new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 3

CAD-Tokenizer: Towards Text-based CAD Prototyping via Modality-Specific Tokenization

Computer-Aided Design (CAD) is a foundational component of industrial prototyping, where models are defined not by raw coordinates but by construction sequences such as sketches and extrusions. This sequential structure enables both efficient prototype initialization and subsequent editing. Text-guided CAD prototyping, which unifies Text-to-CAD generation and CAD editing, has the potential to streamline the entire design pipeline. However, prior work has not explored this setting, largely because standard large language model (LLM) tokenizers decompose CAD sequences into natural-language word pieces, failing to capture primitive-level CAD semantics and hindering attention modules from modeling geometric structure. We conjecture that a multimodal tokenization strategy, aligned with CAD's primitive and structural nature, can provide more effective representations. To this end, we propose CAD-Tokenizer, a framework that represents CAD data with modality-specific tokens using a sequence-based VQ-VAE with primitive-level pooling and constrained decoding. This design produces compact, primitive-aware representations that align with CAD's structural nature. Applied to unified text-guided CAD prototyping, CAD-Tokenizer significantly improves instruction following and generation quality, achieving better quantitative and qualitative performance over both general-purpose LLMs and task-specific baselines.

microsoft Microsoft
·
Sep 25 2

GenCAD: Image-Conditioned Computer-Aided Design Generation with Transformer-Based Contrastive Representation and Diffusion Priors

The creation of manufacturable and editable 3D shapes through Computer-Aided Design (CAD) remains a highly manual and time-consuming task, hampered by the complex topology of boundary representations of 3D solids and unintuitive design tools. While most work in the 3D shape generation literature focuses on representations like meshes, voxels, or point clouds, practical engineering applications demand the modifiability and manufacturability of CAD models and the ability for multi-modal conditional CAD model generation. This paper introduces GenCAD, a generative model that employs autoregressive transformers with a contrastive learning framework and latent diffusion models to transform image inputs into parametric CAD command sequences, resulting in editable 3D shape representations. Extensive evaluations demonstrate that GenCAD significantly outperforms existing state-of-the-art methods in terms of the unconditional and conditional generations of CAD models. Additionally, the contrastive learning framework of GenCAD facilitates the retrieval of CAD models using image queries from large CAD databases, which is a critical challenge within the CAD community. Our results provide a significant step forward in highlighting the potential of generative models to expedite the entire design-to-production pipeline and seamlessly integrate different design modalities.

  • 2 authors
·
Sep 8, 2024 1

Text-to-CadQuery: A New Paradigm for CAD Generation with Scalable Large Model Capabilities

Computer-aided design (CAD) is fundamental to modern engineering and manufacturing, but creating CAD models still requires expert knowledge and specialized software. Recent advances in large language models (LLMs) open up the possibility of generative CAD, where natural language is directly translated into parametric 3D models. However, most existing methods generate task-specific command sequences that pretrained models cannot directly handle. These sequences must be converted into CAD representations such as CAD vectors before a 3D model can be produced, which requires training models from scratch and adds unnecessary complexity. To tackle this issue, we propose generating CadQuery code directly from text, leveraging the strengths of pretrained LLMs to produce 3D models without intermediate representations, using this Python-based scripting language. Since LLMs already excel at Python generation and spatial reasoning, fine-tuning them on Text-to-CadQuery data proves highly effective. Given that these capabilities typically improve with scale, we hypothesize that larger models will perform better after fine-tuning. To enable this, we augment the Text2CAD dataset with 170,000 CadQuery annotations. We fine-tune six open-source LLMs of varying sizes and observe consistent improvements. Our best model achieves a top-1 exact match of 69.3%, up from 58.8%, and reduces Chamfer Distance by 48.6%. Project page: https://github.com/Text-to-CadQuery/Text-to-CadQuery.

  • 2 authors
·
May 10

CADCrafter: Generating Computer-Aided Design Models from Unconstrained Images

Creating CAD digital twins from the physical world is crucial for manufacturing, design, and simulation. However, current methods typically rely on costly 3D scanning with labor-intensive post-processing. To provide a user-friendly design process, we explore the problem of reverse engineering from unconstrained real-world CAD images that can be easily captured by users of all experiences. However, the scarcity of real-world CAD data poses challenges in directly training such models. To tackle these challenges, we propose CADCrafter, an image-to-parametric CAD model generation framework that trains solely on synthetic textureless CAD data while testing on real-world images. To bridge the significant representation disparity between images and parametric CAD models, we introduce a geometry encoder to accurately capture diverse geometric features. Moreover, the texture-invariant properties of the geometric features can also facilitate the generalization to real-world scenarios. Since compiling CAD parameter sequences into explicit CAD models is a non-differentiable process, the network training inherently lacks explicit geometric supervision. To impose geometric validity constraints, we employ direct preference optimization (DPO) to fine-tune our model with the automatic code checker feedback on CAD sequence quality. Furthermore, we collected a real-world dataset, comprised of multi-view images and corresponding CAD command sequence pairs, to evaluate our method. Experimental results demonstrate that our approach can robustly handle real unconstrained CAD images, and even generalize to unseen general objects.

  • 11 authors
·
Apr 7

CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design

Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.

