatic and human evaluations.
Fostering Appropriate Reliance on Large Language Models: The Role of Explanations, Sources, and Inconsistencies
Large language models (LLMs) can produce erroneous responses that sound fluent and convincing, raising the risk that users will rely on these responses as if they were correct. Mitigating such overreliance is a key challenge. Through a think-aloud study in which participants use an LLM-infused application to answer objective questions, we identify several features of LLM responses that shape users' reliance: explanations (supporting details for answers), inconsistencies in explanations, and sources. Through a large-scale, pre-registered, controlled experiment (N=308), we isolate and study the effects of these features on users' reliance, accuracy, and other measures. We find that the presence of explanations increases reliance on both correct and incorrect responses. However, we observe less reliance on incorrect responses when sources are provided or when explanations exhibit inconsistencies. We discuss the implications of these findings for fostering appropriate reliance on LLMs.
GPT-4 passes most of the 297 written Polish Board Certification Examinations
Introduction: Recently, the effectiveness of Large Language Models (LLMs) has increased rapidly, allowing them to be used in a great number of applications. However, the risks posed by the generation of false information through LLMs significantly limit their applications in sensitive areas such as healthcare, highlighting the necessity for rigorous validations to determine their utility and reliability. To date, no study has extensively compared the performance of LLMs on Polish medical examinations across a broad spectrum of specialties on a very large dataset. Objectives: This study evaluated the performance of three Generative Pretrained Transformer (GPT) models on the Polish Board Certification Exam (Pa\'nstwowy Egzamin Specjalizacyjny, PES) dataset, which consists of 297 tests. Methods: We developed a software program to download and process PES exams and tested the performance of GPT models using OpenAI Application Programming Interface. Results: Our findings reveal that GPT-3.5 did not pass any of the analyzed exams. In contrast, the GPT-4 models demonstrated the capability to pass the majority of the exams evaluated, with the most recent model, gpt-4-0125, successfully passing 222 (75%) of them. The performance of the GPT models varied significantly, displaying excellence in exams related to certain specialties while completely failing others. Conclusions: The significant progress and impressive performance of LLM models hold great promise for the increased application of AI in the field of medicine in Poland. For instance, this advancement could lead to the development of AI-based medical assistants for healthcare professionals, enhancing the efficiency and accuracy of medical services.
LLMs4All: A Review on Large Language Models for Research and Applications in Academic Disciplines
Cutting-edge Artificial Intelligence (AI) techniques keep reshaping our view of the world. For example, Large Language Models (LLMs) based applications such as ChatGPT have shown the capability of generating human-like conversation on extensive topics. Due to the impressive performance on a variety of language-related tasks (e.g., open-domain question answering, translation, and document summarization), one can envision the far-reaching impacts that can be brought by the LLMs with broader real-world applications (e.g., customer service, education and accessibility, and scientific discovery). Inspired by their success, this paper will offer an overview of state-of-the-art LLMs and their integration into a wide range of academic disciplines, including: (1) arts, letters, and law (e.g., history, philosophy, political science, arts and architecture, law), (2) economics and business (e.g., finance, economics, accounting, marketing), and (3) science and engineering (e.g., mathematics, physics and mechanical engineering, chemistry and chemical engineering, life sciences and bioengineering, earth sciences and civil engineering, computer science and electrical engineering). Integrating humanity and technology, in this paper, we will explore how LLMs are shaping research and practice in these fields, while also discussing key limitations, open challenges, and future directions in the era of generative AI. The review of how LLMs are engaged across disciplines-along with key observations and insights-can help researchers and practitioners interested in exploiting LLMs to advance their works in diverse real-world applications.
Team Enigma at ArgMining-EMNLP 2021: Leveraging Pre-trained Language Models for Key Point Matching
We present the system description for our submission towards the Key Point Analysis Shared Task at ArgMining 2021. Track 1 of the shared task requires participants to develop methods to predict the match score between each pair of arguments and keypoints, provided they belong to the same topic under the same stance. We leveraged existing state of the art pre-trained language models along with incorporating additional data and features extracted from the inputs (topics, key points, and arguments) to improve performance. We were able to achieve mAP strict and mAP relaxed score of 0.872 and 0.966 respectively in the evaluation phase, securing 5th place on the leaderboard. In the post evaluation phase, we achieved a mAP strict and mAP relaxed score of 0.921 and 0.982 respectively. All the codes to generate reproducible results on our models are available on Github.
Mind Your Tone: Investigating How Prompt Politeness Affects LLM Accuracy (short paper)
The wording of natural language prompts has been shown to influence the performance of large language models (LLMs), yet the role of politeness and tone remains underexplored. In this study, we investigate how varying levels of prompt politeness affect model accuracy on multiple-choice questions. We created a dataset of 50 base questions spanning mathematics, science, and history, each rewritten into five tone variants: Very Polite, Polite, Neutral, Rude, and Very Rude, yielding 250 unique prompts. Using ChatGPT 4o, we evaluated responses across these conditions and applied paired sample t-tests to assess statistical significance. Contrary to expectations, impolite prompts consistently outperformed polite ones, with accuracy ranging from 80.8% for Very Polite prompts to 84.8% for Very Rude prompts. These findings differ from earlier studies that associated rudeness with poorer outcomes, suggesting that newer LLMs may respond differently to tonal variation. Our results highlight the importance of studying pragmatic aspects of prompting and raise broader questions about the social dimensions of human-AI interaction.
FiE: Building a Global Probability Space by Leveraging Early Fusion in Encoder for Open-Domain Question Answering
Generative models have recently started to outperform extractive models in Open Domain Question Answering, largely by leveraging their decoder to attend over multiple encoded passages and combining their information. However, generative models tend to be larger than extractive models due to the need for a decoder, run slower during inference due to auto-regressive decoder beam search, and their generated output often suffers from hallucinations. We propose to extend transformer encoders with the ability to fuse information from multiple passages, using global representation to provide cross-sample attention over all tokens across samples. Furthermore, we propose an alternative answer span probability calculation to better aggregate answer scores in the global space of all samples. Using our proposed method, we outperform the current state-of-the-art method by 2.5 Exact Match score on the Natural Question dataset while using only 25% of parameters and 35% of the latency during inference, and 4.4 Exact Match on WebQuestions dataset. When coupled with synthetic data augmentation, we outperform larger models on the TriviaQA dataset as well. The latency and parameter savings of our method make it particularly attractive for open-domain question answering, as these models are often compute-intensive.
Large Language Models Pass the Turing Test
We evaluated 4 systems (ELIZA, GPT-4o, LLaMa-3.1-405B, and GPT-4.5) in two randomised, controlled, and pre-registered Turing tests on independent populations. Participants had 5 minute conversations simultaneously with another human participant and one of these systems before judging which conversational partner they thought was human. When prompted to adopt a humanlike persona, GPT-4.5 was judged to be the human 73% of the time: significantly more often than interrogators selected the real human participant. LLaMa-3.1, with the same prompt, was judged to be the human 56% of the time -- not significantly more or less often than the humans they were being compared to -- while baseline models (ELIZA and GPT-4o) achieved win rates significantly below chance (23% and 21% respectively). The results constitute the first empirical evidence that any artificial system passes a standard three-party Turing test. The results have implications for debates about what kind of intelligence is exhibited by Large Language Models (LLMs), and the social and economic impacts these systems are likely to have.
Evaluating the Elementary Multilingual Capabilities of Large Language Models with MultiQ
Large language models (LLMs) need to serve everyone, including a global majority of non-English speakers. However, most LLMs today, and open LLMs in particular, are often intended for use in just English (e.g. Llama2, Mistral) or a small handful of high-resource languages (e.g. Mixtral, Qwen). Recent research shows that, despite limits in their intended use, people prompt LLMs in many different languages. Therefore, in this paper, we investigate the basic multilingual capabilities of state-of-the-art open LLMs beyond their intended use. For this purpose, we introduce MultiQ, a new silver standard benchmark for basic open-ended question answering with 27.4k test questions across a typologically diverse set of 137 languages. With MultiQ, we evaluate language fidelity, i.e. whether models respond in the prompted language, and question answering accuracy. All LLMs we test respond faithfully and/or accurately for at least some languages beyond their intended use. Most models are more accurate when they respond faithfully. However, differences across models are large, and there is a long tail of languages where models are neither accurate nor faithful. We explore differences in tokenization as a potential explanation for our findings, identifying possible correlations that warrant further investigation.
Analytical sensitivity curves of the second-generation time-delay interferometry
Forthcoming space-based gravitational-wave (GW) detectors will employ second-generation time-delay interferometry (TDI) to suppress laser frequency noise and achieve the sensitivity required for GW detection. We introduce an inverse light-path operator P_{i_{1}i_{2}i_{3}ldots i_{n-1}i_{n}}, which enables simple representation of second-generation TDI combinations and a concise description of light propagation. Analytical expressions and high-accuracy approximate formulas are derived for the sky- and polarization-averaged response functions, noise power spectral densities (PSDs), and sensitivity curves of TDI Michelson, (alpha,beta,gamma), Monitor, Beacon, Relay, and Sagnac combinations, as well as their orthogonal A, E, T channels. Our results show that: (i) second-generation TDIs have the same sensitivities as their first-generation counterparts; (ii) the A, E, T sensitivities and the optimal sensitivity are independent of the TDI generation and specific combination; (iii) the A and E channels have equal averaged responses, noise PSDs, and sensitivities, while the T channel has much weaker response and sensitivity at low frequencies (2pi fL/clesssim3); (iv) except for the (alpha,beta,gamma) and zeta combinations and the T channel, all sensitivity curves exhibit a flat section in the range f_{n}<flesssim 1.5/(2pi L/c), where the noise-balance frequency f_{n} separates the proof-mass- and optical-path-dominated regimes, while the response-transition frequency sim 1.5/(2pi L/c) separates the response function's low- and high-frequency behaviors; (v) the averaged response, noise PSD, and sensitivity of zeta scales with those of the T channel. These analytical and approximate formulations provide useful benchmarks for instrument optimization and data-analysis studies for future space-based GW detectors.