  • 5 authors
·
Jul 13

CAD-Llama: Leveraging Large Language Models for Computer-Aided Design Parametric 3D Model Generation

Recently, Large Language Models (LLMs) have achieved significant success, prompting increased interest in expanding their generative capabilities beyond general text into domain-specific areas. This study investigates the generation of parametric sequences for computer-aided design (CAD) models using LLMs. This endeavor represents an initial step towards creating parametric 3D shapes with LLMs, as CAD model parameters directly correlate with shapes in three-dimensional space. Despite the formidable generative capacities of LLMs, this task remains challenging, as these models neither encounter parametric sequences during their pretraining phase nor possess direct awareness of 3D structures. To address this, we present CAD-Llama, a framework designed to enhance pretrained LLMs for generating parametric 3D CAD models. Specifically, we develop a hierarchical annotation pipeline and a code-like format to translate parametric 3D CAD command sequences into Structured Parametric CAD Code (SPCC), incorporating hierarchical semantic descriptions. Furthermore, we propose an adaptive pretraining approach utilizing SPCC, followed by an instruction tuning process aligned with CAD-specific guidelines. This methodology aims to equip LLMs with the spatial knowledge inherent in parametric sequences. Experimental results demonstrate that our framework significantly outperforms prior autoregressive methods and existing LLM baselines.

  • 6 authors
·
May 7

OpenECAD: An Efficient Visual Language Model for Editable 3D-CAD Design

Computer-aided design (CAD) tools are utilized in the manufacturing industry for modeling everything from cups to spacecraft. These programs are complex to use and typically require years of training and experience to master. Structured and well-constrained 2D sketches and 3D constructions are crucial components of CAD modeling. A well-executed CAD model can be seamlessly integrated into the manufacturing process, thereby enhancing production efficiency. Deep generative models of 3D shapes and 3D object reconstruction models have garnered significant research interest. However, most of these models produce discrete forms of 3D objects that are not editable. Moreover, the few models based on CAD operations often have substantial input restrictions. In this work, we fine-tuned pre-trained models to create OpenECAD models (0.55B, 0.89B, 2.4B and 3.1B), leveraging the visual, logical, coding, and general capabilities of visual language models. OpenECAD models can process images of 3D designs as input and generate highly structured 2D sketches and 3D construction commands, ensuring that the designs are editable. These outputs can be directly used with existing CAD tools' APIs to generate project files. To train our network, we created a series of OpenECAD datasets. These datasets are derived from existing public CAD datasets, adjusted and augmented to meet the specific requirements of vision language model (VLM) training. Additionally, we have introduced an approach that utilizes dependency relationships to define and generate sketches, further enriching the content and functionality of the datasets.

  • 3 authors
·
Jun 14, 2024

CADDreamer: CAD object Generation from Single-view Images

Diffusion-based 3D generation has made remarkable progress in recent years. However, existing 3D generative models often produce overly dense and unstructured meshes, which stand in stark contrast to the compact, structured, and sharply-edged Computer-Aided Design (CAD) models crafted by human designers. To address this gap, we introduce CADDreamer, a novel approach for generating boundary representations (B-rep) of CAD objects from a single image. CADDreamer employs a primitive-aware multi-view diffusion model that captures both local geometric details and high-level structural semantics during the generation process. By encoding primitive semantics into the color domain, the method leverages the strong priors of pre-trained diffusion models to align with well-defined primitives. This enables the inference of multi-view normal maps and semantic maps from a single image, facilitating the reconstruction of a mesh with primitive labels. Furthermore, we introduce geometric optimization techniques and topology-preserving extraction methods to mitigate noise and distortion in the generated primitives. These enhancements result in a complete and seamless B-rep of the CAD model. Experimental results demonstrate that our method effectively recovers high-quality CAD objects from single-view images. Compared to existing 3D generation techniques, the B-rep models produced by CADDreamer are compact in representation, clear in structure, sharp in edges, and watertight in topology.

  • 9 authors
·
Feb 28

CAD-MLLM: Unifying Multimodality-Conditioned CAD Generation With MLLM

This paper aims to design a unified Computer-Aided Design (CAD) generation system that can easily generate CAD models based on the user's inputs in the form of textual description, images, point clouds, or even a combination of them. Towards this goal, we introduce the CAD-MLLM, the first system capable of generating parametric CAD models conditioned on the multimodal input. Specifically, within the CAD-MLLM framework, we leverage the command sequences of CAD models and then employ advanced large language models (LLMs) to align the feature space across these diverse multi-modalities data and CAD models' vectorized representations. To facilitate the model training, we design a comprehensive data construction and annotation pipeline that equips each CAD model with corresponding multimodal data. Our resulting dataset, named Omni-CAD, is the first multimodal CAD dataset that contains textual description, multi-view images, points, and command sequence for each CAD model. It contains approximately 450K instances and their CAD construction sequences. To thoroughly evaluate the quality of our generated CAD models, we go beyond current evaluation metrics that focus on reconstruction quality by introducing additional metrics that assess topology quality and surface enclosure extent. Extensive experimental results demonstrate that CAD-MLLM significantly outperforms existing conditional generative methods and remains highly robust to noises and missing points. The project page and more visualizations can be found at: https://cad-mllm.github.io/