NELA-GT-2019: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles
In this paper, we present an updated version of the NELA-GT-2018 dataset (N{\o}rregaard, Horne, and Adal{\i} 2019), entitled NELA-GT-2019. NELA-GT-2019 contains 1.12M news articles from 260 sources collected between January 1st 2019 and December 31st 2019. Just as with NELA-GT-2018, these sources come from a wide range of mainstream news sources and alternative news sources. Included with the dataset are source-level ground truth labels from 7 different assessment sites covering multiple dimensions of veracity. The NELA-GT-2019 dataset can be found at: https://doi.org/10.7910/DVN/O7FWPO
Evidence-Driven Retrieval Augmented Response Generation for Online Misinformation
The proliferation of online misinformation has posed significant threats to public interest. While numerous online users actively participate in the combat against misinformation, many of such responses can be characterized by the lack of politeness and supporting facts. As a solution, text generation approaches are proposed to automatically produce counter-misinformation responses. Nevertheless, existing methods are often trained end-to-end without leveraging external knowledge, resulting in subpar text quality and excessively repetitive responses. In this paper, we propose retrieval augmented response generation for online misinformation (RARG), which collects supporting evidence from scientific sources and generates counter-misinformation responses based on the evidences. In particular, our RARG consists of two stages: (1) evidence collection, where we design a retrieval pipeline to retrieve and rerank evidence documents using a database comprising over 1M academic articles; (2) response generation, in which we align large language models (LLMs) to generate evidence-based responses via reinforcement learning from human feedback (RLHF). We propose a reward function to maximize the utilization of the retrieved evidence while maintaining the quality of the generated text, which yields polite and factual responses that clearly refutes misinformation. To demonstrate the effectiveness of our method, we study the case of COVID-19 and perform extensive experiments with both in- and cross-domain datasets, where RARG consistently outperforms baselines by generating high-quality counter-misinformation responses.
Decoding Hate: Exploring Language Models' Reactions to Hate Speech
Hate speech is a harmful form of online expression, often manifesting as derogatory posts. It is a significant risk in digital environments. With the rise of Large Language Models (LLMs), there is concern about their potential to replicate hate speech patterns, given their training on vast amounts of unmoderated internet data. Understanding how LLMs respond to hate speech is crucial for their responsible deployment. However, the behaviour of LLMs towards hate speech has been limited compared. This paper investigates the reactions of seven state-of-the-art LLMs (LLaMA 2, Vicuna, LLaMA 3, Mistral, GPT-3.5, GPT-4, and Gemini Pro) to hate speech. Through qualitative analysis, we aim to reveal the spectrum of responses these models produce, highlighting their capacity to handle hate speech inputs. We also discuss strategies to mitigate hate speech generation by LLMs, particularly through fine-tuning and guideline guardrailing. Finally, we explore the models' responses to hate speech framed in politically correct language.
An In-depth Look at Gemini's Language Abilities
The recently released Google Gemini class of models are the first to comprehensively report results that rival the OpenAI GPT series across a wide variety of tasks. In this paper, we do an in-depth exploration of Gemini's language abilities, making two contributions. First, we provide a third-party, objective comparison of the abilities of the OpenAI GPT and Google Gemini models with reproducible code and fully transparent results. Second, we take a closer look at the results, identifying areas where one of the two model classes excels. We perform this analysis over 10 datasets testing a variety of language abilities, including reasoning, answering knowledge-based questions, solving math problems, translating between languages, generating code, and acting as instruction-following agents. From this analysis, we find that Gemini Pro achieves accuracy that is close but slightly inferior to the corresponding GPT 3.5 Turbo on all tasks that we benchmarked. We further provide explanations for some of this under-performance, including failures in mathematical reasoning with many digits, sensitivity to multiple-choice answer ordering, aggressive content filtering, and others. We also identify areas where Gemini demonstrates comparably high performance, including generation into non-English languages, and handling longer and more complex reasoning chains. Code and data for reproduction can be found at https://github.com/neulab/gemini-benchmark
A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to GPT-5 All You Need?
As ChatGPT goes viral, generative AI (AIGC, a.k.a AI-generated content) has made headlines everywhere because of its ability to analyze and create text, images, and beyond. With such overwhelming media coverage, it is almost impossible for us to miss the opportunity to glimpse AIGC from a certain angle. In the era of AI transitioning from pure analysis to creation, it is worth noting that ChatGPT, with its most recent language model GPT-4, is just a tool out of numerous AIGC tasks. Impressed by the capability of the ChatGPT, many people are wondering about its limits: can GPT-5 (or other future GPT variants) help ChatGPT unify all AIGC tasks for diversified content creation? Toward answering this question, a comprehensive review of existing AIGC tasks is needed. As such, our work comes to fill this gap promptly by offering a first look at AIGC, ranging from its techniques to applications. Modern generative AI relies on various technical foundations, ranging from model architecture and self-supervised pretraining to generative modeling methods (like GAN and diffusion models). After introducing the fundamental techniques, this work focuses on the technological development of various AIGC tasks based on their output type, including text, images, videos, 3D content, etc., which depicts the full potential of ChatGPT's future. Moreover, we summarize their significant applications in some mainstream industries, such as education and creativity content. Finally, we discuss the challenges currently faced and present an outlook on how generative AI might evolve in the near future.
The Generative Energy Arena (GEA): Incorporating Energy Awareness in Large Language Model (LLM) Human Evaluations
The evaluation of large language models is a complex task, in which several approaches have been proposed. The most common is the use of automated benchmarks in which LLMs have to answer multiple-choice questions of different topics. However, this method has certain limitations, being the most concerning, the poor correlation with the humans. An alternative approach, is to have humans evaluate the LLMs. This poses scalability issues as there is a large and growing number of models to evaluate making it impractical (and costly) to run traditional studies based on recruiting a number of evaluators and having them rank the responses of the models. An alternative approach is the use of public arenas, such as the popular LM arena, on which any user can freely evaluate models on any question and rank the responses of two models. The results are then elaborated into a model ranking. An increasingly important aspect of LLMs is their energy consumption and, therefore, evaluating how energy awareness influences the decisions of humans in selecting a model is of interest. In this paper, we present GEA, the Generative Energy Arena, an arena that incorporates information on the energy consumption of the model in the evaluation process. Preliminary results obtained with GEA are also presented, showing that for most questions, when users are aware of the energy consumption, they favor smaller and more energy efficient models. This suggests that for most user interactions, the extra cost and energy incurred by the more complex and top-performing models do not provide an increase in the perceived quality of the responses that justifies their use.
Adaptive Generation of Bias-Eliciting Questions for LLMs
Large language models (LLMs) are now widely deployed in user-facing applications, reaching hundreds of millions worldwide. As they become integrated into everyday tasks, growing reliance on their outputs raises significant concerns. In particular, users may unknowingly be exposed to model-inherent biases that systematically disadvantage or stereotype certain groups. However, existing bias benchmarks continue to rely on templated prompts or restrictive multiple-choice questions that are suggestive, simplistic, and fail to capture the complexity of real-world user interactions. In this work, we address this gap by introducing a counterfactual bias evaluation framework that automatically generates realistic, open-ended questions over sensitive attributes such as sex, race, or religion. By iteratively mutating and selecting bias-inducing questions, our approach systematically explores areas where models are most susceptible to biased behavior. Beyond detecting harmful biases, we also capture distinct response dimensions that are increasingly relevant in user interactions, such as asymmetric refusals and explicit acknowledgment of bias. Leveraging our framework, we construct CAB, a human-verified benchmark spanning diverse topics, designed to enable cross-model comparisons. Using CAB, we analyze a range of LLMs across multiple bias dimensions, revealing nuanced insights into how different models manifest bias. For instance, while GPT-5 outperforms other models, it nonetheless exhibits persistent biases in specific scenarios. These findings underscore the need for continual improvements to ensure fair model behavior.
Navigating Human Language Models with Synthetic Agents
Modern natural language models such as the GPT-2/GPT-3 contain tremendous amounts of information about human belief in a consistently testable form. If these models could be shown to accurately reflect the underlying beliefs of the human beings that produced the data used to train these models, then such models become a powerful sociological tool in ways that are distinct from traditional methods, such as interviews and surveys. In this study, We train a version of the GPT-2 on a corpora of historical chess games, and then "launch" clusters of synthetic agents into the model, using text strings to create context and orientation. We compare the trajectories contained in the text generated by the agents/model and compare that to the known ground truth of the chess board, move legality, and historical patterns of play. We find that the percentages of moves by piece using the model are substantially similar from human patterns. We further find that the model creates an accurate latent representation of the chessboard, and that it is possible to plot trajectories of legal moves across the board using this knowledge.