  • 6 authors
·
Nov 7, 2024 9

Drawing2CAD: Sequence-to-Sequence Learning for CAD Generation from Vector Drawings

Computer-Aided Design (CAD) generative modeling is driving significant innovations across industrial applications. Recent works have shown remarkable progress in creating solid models from various inputs such as point clouds, meshes, and text descriptions. However, these methods fundamentally diverge from traditional industrial workflows that begin with 2D engineering drawings. The automatic generation of parametric CAD models from these 2D vector drawings remains underexplored despite being a critical step in engineering design. To address this gap, our key insight is to reframe CAD generation as a sequence-to-sequence learning problem where vector drawing primitives directly inform the generation of parametric CAD operations, preserving geometric precision and design intent throughout the transformation process. We propose Drawing2CAD, a framework with three key technical components: a network-friendly vector primitive representation that preserves precise geometric information, a dual-decoder transformer architecture that decouples command type and parameter generation while maintaining precise correspondence, and a soft target distribution loss function accommodating inherent flexibility in CAD parameters. To train and evaluate Drawing2CAD, we create CAD-VGDrawing, a dataset of paired engineering drawings and parametric CAD models, and conduct thorough experiments to demonstrate the effectiveness of our method. Code and dataset are available at https://github.com/lllssc/Drawing2CAD.

  • 6 authors
·
Aug 26 3

CAD-GPT: Synthesising CAD Construction Sequence with Spatial Reasoning-Enhanced Multimodal LLMs

Computer-aided design (CAD) significantly enhances the efficiency, accuracy, and innovation of design processes by enabling precise 2D and 3D modeling, extensive analysis, and optimization. Existing methods for creating CAD models rely on latent vectors or point clouds, which are difficult to obtain and costly to store. Recent advances in Multimodal Large Language Models (MLLMs) have inspired researchers to use natural language instructions and images for CAD model construction. However, these models still struggle with inferring accurate 3D spatial location and orientation, leading to inaccuracies in determining the spatial 3D starting points and extrusion directions for constructing geometries. This work introduces CAD-GPT, a CAD synthesis method with spatial reasoning-enhanced MLLM that takes either a single image or a textual description as input. To achieve precise spatial inference, our approach introduces a 3D Modeling Spatial Mechanism. This method maps 3D spatial positions and 3D sketch plane rotation angles into a 1D linguistic feature space using a specialized spatial unfolding mechanism, while discretizing 2D sketch coordinates into an appropriate planar space to enable precise determination of spatial starting position, sketch orientation, and 2D sketch coordinate translations. Extensive experiments demonstrate that CAD-GPT consistently outperforms existing state-of-the-art methods in CAD model synthesis, both quantitatively and qualitatively.

  • 7 authors
·
Dec 27, 2024

From Intent to Execution: Multimodal Chain-of-Thought Reinforcement Learning for Precise CAD Code Generation

Computer-Aided Design (CAD) plays a vital role in engineering and manufacturing, yet current CAD workflows require extensive domain expertise and manual modeling effort. Recent advances in large language models (LLMs) have made it possible to generate code from natural language, opening new opportunities for automating parametric 3D modeling. However, directly translating human design intent into executable CAD code remains highly challenging, due to the need for logical reasoning, syntactic correctness, and numerical precision. In this work, we propose CAD-RL, a multimodal Chain-of-Thought (CoT) guided reinforcement learning post training framework for CAD modeling code generation. Our method combines CoT-based Cold Start with goal-driven reinforcement learning post training using three task-specific rewards: executability reward, geometric accuracy reward, and external evaluation reward. To ensure stable policy learning under sparse and high-variance reward conditions, we introduce three targeted optimization strategies: Trust Region Stretch for improved exploration, Precision Token Loss for enhanced dimensions parameter accuracy, and Overlong Filtering to reduce noisy supervision. To support training and benchmarking, we release ExeCAD, a noval dataset comprising 16,540 real-world CAD examples with paired natural language and structured design language descriptions, executable CADQuery scripts, and rendered 3D models. Experiments demonstrate that CAD-RL achieves significant improvements in reasoning quality, output precision, and code executability over existing VLMs.

  • 7 authors
·
Aug 13

Point-PRC: A Prompt Learning Based Regulation Framework for Generalizable Point Cloud Analysis

This paper investigates the 3D domain generalization (3DDG) ability of large 3D models based on prevalent prompt learning. Recent works demonstrate the performances of 3D point cloud recognition can be boosted remarkably by parameter-efficient prompt tuning. However, we observe that the improvement on downstream tasks comes at the expense of a severe drop in 3D domain generalization. To resolve this challenge, we present a comprehensive regulation framework that allows the learnable prompts to actively interact with the well-learned general knowledge in large 3D models to maintain good generalization. Specifically, the proposed framework imposes multiple explicit constraints on the prompt learning trajectory by maximizing the mutual agreement between task-specific predictions and task-agnostic knowledge. We design the regulation framework as a plug-and-play module to embed into existing representative large 3D models. Surprisingly, our method not only realizes consistently increasing generalization ability but also enhances task-specific 3D recognition performances across various 3DDG benchmarks by a clear margin. Considering the lack of study and evaluation on 3DDG, we also create three new benchmarks, namely base-to-new, cross-dataset and few-shot generalization benchmarks, to enrich the field and inspire future research. Code and benchmarks are available at https://github.com/auniquesun/Point-PRC.

  • 7 authors
·
Oct 27, 2024

FlexCAD: Unified and Versatile Controllable CAD Generation with Fine-tuned Large Language Models

Recently, there is a growing interest in creating computer-aided design (CAD) models based on user intent, known as controllable CAD generation. Existing work offers limited controllability and needs separate models for different types of control, reducing efficiency and practicality. To achieve controllable generation across all CAD construction hierarchies, such as sketch-extrusion, extrusion, sketch, face, loop and curve, we propose FlexCAD, a unified model by fine-tuning large language models (LLMs). First, to enhance comprehension by LLMs, we represent a CAD model as a structured text by abstracting each hierarchy as a sequence of text tokens. Second, to address various controllable generation tasks in a unified model, we introduce a hierarchy-aware masking strategy. Specifically, during training, we mask a hierarchy-aware field in the CAD text with a mask token. This field, composed of a sequence of tokens, can be set flexibly to represent various hierarchies. Subsequently, we ask LLMs to predict this masked field. During inference, the user intent is converted into a CAD text with a mask token replacing the part the user wants to modify, which is then fed into FlexCAD to generate new CAD models. Comprehensive experiments on public dataset demonstrate the effectiveness of FlexCAD in both generation quality and controllability. Code will be available at https://github.com/microsoft/FlexCAD.

  • 5 authors
·
Nov 5, 2024

VideoCAD: A Large-Scale Video Dataset for Learning UI Interactions and 3D Reasoning from CAD Software

Computer-Aided Design (CAD) is a time-consuming and complex process, requiring precise, long-horizon user interactions with intricate 3D interfaces. While recent advances in AI-driven user interface (UI) agents show promise, most existing datasets and methods focus on short, low-complexity tasks in mobile or web applications, failing to capture the demands of professional engineering tools. In this work, we introduce VideoCAD, the first attempt at engineering UI interaction learning for precision tasks. Specifically, VideoCAD is a large-scale synthetic dataset consisting of over 41K annotated video recordings of CAD operations, generated using an automated framework for collecting high-fidelity UI action data from human-made CAD designs. Compared to existing datasets, VideoCAD offers an order of magnitude higher complexity in UI interaction learning for real-world engineering tasks, having up to a 20x longer time horizon than other datasets. We show two important downstream applications of VideoCAD: learning UI interactions from professional precision 3D CAD tools and a visual question-answering (VQA) benchmark designed to evaluate multimodal large language models' (LLM) spatial reasoning and video understanding abilities. To learn the UI interactions, we propose VideoCADFormer - a state-of-the-art model in learning CAD interactions directly from video, which outperforms multiple behavior cloning baselines. Both VideoCADFormer and the VQA benchmark derived from VideoCAD reveal key challenges in the current state of video-based UI understanding, including the need for precise action grounding, multi-modal and spatial reasoning, and long-horizon dependencies.

  • 4 authors
·
May 30

Pruning-based Topology Refinement of 3D Mesh using a 2D Alpha Mask

Image-based 3D reconstruction has increasingly stunning results over the past few years with the latest improvements in computer vision and graphics. Geometry and topology are two fundamental concepts when dealing with 3D mesh structures. But the latest often remains a side issue in the 3D mesh-based reconstruction literature. Indeed, performing per-vertex elementary displacements over a 3D sphere mesh only impacts its geometry and leaves the topological structure unchanged and fixed. Whereas few attempts propose to update the geometry and the topology, all need to lean on costly 3D ground-truth to determine the faces/edges to prune. We present in this work a method that aims to refine the topology of any 3D mesh through a face-pruning strategy that extensively relies upon 2D alpha masks and camera pose information. Our solution leverages a differentiable renderer that renders each face as a 2D soft map. Its pixel intensity reflects the probability of being covered during the rendering process by such a face. Based on the 2D soft-masks available, our method is thus able to quickly highlight all the incorrectly rendered faces for a given viewpoint. Because our module is agnostic to the network that produces the 3D mesh, it can be easily plugged into any self-supervised image-based (either synthetic or natural) 3D reconstruction pipeline to get complex meshes with a non-spherical topology.

  • 2 authors
·
Oct 17, 2022

Generative Model for Models: Rapid DNN Customization for Diverse Tasks and Resource Constraints

Unlike cloud-based deep learning models that are often large and uniform, edge-deployed models usually demand customization for domain-specific tasks and resource-limited environments. Such customization processes can be costly and time-consuming due to the diversity of edge scenarios and the training load for each scenario. Although various approaches have been proposed for rapid resource-oriented customization and task-oriented customization respectively, achieving both of them at the same time is challenging. Drawing inspiration from the generative AI and the modular composability of neural networks, we introduce NN-Factory, an one-for-all framework to generate customized lightweight models for diverse edge scenarios. The key idea is to use a generative model to directly produce the customized models, instead of training them. The main components of NN-Factory include a modular supernet with pretrained modules that can be conditionally activated to accomplish different tasks and a generative module assembler that manipulate the modules according to task and sparsity requirements. Given an edge scenario, NN-Factory can efficiently customize a compact model specialized in the edge task while satisfying the edge resource constraints by searching for the optimal strategy to assemble the modules. Based on experiments on image classification and object detection tasks with different edge devices, NN-Factory is able to generate high-quality task- and resource-specific models within few seconds, faster than conventional model customization approaches by orders of magnitude.