Think Twice: Enhancing LLM Reasoning by Scaling Multi-round Test-time Thinking
Recent advances in large language models (LLMs), such as OpenAI-o1 and DeepSeek-R1, have demonstrated the effectiveness of test-time scaling, where extended reasoning processes substantially enhance model performance. Despite this, current models are constrained by limitations in handling long texts and reinforcement learning (RL) training efficiency. To address these issues, we propose a simple yet effective test-time scaling approach Multi-round Thinking. This method iteratively refines model reasoning by leveraging previous answers as prompts for subsequent rounds. Extensive experiments across multiple models, including QwQ-32B and DeepSeek-R1, consistently show performance improvements on various benchmarks such as AIME 2024, MATH-500, GPQA-diamond, and LiveCodeBench. For instance, the accuracy of QwQ-32B improved from 80.3% (Round 1) to 82.1% (Round 2) on the AIME 2024 dataset, while DeepSeek-R1 showed a similar increase from 79.7% to 82.0%. These results confirm that Multi-round Thinking is a broadly applicable, straightforward approach to achieving stable enhancements in model performance, underscoring its potential for future developments in test-time scaling techniques. The key prompt: {Original question prompt} The assistant's previous answer is: <answer> {last round answer} </answer>, and please re-answer.
Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback
Large language models (LLMs), such as ChatGPT, are able to generate human-like, fluent responses for many downstream tasks, e.g., task-oriented dialog and question answering. However, applying LLMs to real-world, mission-critical applications remains challenging mainly due to their tendency to generate hallucinations and their inability to use external knowledge. This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules. Our system makes the LLM generate responses grounded in external knowledge, e.g., stored in task-specific databases. It also iteratively revises LLM prompts to improve model responses using feedback generated by utility functions, e.g., the factuality score of a LLM-generated response. The effectiveness of LLM-Augmenter is empirically validated on two types of scenarios, task-oriented dialog and open-domain question answering. LLM-Augmenter significantly reduces ChatGPT's hallucinations without sacrificing the fluency and informativeness of its responses. We make the source code and models publicly available.
A Longitudinal Dataset of Twitter ISIS Users
We present a large longitudinal dataset of tweets from two sets of users that are suspected to be affiliated with ISIS. These sets of users are identified based on a prior study and a campaign aimed at shutting down ISIS Twitter accounts. These users have engaged with known ISIS accounts at least once during 2014-2015 and are still active as of 2021. Some of them have directly supported the ISIS users and their tweets by retweeting them, and some of the users that have quoted tweets of ISIS, have uncertain connections to ISIS seed accounts. This study and the dataset represent a unique approach to analyzing ISIS data. Although much research exists on ISIS online activities, few studies have focused on individual accounts. Our approach to validating accounts as well as developing a framework for differentiating accounts' functionality (e.g., propaganda versus operational planning) offers a foundation for future research. We perform some descriptive statistics and preliminary analyses on our collected data to provide deeper insight and highlight the significance and practicality of such analyses. We further discuss several cross-disciplinary potential use cases and research directions.
Reinforcement Learning-based Counter-Misinformation Response Generation: A Case Study of COVID-19 Vaccine Misinformation
The spread of online misinformation threatens public health, democracy, and the broader society. While professional fact-checkers form the first line of defense by fact-checking popular false claims, they do not engage directly in conversations with misinformation spreaders. On the other hand, non-expert ordinary users act as eyes-on-the-ground who proactively counter misinformation -- recent research has shown that 96% counter-misinformation responses are made by ordinary users. However, research also found that 2/3 times, these responses are rude and lack evidence. This work seeks to create a counter-misinformation response generation model to empower users to effectively correct misinformation. This objective is challenging due to the absence of datasets containing ground-truth of ideal counter-misinformation responses, and the lack of models that can generate responses backed by communication theories. In this work, we create two novel datasets of misinformation and counter-misinformation response pairs from in-the-wild social media and crowdsourcing from college-educated students. We annotate the collected data to distinguish poor from ideal responses that are factual, polite, and refute misinformation. We propose MisinfoCorrect, a reinforcement learning-based framework that learns to generate counter-misinformation responses for an input misinformation post. The model rewards the generator to increase the politeness, factuality, and refutation attitude while retaining text fluency and relevancy. Quantitative and qualitative evaluation shows that our model outperforms several baselines by generating high-quality counter-responses. This work illustrates the promise of generative text models for social good -- here, to help create a safe and reliable information ecosystem. The code and data is accessible on https://github.com/claws-lab/MisinfoCorrect.
Phone physics and the Gateway Arch: Fun with friends and physics at the AAPT Winter Meeting in St. Louis
As a famous landmark and feat of engineering, the Gateway Arch was a popular destination at the 2025 AAPT Winter Meeting in St. Louis. The visit to the observation deck of the Gateway Arch is unique, climbing the steps after exiting the small tram capsules and seeing a floor that continues to slope upward assures that you are in fact at the very top. Everyone in our group excitedly took pictures, pointing out local features like the Dred Scott Courthouse. There were many selfies at the pinnacle, and we discussed how to work them into future questions for our students. During our tram ride to the top observation deck of the arch, we lamented that we should have brought pendula to measure the acceleration due to gravity. You can take physics teachers out of the physics conference, but you apparently can't get us to stop talking about physics teaching. Recognizing that we had accelerometers on our phones we collected data on the descent. The authors wanted to collect more complete measurements and returned two days later to repeat the journey, the results of which we present here. For readers wishing to repeat with their students, or who want to apply more advanced data analysis techniques, the authors have made the raw data, our spreadsheets, and a teacher's guide available.
Generative AI vs. AGI: The Cognitive Strengths and Weaknesses of Modern LLMs
A moderately detailed consideration of interactive LLMs as cognitive systems is given, focusing on LLMs circa mid-2023 such as ChatGPT, GPT-4, Bard, Llama, etc.. Cognitive strengths of these systems are reviewed, and then careful attention is paid to the substantial differences between the sort of cognitive system these LLMs are, and the sort of cognitive systems human beings are. It is found that many of the practical weaknesses of these AI systems can be tied specifically to lacks in the basic cognitive architectures according to which these systems are built. It is argued that incremental improvement of such LLMs is not a viable approach to working toward human-level AGI, in practical terms given realizable amounts of compute resources. This does not imply there is nothing to learn about human-level AGI from studying and experimenting with LLMs, nor that LLMs cannot form significant parts of human-level AGI architectures that also incorporate other ideas. Social and ethical matters regarding LLMs are very briefly touched from this perspective, which implies that while care should be taken regarding misinformation and other issues, and economic upheavals will need their own social remedies based on their unpredictable course as with any powerfully impactful technology, overall the sort of policy needed as regards modern LLMs is quite different than would be the case if a more credible approximation to human-level AGI were at hand.
Surveying (Dis)Parities and Concerns of Compute Hungry NLP Research
Many recent improvements in NLP stem from the development and use of large pre-trained language models (PLMs) with billions of parameters. Large model sizes makes computational cost one of the main limiting factors for training and evaluating such models; and has raised severe concerns about the sustainability, reproducibility, and inclusiveness for researching PLMs. These concerns are often based on personal experiences and observations. However, there had not been any large-scale surveys that investigate them. In this work, we provide a first attempt to quantify these concerns regarding three topics, namely, environmental impact, equity, and impact on peer reviewing. By conducting a survey with 312 participants from the NLP community, we capture existing (dis)parities between different and within groups with respect to seniority, academia, and industry; and their impact on the peer reviewing process. For each topic, we provide an analysis and devise recommendations to mitigate found disparities, some of which already successfully implemented. Finally, we discuss additional concerns raised by many participants in free-text responses.
Is GPT-4 a Good Data Analyst?
As large language models (LLMs) have demonstrated their powerful capabilities in plenty of domains and tasks, including context understanding, code generation, language generation, data storytelling, etc., many data analysts may raise concerns if their jobs will be replaced by AI. This controversial topic has drawn a lot of attention in public. However, we are still at a stage of divergent opinions without any definitive conclusion. Motivated by this, we raise the research question of "is GPT-4 a good data analyst?" in this work and aim to answer it by conducting head-to-head comparative studies. In detail, we regard GPT-4 as a data analyst to perform end-to-end data analysis with databases from a wide range of domains. We propose a framework to tackle the problems by carefully designing the prompts for GPT-4 to conduct experiments. We also design several task-specific evaluation metrics to systematically compare the performance between several professional human data analysts and GPT-4. Experimental results show that GPT-4 can achieve comparable performance to humans. We also provide in-depth discussions about our results to shed light on further studies before we reach the conclusion that GPT-4 can replace data analysts.
SimOAP: Improve Coherence and Consistency in Persona-based Dialogue Generation via Over-sampling and Post-evaluation
Language models trained on large-scale corpora can generate remarkably fluent results in open-domain dialogue. However, for the persona-based dialogue generation task, consistency and coherence are also key factors, which are great challenges for language models. Existing works mainly focus on valuable data filtering, model structure modifying, or objective function designing, while their improvements are limited and hard to generalize to all types of pre-trained language models. However, we find that language models can produce consistent and coherent responses if we consider enough generations. Thus, the problems lay in large-scale response generation and target response selection. In this work, a simple but effective two-stage SimOAP strategy is proposed, i.e., over-sampling and post-evaluation. The over-sampling stage takes large-scale responses from existing trained models efficiently via off-the-shelf distilling and compressing methods, and the post-evaluation stage selects a good response based on multiple well-designed evaluation metrics from large-scale candidates. Experimental results show that the proposed plug-in SimOAP strategy improves the backbone models and outperforms the baseline strategies in both automatic and human evaluations.
How Are LLMs Mitigating Stereotyping Harms? Learning from Search Engine Studies
With the widespread availability of LLMs since the release of ChatGPT and increased public scrutiny, commercial model development appears to have focused their efforts on 'safety' training concerning legal liabilities at the expense of social impact evaluation. This mimics a similar trend which we could observe for search engine autocompletion some years prior. We draw on scholarship from NLP and search engine auditing and present a novel evaluation task in the style of autocompletion prompts to assess stereotyping in LLMs. We assess LLMs by using four metrics, namely refusal rates, toxicity, sentiment and regard, with and without safety system prompts. Our findings indicate an improvement to stereotyping outputs with the system prompt, but overall a lack of attention by LLMs under study to certain harms classified as toxic, particularly for prompts about peoples/ethnicities and sexual orientation. Mentions of intersectional identities trigger a disproportionate amount of stereotyping. Finally, we discuss the implications of these findings about stereotyping harms in light of the coming intermingling of LLMs and search and the choice of stereotyping mitigation policy to adopt. We address model builders, academics, NLP practitioners and policy makers, calling for accountability and awareness concerning stereotyping harms, be it for training data curation, leader board design and usage, or social impact measurement.
How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection
The introduction of ChatGPT has garnered widespread attention in both academic and industrial communities. ChatGPT is able to respond effectively to a wide range of human questions, providing fluent and comprehensive answers that significantly surpass previous public chatbots in terms of security and usefulness. On one hand, people are curious about how ChatGPT is able to achieve such strength and how far it is from human experts. On the other hand, people are starting to worry about the potential negative impacts that large language models (LLMs) like ChatGPT could have on society, such as fake news, plagiarism, and social security issues. In this work, we collected tens of thousands of comparison responses from both human experts and ChatGPT, with questions ranging from open-domain, financial, medical, legal, and psychological areas. We call the collected dataset the Human ChatGPT Comparison Corpus (HC3). Based on the HC3 dataset, we study the characteristics of ChatGPT's responses, the differences and gaps from human experts, and future directions for LLMs. We conducted comprehensive human evaluations and linguistic analyses of ChatGPT-generated content compared with that of humans, where many interesting results are revealed. After that, we conduct extensive experiments on how to effectively detect whether a certain text is generated by ChatGPT or humans. We build three different detection systems, explore several key factors that influence their effectiveness, and evaluate them in different scenarios. The dataset, code, and models are all publicly available at https://github.com/Hello-SimpleAI/chatgpt-comparison-detection.
From Local to Global: A Graph RAG Approach to Query-Focused Summarization
The use of retrieval-augmented generation (RAG) to retrieve relevant information from an external knowledge source enables large language models (LLMs) to answer questions over private and/or previously unseen document collections. However, RAG fails on global questions directed at an entire text corpus, such as "What are the main themes in the dataset?", since this is inherently a query-focused summarization (QFS) task, rather than an explicit retrieval task. Prior QFS methods, meanwhile, fail to scale to the quantities of text indexed by typical RAG systems. To combine the strengths of these contrasting methods, we propose a Graph RAG approach to question answering over private text corpora that scales with both the generality of user questions and the quantity of source text to be indexed. Our approach uses an LLM to build a graph-based text index in two stages: first to derive an entity knowledge graph from the source documents, then to pregenerate community summaries for all groups of closely-related entities. Given a question, each community summary is used to generate a partial response, before all partial responses are again summarized in a final response to the user. For a class of global sensemaking questions over datasets in the 1 million token range, we show that Graph RAG leads to substantial improvements over a na\"ive RAG baseline for both the comprehensiveness and diversity of generated answers. An open-source, Python-based implementation of both global and local Graph RAG approaches is forthcoming at https://aka.ms/graphrag.
Artificial Generals Intelligence: Mastering Generals.io with Reinforcement Learning
We introduce a real-time strategy game environment based on Generals.io, a game with thousands of weekly active players. Our environment is fully compatible with Gymnasium and PettingZoo and is capable of running thousands of frames per second on commodity hardware. We also present a reference agent, trained with supervised pre-training and self-play, which reached the top 0.003% of the 1v1 human leaderboard after only 36 hours on a single H100 GPU. To accelerate learning, we incorporate potential-based reward shaping and memory features. Our contributions of a modular RTS benchmark and a competitive baseline agent provide an accessible yet challenging platform for advancing multi-agent reinforcement learning research. The documented code, together with examples and tutorials, is available at https://github.com/strakam/generals-bots.
Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.
Towards A Fairer Landmark Recognition Dataset
We introduce a new landmark recognition dataset, which is created with a focus on fair worldwide representation. While previous work proposes to collect as many images as possible from web repositories, we instead argue that such approaches can lead to biased data. To create a more comprehensive and equitable dataset, we start by defining the fair relevance of a landmark to the world population. These relevances are estimated by combining anonymized Google Maps user contribution statistics with the contributors' demographic information. We present a stratification approach and analysis which leads to a much fairer coverage of the world, compared to existing datasets. The resulting datasets are used to evaluate computer vision models as part of the the Google Landmark Recognition and RetrievalChallenges 2021.
ChatGPT and Software Testing Education: Promises & Perils
Over the past decade, predictive language modeling for code has proven to be a valuable tool for enabling new forms of automation for developers. More recently, we have seen the advent of general purpose "large language models", based on neural transformer architectures, that have been trained on massive datasets of human written text spanning code and natural language. However, despite the demonstrated representational power of such models, interacting with them has historically been constrained to specific task settings, limiting their general applicability. Many of these limitations were recently overcome with the introduction of ChatGPT, a language model created by OpenAI and trained to operate as a conversational agent, enabling it to answer questions and respond to a wide variety of commands from end users. The introduction of models, such as ChatGPT, has already spurred fervent discussion from educators, ranging from fear that students could use these AI tools to circumvent learning, to excitement about the new types of learning opportunities that they might unlock. However, given the nascent nature of these tools, we currently lack fundamental knowledge related to how well they perform in different educational settings, and the potential promise (or danger) that they might pose to traditional forms of instruction. As such, in this paper, we examine how well ChatGPT performs when tasked with answering common questions in a popular software testing curriculum. Our findings indicate that ChatGPT can provide correct or partially correct answers in 55.6% of cases, provide correct or partially correct explanations of answers in 53.0% of cases, and that prompting the tool in a shared question context leads to a marginally higher rate of correct responses. Based on these findings, we discuss the potential promises and perils related to the use of ChatGPT by students and instructors.
"I'd rather just go to bed": Understanding Indirect Answers
We revisit a pragmatic inference problem in dialog: understanding indirect responses to questions. Humans can interpret 'I'm starving.' in response to 'Hungry?', even without direct cue words such as 'yes' and 'no'. In dialog systems, allowing natural responses rather than closed vocabularies would be similarly beneficial. However, today's systems are only as sensitive to these pragmatic moves as their language model allows. We create and release the first large-scale English language corpus 'Circa' with 34,268 (polar question, indirect answer) pairs to enable progress on this task. The data was collected via elaborate crowdsourcing, and contains utterances with yes/no meaning, as well as uncertain, middle-ground, and conditional responses. We also present BERT-based neural models to predict such categories for a question-answer pair. We find that while transfer learning from entailment works reasonably, performance is not yet sufficient for robust dialog. Our models reach 82-88% accuracy for a 4-class distinction, and 74-85% for 6 classes.
One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era
OpenAI has recently released GPT-4 (a.k.a. ChatGPT plus), which is demonstrated to be one small step for generative AI (GAI), but one giant leap for artificial general intelligence (AGI). Since its official release in November 2022, ChatGPT has quickly attracted numerous users with extensive media coverage. Such unprecedented attention has also motivated numerous researchers to investigate ChatGPT from various aspects. According to Google scholar, there are more than 500 articles with ChatGPT in their titles or mentioning it in their abstracts. Considering this, a review is urgently needed, and our work fills this gap. Overall, this work is the first to survey ChatGPT with a comprehensive review of its underlying technology, applications, and challenges. Moreover, we present an outlook on how ChatGPT might evolve to realize general-purpose AIGC (a.k.a. AI-generated content), which will be a significant milestone for the development of AGI.
Sparks of Artificial General Intelligence: Early experiments with GPT-4
Artificial intelligence (AI) researchers have been developing and refining large language models (LLMs) that exhibit remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. The latest model developed by OpenAI, GPT-4, was trained using an unprecedented scale of compute and data. In this paper, we report on our investigation of an early version of GPT-4, when it was still in active development by OpenAI. We contend that (this early version of) GPT-4 is part of a new cohort of LLMs (along with ChatGPT and Google's PaLM for example) that exhibit more general intelligence than previous AI models. We discuss the rising capabilities and implications of these models. We demonstrate that, beyond its mastery of language, GPT-4 can solve novel and difficult tasks that span mathematics, coding, vision, medicine, law, psychology and more, without needing any special prompting. Moreover, in all of these tasks, GPT-4's performance is strikingly close to human-level performance, and often vastly surpasses prior models such as ChatGPT. Given the breadth and depth of GPT-4's capabilities, we believe that it could reasonably be viewed as an early (yet still incomplete) version of an artificial general intelligence (AGI) system. In our exploration of GPT-4, we put special emphasis on discovering its limitations, and we discuss the challenges ahead for advancing towards deeper and more comprehensive versions of AGI, including the possible need for pursuing a new paradigm that moves beyond next-word prediction. We conclude with reflections on societal influences of the recent technological leap and future research directions.