  • 8 authors
·
Aug 28, 2023

CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner

We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan

  • 7 authors
·
May 23, 2024 2

Text-to-CAD Generation Through Infusing Visual Feedback in Large Language Models

Creating Computer-Aided Design (CAD) models requires significant expertise and effort. Text-to-CAD, which converts textual descriptions into CAD parametric sequences, is crucial in streamlining this process. Recent studies have utilized ground-truth parametric sequences, known as sequential signals, as supervision to achieve this goal. However, CAD models are inherently multimodal, comprising parametric sequences and corresponding rendered visual objects. Besides,the rendering process from parametric sequences to visual objects is many-to-one. Therefore, both sequential and visual signals are critical for effective training. In this work, we introduce CADFusion, a framework that uses Large Language Models (LLMs) as the backbone and alternates between two training stages: the sequential learning (SL) stage and the visual feedback (VF) stage. In the SL stage, we train LLMs using ground-truth parametric sequences, enabling the generation of logically coherent parametric sequences. In the VF stage, we reward parametric sequences that render into visually preferred objects and penalize those that do not, allowing LLMs to learn how rendered visual objects are perceived and evaluated. These two stages alternate throughout the training, ensuring balanced learning and preserving benefits of both signals. Experiments demonstrate that CADFusion significantly improves performance, both qualitatively and quantitatively.

  • 4 authors
·
Jan 31 2

Assembler: Scalable 3D Part Assembly via Anchor Point Diffusion

We present Assembler, a scalable and generalizable framework for 3D part assembly that reconstructs complete objects from input part meshes and a reference image. Unlike prior approaches that mostly rely on deterministic part pose prediction and category-specific training, Assembler is designed to handle diverse, in-the-wild objects with varying part counts, geometries, and structures. It addresses the core challenges of scaling to general 3D part assembly through innovations in task formulation, representation, and data. First, Assembler casts part assembly as a generative problem and employs diffusion models to sample plausible configurations, effectively capturing ambiguities arising from symmetry, repeated parts, and multiple valid assemblies. Second, we introduce a novel shape-centric representation based on sparse anchor point clouds, enabling scalable generation in Euclidean space rather than SE(3) pose prediction. Third, we construct a large-scale dataset of over 320K diverse part-object assemblies using a synthesis and filtering pipeline built on existing 3D shape repositories. Assembler achieves state-of-the-art performance on PartNet and is the first to demonstrate high-quality assembly for complex, real-world objects. Based on Assembler, we further introduce an interesting part-aware 3D modeling system that generates high-resolution, editable objects from images, demonstrating potential for interactive and compositional design. Project page: https://assembler3d.github.io

  • 5 authors
·
Jun 20

SketchDream: Sketch-based Text-to-3D Generation and Editing

Existing text-based 3D generation methods generate attractive results but lack detailed geometry control. Sketches, known for their conciseness and expressiveness, have contributed to intuitive 3D modeling but are confined to producing texture-less mesh models within predefined categories. Integrating sketch and text simultaneously for 3D generation promises enhanced control over geometry and appearance but faces challenges from 2D-to-3D translation ambiguity and multi-modal condition integration. Moreover, further editing of 3D models in arbitrary views will give users more freedom to customize their models. However, it is difficult to achieve high generation quality, preserve unedited regions, and manage proper interactions between shape components. To solve the above issues, we propose a text-driven 3D content generation and editing method, SketchDream, which supports NeRF generation from given hand-drawn sketches and achieves free-view sketch-based local editing. To tackle the 2D-to-3D ambiguity challenge, we introduce a sketch-based multi-view image generation diffusion model, which leverages depth guidance to establish spatial correspondence. A 3D ControlNet with a 3D attention module is utilized to control multi-view images and ensure their 3D consistency. To support local editing, we further propose a coarse-to-fine editing approach: the coarse phase analyzes component interactions and provides 3D masks to label edited regions, while the fine stage generates realistic results with refined details by local enhancement. Extensive experiments validate that our method generates higher-quality results compared with a combination of 2D ControlNet and image-to-3D generation techniques and achieves detailed control compared with existing diffusion-based 3D editing approaches.

  • 4 authors
·
May 10, 2024

Configurable Foundation Models: Building LLMs from a Modular Perspective

Advancements in LLMs have recently unveiled challenges tied to computational efficiency and continual scalability due to their requirements of huge parameters, making the applications and evolution of these models on devices with limited computation resources and scenarios requiring various abilities increasingly cumbersome. Inspired by modularity within the human brain, there is a growing tendency to decompose LLMs into numerous functional modules, allowing for inference with part of modules and dynamic assembly of modules to tackle complex tasks, such as mixture-of-experts. To highlight the inherent efficiency and composability of the modular approach, we coin the term brick to represent each functional module, designating the modularized structure as configurable foundation models. In this paper, we offer a comprehensive overview and investigation of the construction, utilization, and limitation of configurable foundation models. We first formalize modules into emergent bricks - functional neuron partitions that emerge during the pre-training phase, and customized bricks - bricks constructed via additional post-training to improve the capabilities and knowledge of LLMs. Based on diverse functional bricks, we further present four brick-oriented operations: retrieval and routing, merging, updating, and growing. These operations allow for dynamic configuration of LLMs based on instructions to handle complex tasks. To verify our perspective, we conduct an empirical analysis on widely-used LLMs. We find that the FFN layers follow modular patterns with functional specialization of neurons and functional neuron partitions. Finally, we highlight several open issues and directions for future research. Overall, this paper aims to offer a fresh modular perspective on existing LLM research and inspire the future creation of more efficient and scalable foundational models.