A Comparative Study of Open-Source Large Language Models, GPT-4 and Claude 2: Multiple-Choice Test Taking in Nephrology
In recent years, there have been significant breakthroughs in the field of natural language processing, particularly with the development of large language models (LLMs). These LLMs have showcased remarkable capabilities on various benchmarks. In the healthcare field, the exact role LLMs and other future AI models will play remains unclear. There is a potential for these models in the future to be used as part of adaptive physician training, medical co-pilot applications, and digital patient interaction scenarios. The ability of AI models to participate in medical training and patient care will depend in part on their mastery of the knowledge content of specific medical fields. This study investigated the medical knowledge capability of LLMs, specifically in the context of internal medicine subspecialty multiple-choice test-taking ability. We compared the performance of several open-source LLMs (Koala 7B, Falcon 7B, Stable-Vicuna 13B, and Orca Mini 13B), to GPT-4 and Claude 2 on multiple-choice questions in the field of Nephrology. Nephrology was chosen as an example of a particularly conceptually complex subspecialty field within internal medicine. The study was conducted to evaluate the ability of LLM models to provide correct answers to nephSAP (Nephrology Self-Assessment Program) multiple-choice questions. The overall success of open-sourced LLMs in answering the 858 nephSAP multiple-choice questions correctly was 17.1% - 25.5%. In contrast, Claude 2 answered 54.4% of the questions correctly, whereas GPT-4 achieved a score of 73.3%. We show that current widely used open-sourced LLMs do poorly in their ability for zero-shot reasoning when compared to GPT-4 and Claude 2. The findings of this study potentially have significant implications for the future of subspecialty medical training and patient care.
Narrowing the Knowledge Evaluation Gap: Open-Domain Question Answering with Multi-Granularity Answers
Factual questions typically can be answered correctly at different levels of granularity. For example, both ``August 4, 1961'' and ``1961'' are correct answers to the question ``When was Barack Obama born?''. Standard question answering (QA) evaluation protocols, however, do not explicitly take this into account and compare a predicted answer against answers of a single granularity level. In this work, we propose GRANOLA QA, a novel evaluation setting where a predicted answer is evaluated in terms of accuracy and informativeness against a set of multi-granularity answers. We present a simple methodology for enriching existing datasets with multi-granularity answers, and create GRANOLA-EQ, a multi-granularity version of the EntityQuestions dataset. We evaluate a range of decoding methods on GRANOLA-EQ, including a new algorithm, called Decoding with Response Aggregation (DRAG), that is geared towards aligning the response granularity with the model's uncertainty. Our experiments show that large language models with standard decoding tend to generate specific answers, which are often incorrect. In contrast, when evaluated on multi-granularity answers, DRAG yields a nearly 20 point increase in accuracy on average, which further increases for rare entities. Overall, this reveals that standard evaluation and decoding schemes may significantly underestimate the knowledge encapsulated in LMs.
Benchmarking and Improving Generator-Validator Consistency of Language Models
As of September 2023, ChatGPT correctly answers "what is 7+8" with 15, but when asked "7+8=15, True or False" it responds with "False". This inconsistency between generating and validating an answer is prevalent in language models (LMs) and erodes trust. In this paper, we propose a framework for measuring the consistency between generation and validation (which we call generator-validator consistency, or GV-consistency), finding that even GPT-4, a state-of-the-art LM, is GV-consistent only 76% of the time. To improve the consistency of LMs, we propose to finetune on the filtered generator and validator responses that are GV-consistent, and call this approach consistency fine-tuning. We find that this approach improves GV-consistency of Alpaca-30B from 60% to 93%, and the improvement extrapolates to unseen tasks and domains (e.g., GV-consistency for positive style transfers extrapolates to unseen styles like humor). In addition to improving consistency, consistency fine-tuning improves both generator quality and validator accuracy without using any labeled data. Evaluated across 6 tasks, including math questions, knowledge-intensive QA, and instruction following, our method improves the generator quality by 16% and the validator accuracy by 6.3% across all tasks.
AI, write an essay for me: A large-scale comparison of human-written versus ChatGPT-generated essays
Background: Recently, ChatGPT and similar generative AI models have attracted hundreds of millions of users and become part of the public discourse. Many believe that such models will disrupt society and will result in a significant change in the education system and information generation in the future. So far, this belief is based on either colloquial evidence or benchmarks from the owners of the models -- both lack scientific rigour. Objective: Through a large-scale study comparing human-written versus ChatGPT-generated argumentative student essays, we systematically assess the quality of the AI-generated content. Methods: A large corpus of essays was rated using standard criteria by a large number of human experts (teachers). We augment the analysis with a consideration of the linguistic characteristics of the generated essays. Results: Our results demonstrate that ChatGPT generates essays that are rated higher for quality than human-written essays. The writing style of the AI models exhibits linguistic characteristics that are different from those of the human-written essays, e.g., it is characterized by fewer discourse and epistemic markers, but more nominalizations and greater lexical diversity. Conclusions: Our results clearly demonstrate that models like ChatGPT outperform humans in generating argumentative essays. Since the technology is readily available for anyone to use, educators must act immediately. We must re-invent homework and develop teaching concepts that utilize these AI models in the same way as math utilized the calculator: teach the general concepts first and then use AI tools to free up time for other learning objectives.
Towards Robust Mathematical Reasoning
Finding the right north-star metrics is highly critical for advancing the mathematical reasoning capabilities of foundation models, especially given that existing evaluations are either too easy or only focus on getting correct short answers. To address these issues, we present IMO-Bench, a suite of advanced reasoning benchmarks, vetted by a panel of top specialists and that specifically targets the level of the International Mathematical Olympiad (IMO), the most prestigious venue for young mathematicians. IMO-AnswerBench first tests models on 400 diverse Olympiad problems with verifiable short answers. IMO-Proof Bench is the next-level evaluation for proof-writing capabilities, which includes both basic and advanced IMO level problems as well as detailed grading guidelines to facilitate automatic grading. These benchmarks played a crucial role in our historic achievement of the gold-level performance at IMO 2025 with Gemini Deep Think (Luong and Lockhart, 2025). Our model achieved 80.0% on IMO-AnswerBench and 65.7% on the advanced IMO-Proof Bench, surpassing the best non-Gemini models by large margins of 6.9% and 42.4% respectively. We also showed that autograders built with Gemini reasoning correlate well with human evaluations and construct IMO-GradingBench, with 1000 human gradings on proofs, to enable further progress in automatic evaluation of long-form answers. We hope that IMO-Bench will help the community towards advancing robust mathematical reasoning and release it at https://imobench.github.io/.
My LLM might Mimic AAE -- But When Should it?
We examine the representation of African American English (AAE) in large language models (LLMs), exploring (a) the perceptions Black Americans have of how effective these technologies are at producing authentic AAE, and (b) in what contexts Black Americans find this desirable. Through both a survey of Black Americans (n= 104) and annotation of LLM-produced AAE by Black Americans (n= 228), we find that Black Americans favor choice and autonomy in determining when AAE is appropriate in LLM output. They tend to prefer that LLMs default to communicating in Mainstream U.S. English in formal settings, with greater interest in AAE production in less formal settings. When LLMs were appropriately prompted and provided in context examples, our participants found their outputs to have a level of AAE authenticity on par with transcripts of Black American speech. Select code and data for our project can be found here: https://github.com/smelliecat/AAEMime.git
A Comprehensive Survey of LLM Alignment Techniques: RLHF, RLAIF, PPO, DPO and More
With advancements in self-supervised learning, the availability of trillions tokens in a pre-training corpus, instruction fine-tuning, and the development of large Transformers with billions of parameters, large language models (LLMs) are now capable of generating factual and coherent responses to human queries. However, the mixed quality of training data can lead to the generation of undesired responses, presenting a significant challenge. Over the past two years, various methods have been proposed from different perspectives to enhance LLMs, particularly in aligning them with human expectation. Despite these efforts, there has not been a comprehensive survey paper that categorizes and details these approaches. In this work, we aim to address this gap by categorizing these papers into distinct topics and providing detailed explanations of each alignment method, thereby helping readers gain a thorough understanding of the current state of the field.
An Early Evaluation of GPT-4V(ision)
In this paper, we evaluate different abilities of GPT-4V including visual understanding, language understanding, visual puzzle solving, and understanding of other modalities such as depth, thermal, video, and audio. To estimate GPT-4V's performance, we manually construct 656 test instances and carefully evaluate the results of GPT-4V. The highlights of our findings are as follows: (1) GPT-4V exhibits impressive performance on English visual-centric benchmarks but fails to recognize simple Chinese texts in the images; (2) GPT-4V shows inconsistent refusal behavior when answering questions related to sensitive traits such as gender, race, and age; (3) GPT-4V obtains worse results than GPT-4 (API) on language understanding tasks including general language understanding benchmarks and visual commonsense knowledge evaluation benchmarks; (4) Few-shot prompting can improve GPT-4V's performance on both visual understanding and language understanding; (5) GPT-4V struggles to find the nuances between two similar images and solve the easy math picture puzzles; (6) GPT-4V shows non-trivial performance on the tasks of similar modalities to image, such as video and thermal. Our experimental results reveal the ability and limitations of GPT-4V and we hope our paper can provide some insights into the application and research of GPT-4V.
Granite Guardian
We introduce the Granite Guardian models, a suite of safeguards designed to provide risk detection for prompts and responses, enabling safe and responsible use in combination with any large language model (LLM). These models offer comprehensive coverage across multiple risk dimensions, including social bias, profanity, violence, sexual content, unethical behavior, jailbreaking, and hallucination-related risks such as context relevance, groundedness, and answer relevance for retrieval-augmented generation (RAG). Trained on a unique dataset combining human annotations from diverse sources and synthetic data, Granite Guardian models address risks typically overlooked by traditional risk detection models, such as jailbreaks and RAG-specific issues. With AUC scores of 0.871 and 0.854 on harmful content and RAG-hallucination-related benchmarks respectively, Granite Guardian is the most generalizable and competitive model available in the space. Released as open-source, Granite Guardian aims to promote responsible AI development across the community. https://github.com/ibm-granite/granite-guardian
The GRACE project: Hard X-ray giant radio galaxies and their duty cycle
The advent of new generation radio telescopes is opening new possibilities on the classification and study of extragalactic high-energy sources, specially the underrepresented ones like radio galaxies. Among these, Giant Radio Galaxies (GRG, larger than 0.7 Mpc) are among the most extreme manifestations of the accretion/ejection processes on supermassive black holes. Our recent studies have shown that GRG can be up to four times more abundant in hard X-ray selected (i.e. from INTEGRAL/IBIS and Swift/BAT at >20 keV) samples and, most interestingly, the majority of them present signs of restarted radio activity. This makes them the ideal test-bed to study the so far unknown duty cycle of jets in active galactic nuclei. Open questions in the field include: How and when jets are restarted? How jets evolve and what's their dynamic? What is the jet's duty cycle and what triggers them? Our group has recently collected a wealth of radio data on these high-energy selected GRGs, allowing us to study their jet formation and evolution from the pc to kpc scales, across different activity epochs. In particular, thanks to our EVN large programme, we were able to probe the new radio phase in the core of these giants. Furthermore, we are devoting an effort to the exploitation of new radio surveys data for the discovery of new classes of counterparts of Fermi/LAT catalogues. In particular, we are unveiling the hidden population of radio galaxies associated with gamma-ray sources.
Measuring Large Language Models Capacity to Annotate Journalistic Sourcing
Since the launch of ChatGPT in late 2022, the capacities of Large Language Models and their evaluation have been in constant discussion and evaluation both in academic research and in the industry. Scenarios and benchmarks have been developed in several areas such as law, medicine and math (Bommasani et al., 2023) and there is continuous evaluation of model variants. One area that has not received sufficient scenario development attention is journalism, and in particular journalistic sourcing and ethics. Journalism is a crucial truth-determination function in democracy (Vincent, 2023), and sourcing is a crucial pillar to all original journalistic output. Evaluating the capacities of LLMs to annotate stories for the different signals of sourcing and how reporters justify them is a crucial scenario that warrants a benchmark approach. It offers potential to build automated systems to contrast more transparent and ethically rigorous forms of journalism with everyday fare. In this paper we lay out a scenario to evaluate LLM performance on identifying and annotating sourcing in news stories on a five-category schema inspired from journalism studies (Gans, 2004). We offer the use case, our dataset and metrics and as the first step towards systematic benchmarking. Our accuracy findings indicate LLM-based approaches have more catching to do in identifying all the sourced statements in a story, and equally, in matching the type of sources. An even harder task is spotting source justifications.
Crowdsourcing Multiple Choice Science Questions
We present a novel method for obtaining high-quality, domain-targeted multiple choice questions from crowd workers. Generating these questions can be difficult without trading away originality, relevance or diversity in the answer options. Our method addresses these problems by leveraging a large corpus of domain-specific text and a small set of existing questions. It produces model suggestions for document selection and answer distractor choice which aid the human question generation process. With this method we have assembled SciQ, a dataset of 13.7K multiple choice science exam questions (Dataset available at http://allenai.org/data.html). We demonstrate that the method produces in-domain questions by providing an analysis of this new dataset and by showing that humans cannot distinguish the crowdsourced questions from original questions. When using SciQ as additional training data to existing questions, we observe accuracy improvements on real science exams.
Quantitative Analysis of AI-Generated Texts in Academic Research: A Study of AI Presence in Arxiv Submissions using AI Detection Tool
Many people are interested in ChatGPT since it has become a prominent AIGC model that provides high-quality responses in various contexts, such as software development and maintenance. Misuse of ChatGPT might cause significant issues, particularly in public safety and education, despite its immense potential. The majority of researchers choose to publish their work on Arxiv. The effectiveness and originality of future work depend on the ability to detect AI components in such contributions. To address this need, this study will analyze a method that can see purposely manufactured content that academic organizations use to post on Arxiv. For this study, a dataset was created using physics, mathematics, and computer science articles. Using the newly built dataset, the following step is to put originality.ai through its paces. The statistical analysis shows that Originality.ai is very accurate, with a rate of 98%.
"John is 50 years old, can his son be 65?" Evaluating NLP Models' Understanding of Feasibility
In current NLP research, large-scale language models and their abilities are widely being discussed. Some recent works have also found notable failures of these models. Often these failure examples involve complex reasoning abilities. This work focuses on a simple commonsense ability, reasoning about when an action (or its effect) is feasible. To this end, we introduce FeasibilityQA, a question-answering dataset involving binary classification (BCQ) and multi-choice multi-correct questions (MCQ) that test understanding of feasibility. We show that even state-of-the-art models such as GPT-3, GPT-2, and T5 struggle to answer the feasibility questions correctly. Specifically, on MCQ and BCQ questions, GPT-3 achieves an accuracy of just (19%, 62%) and (25%, 64%) in zero-shot and few-shot settings, respectively. We also evaluate models by providing relevant knowledge statements required to answer the question. We find that the additional knowledge leads to a 7% gain in performance, but the overall performance still remains low. These results make one wonder how much commonsense knowledge about action feasibility is encoded in state-of-the-art models and how well they can reason about it.
Can large language models provide useful feedback on research papers? A large-scale empirical analysis
Expert feedback lays the foundation of rigorous research. However, the rapid growth of scholarly production and intricate knowledge specialization challenge the conventional scientific feedback mechanisms. High-quality peer reviews are increasingly difficult to obtain. Researchers who are more junior or from under-resourced settings have especially hard times getting timely feedback. With the breakthrough of large language models (LLM) such as GPT-4, there is growing interest in using LLMs to generate scientific feedback on research manuscripts. However, the utility of LLM-generated feedback has not been systematically studied. To address this gap, we created an automated pipeline using GPT-4 to provide comments on the full PDFs of scientific papers. We evaluated the quality of GPT-4's feedback through two large-scale studies. We first quantitatively compared GPT-4's generated feedback with human peer reviewer feedback in 15 Nature family journals (3,096 papers in total) and the ICLR machine learning conference (1,709 papers). The overlap in the points raised by GPT-4 and by human reviewers (average overlap 30.85% for Nature journals, 39.23% for ICLR) is comparable to the overlap between two human reviewers (average overlap 28.58% for Nature journals, 35.25% for ICLR). The overlap between GPT-4 and human reviewers is larger for the weaker papers. We then conducted a prospective user study with 308 researchers from 110 US institutions in the field of AI and computational biology to understand how researchers perceive feedback generated by our GPT-4 system on their own papers. Overall, more than half (57.4%) of the users found GPT-4 generated feedback helpful/very helpful and 82.4% found it more beneficial than feedback from at least some human reviewers. While our findings show that LLM-generated feedback can help researchers, we also identify several limitations.
Eliciting Instruction-tuned Code Language Models' Capabilities to Utilize Auxiliary Function for Code Generation
We study the code generation behavior of instruction-tuned models built on top of code pre-trained language models when they could access an auxiliary function to implement a function. We design several ways to provide auxiliary functions to the models by adding them to the query or providing a response prefix to incorporate the ability to utilize auxiliary functions with the instruction-following capability. Our experimental results show the effectiveness of combining the base models' auxiliary function utilization ability with the instruction following ability. In particular, the performance of adopting our approaches with the open-sourced language models surpasses that of the recent powerful proprietary language models, i.e., gpt-4o.
WILDCHAT-50M: A Deep Dive Into the Role of Synthetic Data in Post-Training
Language model (LLM) post-training, from DPO to distillation, can refine behaviors and unlock new skills, but the open science supporting these post-training techniques is still in its infancy. One limiting factor has been the difficulty of conducting large-scale comparative analyses of synthetic data generating models and LLM judges. To close this gap, we introduce WILDCHAT-50M, the largest public chat dataset to date. We extend the existing WildChat dataset to include responses not only from GPT, but from over 50 different open-weight models, ranging in size from 0.5B to 104B parameters. We conduct an extensive comparative analysis and demonstrate the potential of this dataset by creating RE-WILD, our own public SFT mix, which outperforms the recent Tulu-3 SFT mixture from Allen AI with only 40% as many samples. Our dataset, samples and code are available at https://github.com/penfever/wildchat-50m.
3DLNews: A Three-decade Dataset of US Local News Articles
We present 3DLNews, a novel dataset with local news articles from the United States spanning the period from 1996 to 2024. It contains almost 1 million URLs (with HTML text) from over 14,000 local newspapers, TV, and radio stations across all 50 states, and provides a broad snapshot of the US local news landscape. The dataset was collected by scraping Google and Twitter search results. We employed a multi-step filtering process to remove non-news article links and enriched the dataset with metadata such as the names and geo-coordinates of the source news media organizations, article publication dates, etc. Furthermore, we demonstrated the utility of 3DLNews by outlining four applications.