openbmb OpenBMB
·
Sep 4, 2024 2

Sketch2CAD: Sequential CAD Modeling by Sketching in Context

We present a sketch-based CAD modeling system, where users create objects incrementally by sketching the desired shape edits, which our system automatically translates to CAD operations. Our approach is motivated by the close similarities between the steps industrial designers follow to draw 3D shapes, and the operations CAD modeling systems offer to create similar shapes. To overcome the strong ambiguity with parsing 2D sketches, we observe that in a sketching sequence, each step makes sense and can be interpreted in the context of what has been drawn before. In our system, this context corresponds to a partial CAD model, inferred in the previous steps, which we feed along with the input sketch to a deep neural network in charge of interpreting how the model should be modified by that sketch. Our deep network architecture then recognizes the intended CAD operation and segments the sketch accordingly, such that a subsequent optimization estimates the parameters of the operation that best fit the segmented sketch strokes. Since there exists no datasets of paired sketching and CAD modeling sequences, we train our system by generating synthetic sequences of CAD operations that we render as line drawings. We present a proof of concept realization of our algorithm supporting four frequently used CAD operations. Using our system, participants are able to quickly model a large and diverse set of objects, demonstrating Sketch2CAD to be an alternate way of interacting with current CAD modeling systems.

  • 4 authors
·
Sep 10, 2020

InfoGNN: End-to-end deep learning on mesh via graph neural networks

3D models are widely used in various industries, and mesh data has become an indispensable part of 3D modeling because of its unique advantages. Mesh data can provide an intuitive and practical expression of rich 3D information. However, its disordered, irregular data structure and complex surface information make it challenging to apply with deep learning models directly. Traditional mesh data processing methods often rely on mesh models with many limitations, such as manifold, which restrict their application scopes in reality and do not fully utilize the advantages of mesh models. This paper proposes a novel end-to-end framework for addressing the challenges associated with deep learning in mesh models centered around graph neural networks (GNN) and is titled InfoGNN. InfoGNN treats the mesh model as a graph, which enables it to handle irregular mesh data efficiently. Moreover, we propose InfoConv and InfoMP modules, which utilize the position information of the points and fully use the static information such as face normals, dihedral angles, and dynamic global feature information to fully use all kinds of data. In addition, InfoGNN is an end-to-end framework, and we simplify the network design to make it more efficient, paving the way for efficient deep learning of complex 3D models. We conducted experiments on several publicly available datasets, and the results show that InfoGNN achieves excellent performance in mesh classification and segmentation tasks.

  • 3 authors
·
Mar 4

From Concept to Manufacturing: Evaluating Vision-Language Models for Engineering Design

Engineering Design is undergoing a transformative shift with the advent of AI, marking a new era in how we approach product, system, and service planning. Large language models have demonstrated impressive capabilities in enabling this shift. Yet, with text as their only input modality, they cannot leverage the large body of visual artifacts that engineers have used for centuries and are accustomed to. This gap is addressed with the release of multimodal vision language models, such as GPT-4V, enabling AI to impact many more types of tasks. In light of these advancements, this paper presents a comprehensive evaluation of GPT-4V, a vision language model, across a wide spectrum of engineering design tasks, categorized into four main areas: Conceptual Design, System-Level and Detailed Design, Manufacturing and Inspection, and Engineering Education Tasks. Our study assesses GPT-4V's capabilities in design tasks such as sketch similarity analysis, concept selection using Pugh Charts, material selection, engineering drawing analysis, CAD generation, topology optimization, design for additive and subtractive manufacturing, spatial reasoning challenges, and textbook problems. Through this structured evaluation, we not only explore GPT-4V's proficiency in handling complex design and manufacturing challenges but also identify its limitations in complex engineering design applications. Our research establishes a foundation for future assessments of vision language models, emphasizing their immense potential for innovating and enhancing the engineering design and manufacturing landscape. It also contributes a set of benchmark testing datasets, with more than 1000 queries, for ongoing advancements and applications in this field.

  • 7 authors
·
Nov 21, 2023

3CAD: A Large-Scale Real-World 3C Product Dataset for Unsupervised Anomaly

Industrial anomaly detection achieves progress thanks to datasets such as MVTec-AD and VisA. However, they suf- fer from limitations in terms of the number of defect sam- ples, types of defects, and availability of real-world scenes. These constraints inhibit researchers from further exploring the performance of industrial detection with higher accuracy. To this end, we propose a new large-scale anomaly detection dataset called 3CAD, which is derived from real 3C produc- tion lines. Specifically, the proposed 3CAD includes eight different types of manufactured parts, totaling 27,039 high- resolution images labeled with pixel-level anomalies. The key features of 3CAD are that it covers anomalous regions of different sizes, multiple anomaly types, and the possibility of multiple anomalous regions and multiple anomaly types per anomaly image. This is the largest and first anomaly de- tection dataset dedicated to 3C product quality control for community exploration and development. Meanwhile, we in- troduce a simple yet effective framework for unsupervised anomaly detection: a Coarse-to-Fine detection paradigm with Recovery Guidance (CFRG). To detect small defect anoma- lies, the proposed CFRG utilizes a coarse-to-fine detection paradigm. Specifically, we utilize a heterogeneous distilla- tion model for coarse localization and then fine localiza- tion through a segmentation model. In addition, to better capture normal patterns, we introduce recovery features as guidance. Finally, we report the results of our CFRG frame- work and popular anomaly detection methods on the 3CAD dataset, demonstrating strong competitiveness and providing a highly challenging benchmark to promote the development of the anomaly detection field. Data and code are available: https://github.com/EnquanYang2022/3CAD.

  • 7 authors
·
Feb 8 2

M3DLayout: A Multi-Source Dataset of 3D Indoor Layouts and Structured Descriptions for 3D Generation

In text-driven 3D scene generation, object layout serves as a crucial intermediate representation that bridges high-level language instructions with detailed geometric output. It not only provides a structural blueprint for ensuring physical plausibility but also supports semantic controllability and interactive editing. However, the learning capabilities of current 3D indoor layout generation models are constrained by the limited scale, diversity, and annotation quality of existing datasets. To address this, we introduce M3DLayout, a large-scale, multi-source dataset for 3D indoor layout generation. M3DLayout comprises 15,080 layouts and over 258k object instances, integrating three distinct sources: real-world scans, professional CAD designs, and procedurally generated scenes. Each layout is paired with detailed structured text describing global scene summaries, relational placements of large furniture, and fine-grained arrangements of smaller items. This diverse and richly annotated resource enables models to learn complex spatial and semantic patterns across a wide variety of indoor environments. To assess the potential of M3DLayout, we establish a benchmark using a text-conditioned diffusion model. Experimental results demonstrate that our dataset provides a solid foundation for training layout generation models. Its multi-source composition enhances diversity, notably through the Inf3DLayout subset which provides rich small-object information, enabling the generation of more complex and detailed scenes. We hope that M3DLayout can serve as a valuable resource for advancing research in text-driven 3D scene synthesis.

  • 7 authors
·
Sep 28

En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D Synthetic Data

We present En3D, an enhanced generative scheme for sculpting high-quality 3D human avatars. Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalanced viewing angles and imprecise pose priors, our approach aims to develop a zero-shot 3D generative scheme capable of producing visually realistic, geometrically accurate and content-wise diverse 3D humans without relying on pre-existing 3D or 2D assets. To address this challenge, we introduce a meticulously crafted workflow that implements accurate physical modeling to learn the enhanced 3D generative model from synthetic 2D data. During inference, we integrate optimization modules to bridge the gap between realistic appearances and coarse 3D shapes. Specifically, En3D comprises three modules: a 3D generator that accurately models generalizable 3D humans with realistic appearance from synthesized balanced, diverse, and structured human images; a geometry sculptor that enhances shape quality using multi-view normal constraints for intricate human anatomy; and a texturing module that disentangles explicit texture maps with fidelity and editability, leveraging semantical UV partitioning and a differentiable rasterizer. Experimental results show that our approach significantly outperforms prior works in terms of image quality, geometry accuracy and content diversity. We also showcase the applicability of our generated avatars for animation and editing, as well as the scalability of our approach for content-style free adaptation.

  • 6 authors
·
Jan 2, 2024 9

MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation

Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.

  • 13 authors
·
Feb 9

LowFormer: Hardware Efficient Design for Convolutional Transformer Backbones

Research in efficient vision backbones is evolving into models that are a mixture of convolutions and transformer blocks. A smart combination of both, architecture-wise and component-wise is mandatory to excel in the speedaccuracy trade-off. Most publications focus on maximizing accuracy and utilize MACs (multiply accumulate operations) as an efficiency metric. The latter however often do not measure accurately how fast a model actually is due to factors like memory access cost and degree of parallelism. We analyzed common modules and architectural design choices for backbones not in terms of MACs, but rather in actual throughput and latency, as the combination of the latter two is a better representation of the efficiency of models in real applications. We applied the conclusions taken from that analysis to create a recipe for increasing hardware-efficiency in macro design. Additionally we introduce a simple slimmed-down version of MultiHead Self-Attention, that aligns with our analysis. We combine both macro and micro design to create a new family of hardware-efficient backbone networks called LowFormer. LowFormer achieves a remarkable speedup in terms of throughput and latency, while achieving similar or better accuracy than current state-of-the-art efficient backbones. In order to prove the generalizability of our hardware-efficient design, we evaluate our method on GPU, mobile GPU and ARM CPU. We further show that the downstream tasks object detection and semantic segmentation profit from our hardware-efficient architecture. Code and models are available at https://github.com/ altair199797/LowFormer.