Towards conversational assistants for health applications: using ChatGPT to generate conversations about heart failure
We explore the potential of ChatGPT (3.5-turbo and 4) to generate conversations focused on self-care strategies for African-American heart failure patients -- a domain with limited specialized datasets. To simulate patient-health educator dialogues, we employed four prompting strategies: domain, African American Vernacular English (AAVE), Social Determinants of Health (SDOH), and SDOH-informed reasoning. Conversations were generated across key self-care domains of food, exercise, and fluid intake, with varying turn lengths (5, 10, 15) and incorporated patient-specific SDOH attributes such as age, gender, neighborhood, and socioeconomic status. Our findings show that effective prompt design is essential. While incorporating SDOH and reasoning improves dialogue quality, ChatGPT still lacks the empathy and engagement needed for meaningful healthcare communication.
Generator-Retriever-Generator Approach for Open-Domain Question Answering
Open-domain question answering (QA) tasks usually require the retrieval of relevant information from a large corpus to generate accurate answers. We propose a novel approach called Generator-Retriever-Generator (GRG) that combines document retrieval techniques with a large language model (LLM), by first prompting the model to generate contextual documents based on a given question. In parallel, a dual-encoder network retrieves documents that are relevant to the question from an external corpus. The generated and retrieved documents are then passed to the second LLM, which generates the final answer. By combining document retrieval and LLM generation, our approach addresses the challenges of open-domain QA, such as generating informative and contextually relevant answers. GRG outperforms the state-of-the-art generate-then-read and retrieve-then-read pipelines (GENREAD and RFiD) improving their performance by at least by +5.2, +4.2, and +1.6 on TriviaQA, NQ, and WebQ datasets, respectively. We provide code, datasets, and checkpoints at https://github.com/abdoelsayed2016/GRG.
LongCite: Enabling LLMs to Generate Fine-grained Citations in Long-context QA
Though current long-context large language models (LLMs) have demonstrated impressive capacities in answering user questions based on extensive text, the lack of citations in their responses makes user verification difficult, leading to concerns about their trustworthiness due to their potential hallucinations. In this work, we aim to enable long-context LLMs to generate responses with fine-grained sentence-level citations, improving their faithfulness and verifiability. We first introduce LongBench-Cite, an automated benchmark for assessing current LLMs' performance in Long-Context Question Answering with Citations (LQAC), revealing considerable room for improvement. To this end, we propose CoF (Coarse to Fine), a novel pipeline that utilizes off-the-shelf LLMs to automatically generate long-context QA instances with precise sentence-level citations, and leverage this pipeline to construct LongCite-45k, a large-scale SFT dataset for LQAC. Finally, we train LongCite-8B and LongCite-9B using the LongCite-45k dataset, successfully enabling their generation of accurate responses and fine-grained sentence-level citations in a single output. The evaluation results on LongBench-Cite show that our trained models achieve state-of-the-art citation quality, surpassing advanced proprietary models including GPT-4o.
The Amazon Nova Family of Models: Technical Report and Model Card
We present Amazon Nova, a new generation of state-of-the-art foundation models that deliver frontier intelligence and industry-leading price performance. Amazon Nova Pro is a highly-capable multimodal model with the best combination of accuracy, speed, and cost for a wide range of tasks. Amazon Nova Lite is a low-cost multimodal model that is lightning fast for processing images, video, documents and text. Amazon Nova Micro is a text-only model that delivers our lowest-latency responses at very low cost. Amazon Nova Canvas is an image generation model that creates professional grade images with rich customization controls. Amazon Nova Reel is a video generation model offering high-quality outputs, customization, and motion control. Our models were built responsibly and with a commitment to customer trust, security, and reliability. We report benchmarking results for core capabilities, agentic performance, long context, functional adaptation, runtime performance, and human evaluation.
Facebook FAIR's WMT19 News Translation Task Submission
This paper describes Facebook FAIR's submission to the WMT19 shared news translation task. We participate in two language pairs and four language directions, English <-> German and English <-> Russian. Following our submission from last year, our baseline systems are large BPE-based transformer models trained with the Fairseq sequence modeling toolkit which rely on sampled back-translations. This year we experiment with different bitext data filtering schemes, as well as with adding filtered back-translated data. We also ensemble and fine-tune our models on domain-specific data, then decode using noisy channel model reranking. Our submissions are ranked first in all four directions of the human evaluation campaign. On En->De, our system significantly outperforms other systems as well as human translations. This system improves upon our WMT'18 submission by 4.5 BLEU points.
NLP at UC Santa Cruz at SemEval-2024 Task 5: Legal Answer Validation using Few-Shot Multi-Choice QA
This paper presents our submission to the SemEval 2024 Task 5: The Legal Argument Reasoning Task in Civil Procedure. We present two approaches to solving the task of legal answer validation, given an introduction to the case, a question and an answer candidate. Firstly, we fine-tuned pre-trained BERT-based models and found that models trained on domain knowledge perform better. Secondly, we performed few-shot prompting on GPT models and found that reformulating the answer validation task to be a multiple-choice QA task remarkably improves the performance of the model. Our best submission is a BERT-based model that achieved the 7th place out of 20.
Phoenix: Democratizing ChatGPT across Languages
This paper presents our efforts to democratize ChatGPT across language. We release a large language model "Phoenix", achieving competitive performance among open-source English and Chinese models while excelling in languages with limited resources (covering both Latin and non-Latin languages). We believe this work will be beneficial to make ChatGPT more accessible, especially in countries where people cannot use ChatGPT due to restrictions from OpenAI or local goverments. Our data, code, and models are available at https://github.com/FreedomIntelligence/LLMZoo.
The Effect of Natural Distribution Shift on Question Answering Models
We build four new test sets for the Stanford Question Answering Dataset (SQuAD) and evaluate the ability of question-answering systems to generalize to new data. Our first test set is from the original Wikipedia domain and measures the extent to which existing systems overfit the original test set. Despite several years of heavy test set re-use, we find no evidence of adaptive overfitting. The remaining three test sets are constructed from New York Times articles, Reddit posts, and Amazon product reviews and measure robustness to natural distribution shifts. Across a broad range of models, we observe average performance drops of 3.8, 14.0, and 17.4 F1 points, respectively. In contrast, a strong human baseline matches or exceeds the performance of SQuAD models on the original domain and exhibits little to no drop in new domains. Taken together, our results confirm the surprising resilience of the holdout method and emphasize the need to move towards evaluation metrics that incorporate robustness to natural distribution shifts.
Improving Factuality and Reasoning in Language Models through Multiagent Debate
Large language models (LLMs) have demonstrated remarkable capabilities in language generation, understanding, and few-shot learning in recent years. An extensive body of work has explored how their performance may be further improved through the tools of prompting, ranging from verification, self-consistency, or intermediate scratchpads. In this paper, we present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer. Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks. We also demonstrate that our approach improves the factual validity of generated content, reducing fallacious answers and hallucinations that contemporary models are prone to. Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate. Overall, our findings suggest that such "society of minds" approach has the potential to significantly advance the capabilities of LLMs and pave the way for further breakthroughs in language generation and understanding.
Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models
Large Language Models (LLMs) are often described as being instances of foundation models - that is, models that transfer strongly across various tasks and conditions in few-show or zero-shot manner, while exhibiting scaling laws that predict function improvement when increasing the pre-training scale. These claims of excelling in different functions and tasks rely on measurements taken across various sets of standardized benchmarks showing high scores for such models. We demonstrate here a dramatic breakdown of function and reasoning capabilities of state-of-the-art models trained at the largest available scales which claim strong function, using a simple, short, conventional common sense problem formulated in concise natural language, easily solvable by humans. The breakdown is dramatic, as models also express strong overconfidence in their wrong solutions, while providing often non-sensical "reasoning"-like explanations akin to confabulations to justify and backup the validity of their clearly failed responses, making them sound plausible. Various standard interventions in an attempt to get the right solution, like various type of enhanced prompting, or urging the models to reconsider the wrong solutions again by multi step re-evaluation, fail. We take these initial observations to the scientific and technological community to stimulate urgent re-assessment of the claimed capabilities of current generation of LLMs, Such re-assessment also requires common action to create standardized benchmarks that would allow proper detection of such basic reasoning deficits that obviously manage to remain undiscovered by current state-of-the-art evaluation procedures and benchmarks. Code for reproducing experiments in the paper and raw experiments data can be found at https://github.com/LAION-AI/AIW
MEGAVERSE: Benchmarking Large Language Models Across Languages, Modalities, Models and Tasks
Recently, there has been a rapid advancement in research on Large Language Models (LLMs), resulting in significant progress in several Natural Language Processing (NLP) tasks. Consequently, there has been a surge in LLM evaluation research to comprehend the models' capabilities and limitations. However, much of this research has been confined to the English language, leaving LLM building and evaluation for non-English languages relatively unexplored. There has been an introduction of several new LLMs, necessitating their evaluation on non-English languages. This study aims to expand our MEGA benchmarking suite by including six new datasets to form the MEGAVERSE benchmark. The benchmark comprises 22 datasets covering 81 languages, including low-resource African languages. We evaluate several state-of-the-art LLMs like GPT-3.5-Turbo, GPT4, PaLM2, and Llama2 on the MEGAVERSE datasets. Additionally, we include two multimodal datasets in the benchmark and assess the performance of the LLaVa-v1.5 model. Our experiments suggest that GPT4 and PaLM2 outperform the Llama models on various tasks, notably on low-resource languages, with GPT4 outperforming PaLM2 on more datasets than vice versa. However, issues such as data contamination must be addressed to obtain an accurate assessment of LLM performance on non-English languages.
Generative Language Models with Retrieval Augmented Generation for Automated Short Answer Scoring
Automated Short Answer Scoring (ASAS) is a critical component in educational assessment. While traditional ASAS systems relied on rule-based algorithms or complex deep learning methods, recent advancements in Generative Language Models (GLMs) offer new opportunities for improvement. This study explores the application of GLMs to ASAS, leveraging their off-the-shelf capabilities and performance in various domains. We propose a novel pipeline that combines vector databases, transformer-based encoders, and GLMs to enhance short answer scoring accuracy. Our approach stores training responses in a vector database, retrieves semantically similar responses during inference, and employs a GLM to analyze these responses and determine appropriate scores. We further optimize the system through fine-tuned retrieval processes and prompt engineering. Evaluation on the SemEval 2013 dataset demonstrates a significant improvement on the SCIENTSBANK 3-way and 2-way tasks compared to existing methods, highlighting the potential of GLMs in advancing ASAS technology.
Overview of Factify5WQA: Fact Verification through 5W Question-Answering
Researchers have found that fake news spreads much times faster than real news. This is a major problem, especially in today's world where social media is the key source of news for many among the younger population. Fact verification, thus, becomes an important task and many media sites contribute to the cause. Manual fact verification is a tedious task, given the volume of fake news online. The Factify5WQA shared task aims to increase research towards automated fake news detection by providing a dataset with an aspect-based question answering based fact verification method. Each claim and its supporting document is associated with 5W questions that help compare the two information sources. The objective performance measure in the task is done by comparing answers using BLEU score to measure the accuracy of the answers, followed by an accuracy measure of the classification. The task had submissions using custom training setup and pre-trained language-models among others. The best performing team posted an accuracy of 69.56%, which is a near 35% improvement over the baseline.
Hybrid Generative-Retrieval Transformers for Dialogue Domain Adaptation
Domain adaptation has recently become a key problem in dialogue systems research. Deep learning, while being the preferred technique for modeling such systems, works best given massive training data. However, in the real-world scenario, such resources aren't available for every new domain, so the ability to train with a few dialogue examples can be considered essential. Pre-training on large data sources and adapting to the target data has become the standard method for few-shot problems within the deep learning framework. In this paper, we present the winning entry at the fast domain adaptation task of DSTC8, a hybrid generative-retrieval model based on GPT-2 fine-tuned to the multi-domain MetaLWOz dataset. Robust and diverse in response generation, our model uses retrieval logic as a fallback, being SoTA on MetaLWOz in human evaluation (>4% improvement over the 2nd place system) and attaining competitive generalization performance in adaptation to the unseen MultiWOZ dataset.
SimpleStrat: Diversifying Language Model Generation with Stratification
Generating diverse responses from large language models (LLMs) is crucial for applications such as planning/search and synthetic data generation, where diversity provides distinct answers across generations. Prior approaches rely on increasing temperature to increase diversity. However, contrary to popular belief, we show not only does this approach produce lower quality individual generations as temperature increases, but it depends on model's next-token probabilities being similar to the true distribution of answers. We propose , an alternative approach that uses the language model itself to partition the space into strata. At inference, a random stratum is selected and a sample drawn from within the strata. To measure diversity, we introduce CoverageQA, a dataset of underspecified questions with multiple equally plausible answers, and assess diversity by measuring KL Divergence between the output distribution and uniform distribution over valid ground truth answers. As computing probability per response/solution for proprietary models is infeasible, we measure recall on ground truth solutions. Our evaluation show using SimpleStrat achieves higher recall by 0.05 compared to GPT-4o and 0.36 average reduction in KL Divergence compared to Llama 3.
Humains-Junior: A 3.8B Language Model Achieving GPT-4o-Level Factual Accuracy by Directed Exoskeleton Reasoning
We introduce Humans-Junior, a 3.8B model that matches GPT-4o on the FACTS Grounding public subset within a pm 5 pp equivalence margin. Results. On Q1--Q500 under identical judges, GPT-4o scores 73.5% (95% CI 69.5--77.2) and Humans-Junior 72.7% (95% CI 68.7--76.5); the paired difference is 0.8 pp (bootstrap 95% CI -3.1 to +4.7; permutation p = 0.72; Cohen's d = 0.023). TOST establishes equivalence at pm 5 pp (not at pm 3 pp). When purchased as managed APIs, Humans-Junior's base model (Phi-3.5-mini-instruct) is approx 19times less expensive than GPT-4o on Microsoft AI Foundry pricing; self-hosted or edge deployments can drive incremental inference cost toward zero. Measured vs estimated pricing sources are tabulated in Appendix E. Method. Our approach combines minimal directed "Exoskeleton Reasoning" scaffolds with behavioral fine-tuning that teaches protocol compliance (epistemic discipline) rather than domain answers. Fine-tuning alone adds little; combined, they synergize (+17.7 pp, p < 0.001) and reduce variance (approx 25%). In prompt-only settings on frontier models (Q1--Q100; non-comparable), directed reasoning improved GPT-4o by +11.8 pp to 85.3% and Gemini-2.5-Pro by +5.0 pp to 93.3% (baseline 88.3%, n = 100); see Section~5. TL;DR. A 3.8B model achieves GPT-4o-level FACTS accuracy (equivalent within pm 5 pp on Q1--Q500). Cloud pricing shows approx 19times lower cost versus GPT-4o, and self-hosted/edge deployments can approach zero marginal cost. Pricing sources are listed in Appendix E. Frontier prompt-only gains (Q1--Q100; non-comparable) and optimized-prompt exploratory results under earlier judges are summarized in Appendix F. Keywords: Small Language Models, Factual Grounding, Directed Reasoning, Fine-Tuning, Model Alignment, Cost-Efficient AI
RELIC: Investigating Large Language Model Responses using Self-Consistency
Large Language Models (LLMs) are notorious for blending fact with fiction and generating non-factual content, known as hallucinations. To tackle this challenge, we propose an interactive system that helps users obtain insights into the reliability of the generated text. Our approach is based on the idea that the self-consistency of multiple samples generated by the same LLM relates to its confidence in individual claims in the generated texts. Using this idea, we design RELIC, an interactive system that enables users to investigate and verify semantic-level variations in multiple long-form responses. This allows users to recognize potentially inaccurate information in the generated text and make necessary corrections. From a user study with ten participants, we demonstrate that our approach helps users better verify the reliability of the generated text. We further summarize the design implications and lessons learned from this research for inspiring future studies on reliable human-LLM interactions.
An Early Look at the Parler Online Social Network
Parler is as an "alternative" social network promoting itself as a service that allows to "speak freely and express yourself openly, without fear of being deplatformed for your views." Because of this promise, the platform become popular among users who were suspended on mainstream social networks for violating their terms of service, as well as those fearing censorship. In particular, the service was endorsed by several conservative public figures, encouraging people to migrate from traditional social networks. After the storming of the US Capitol on January 6, 2021, Parler has been progressively deplatformed, as its app was removed from Apple/Google Play stores and the website taken down by the hosting provider. This paper presents a dataset of 183M Parler posts made by 4M users between August 2018 and January 2021, as well as metadata from 13.25M user profiles. We also present a basic characterization of the dataset, which shows that the platform has witnessed large influxes of new users after being endorsed by popular figures, as well as a reaction to the 2020 US Presidential Election. We also show that discussion on the platform is dominated by conservative topics, President Trump, as well as conspiracy theories like QAnon.
Evaluating LLM Reasoning in the Operations Research Domain with ORQA
In this paper, we introduce and apply Operations Research Question Answering (ORQA), a new benchmark designed to assess the generalization capabilities of Large Language Models (LLMs) in the specialized technical domain of Operations Research (OR). This benchmark evaluates whether LLMs can emulate the knowledge and reasoning skills of OR experts when confronted with diverse and complex optimization problems. The dataset, developed by OR experts, features real-world optimization problems that demand multistep reasoning to construct their mathematical models. Our evaluations of various open source LLMs, such as LLaMA 3.1, DeepSeek, and Mixtral, reveal their modest performance, highlighting a gap in their ability to generalize to specialized technical domains. This work contributes to the ongoing discourse on LLMs generalization capabilities, offering valuable insights for future research in this area. The dataset and evaluation code are publicly available.
Large Language Models are biased to overestimate profoundness
Recent advancements in natural language processing by large language models (LLMs), such as GPT-4, have been suggested to approach Artificial General Intelligence. And yet, it is still under dispute whether LLMs possess similar reasoning abilities to humans. This study evaluates GPT-4 and various other LLMs in judging the profoundness of mundane, motivational, and pseudo-profound statements. We found a significant statement-to-statement correlation between the LLMs and humans, irrespective of the type of statements and the prompting technique used. However, LLMs systematically overestimate the profoundness of nonsensical statements, with the exception of Tk-instruct, which uniquely underestimates the profoundness of statements. Only few-shot learning prompts, as opposed to chain-of-thought prompting, draw LLMs ratings closer to humans. Furthermore, this work provides insights into the potential biases induced by Reinforcement Learning from Human Feedback (RLHF), inducing an increase in the bias to overestimate the profoundness of statements.