  • 3 authors
·
Sep 5, 2024

Fast and Accurate Zero-Training Classification for Tabular Engineering Data

In engineering design, navigating complex decision-making landscapes demands a thorough exploration of the design, performance, and constraint spaces, often impeded by resource-intensive simulations. Data-driven methods can mitigate this challenge by harnessing historical data to delineate feasible domains, accelerate optimization, or evaluate designs. However, the implementation of these methods usually demands machine-learning expertise and multiple trials to choose the right method and hyperparameters. This makes them less accessible for numerous engineering situations. Additionally, there is an inherent trade-off between training speed and accuracy, with faster methods sometimes compromising precision. In our paper, we demonstrate that a recently released general-purpose transformer-based classification model, TabPFN, is both fast and accurate. Notably, it requires no dataset-specific training to assess new tabular data. TabPFN is a Prior-Data Fitted Network, which undergoes a one-time offline training across a broad spectrum of synthetic datasets and performs in-context learning. We evaluated TabPFN's efficacy across eight engineering design classification problems, contrasting it with seven other algorithms, including a state-of-the-art AutoML method. For these classification challenges, TabPFN consistently outperforms in speed and accuracy. It is also the most data-efficient and provides the added advantage of being differentiable and giving uncertainty estimates. Our findings advocate for the potential of pre-trained models that learn from synthetic data and require no domain-specific tuning to make data-driven engineering design accessible to a broader community and open ways to efficient general-purpose models valid across applications. Furthermore, we share a benchmark problem set for evaluating new classification algorithms in engineering design.

  • 2 authors
·
Jan 12, 2024

From Density to Geometry: YOLOv8 Instance Segmentation for Reverse Engineering of Optimized Structures

This paper introduces YOLOv8-TO, a novel approach for reverse engineering of topology-optimized structures into interpretable geometric parameters using the YOLOv8 instance segmentation model. Density-based topology optimization methods require post-processing to convert the optimal density distribution into a parametric representation for design exploration and integration with CAD tools. Traditional methods such as skeletonization struggle with complex geometries and require manual intervention. YOLOv8-TO addresses these challenges by training a custom YOLOv8 model to automatically detect and reconstruct structural components from binary density distributions. The model is trained on a diverse dataset of both optimized and random structures generated using the Moving Morphable Components method. A custom reconstruction loss function based on the dice coefficient of the predicted geometry is used to train the new regression head of the model via self-supervised learning. The method is evaluated on test sets generated from different topology optimization methods, including out-of-distribution samples, and compared against a skeletonization approach. Results show that YOLOv8-TO significantly outperforms skeletonization in reconstructing visually and structurally similar designs. The method showcases an average improvement of 13.84% in the Dice coefficient, with peak enhancements reaching 20.78%. The method demonstrates good generalization to complex geometries and fast inference times, making it suitable for integration into design workflows using regular workstations. Limitations include the sensitivity to non-max suppression thresholds. YOLOv8-TO represents a significant advancement in topology optimization post-processing, enabling efficient and accurate reverse engineering of optimized structures for design exploration and manufacturing.

  • 4 authors
·
Apr 29, 2024

RTL++: Graph-enhanced LLM for RTL Code Generation

As hardware design complexity escalates, there is an urgent need for advanced automation in electronic design automation (EDA). Traditional register transfer level (RTL) design methods are manual, time-consuming, and prone to errors. While commercial (instruction-tuned) large language models (LLMs) shows promising performance for automation, they pose security and privacy concerns. Open-source models offer alternatives; however, they frequently fall short in quality/correctness, largely due to limited, high-quality RTL code data essential for effective training and generalization. This paper proposes RTL++, a first-of-its-kind LLM-assisted method for RTL code generation that utilizes graph representations of code structures to enhance the quality of generated code. By encoding RTL code into a textualized control flowgraphs (CFG) and data flow graphs (DFG), RTL++ captures the inherent hierarchy, dependencies, and relationships within the code. This structured graph-based approach enhances the context available to LLMs, enabling them to better understand and generate instructions. By focusing on data generation through graph representations, RTL++ addresses the limitations of previous approaches that rely solely on code and suffer from lack of diversity. Experimental results demonstrate that RTL++ outperforms state-of-the-art models fine-tuned for RTL generation, as evaluated using the VerilogEval benchmark's Pass@1/5/10 metric, as well as the RTLLM1.1 model, which highlight the effectiveness of graph-enhanced context in advancing the capabilities of LLM-assisted RTL code generation.

  • 3 authors
·
May 10

RTLRepoCoder: Repository-Level RTL Code Completion through the Combination of Fine-Tuning and Retrieval Augmentation

As an essential part of modern hardware design, manually writing Register Transfer Level (RTL) code such as Verilog is often labor-intensive. Following the tremendous success of large language models (LLMs), researchers have begun to explore utilizing LLMs for generating RTL code. However, current studies primarily focus on generating simple single modules, which can not meet the demands in real world. In fact, due to challenges in managing long-context RTL code and complex cross-file dependencies, existing solutions cannot handle large-scale Verilog repositories in practical hardware development. As the first endeavor to exclusively adapt LLMs for large-scale RTL development, we propose RTLRepoCoder, a groundbreaking solution that incorporates specific fine-tuning and Retrieval-Augmented Generation (RAG) for repository-level Verilog code completion. Open-source Verilog repositories from the real world, along with an extended context size, are used for domain-specific fine-tuning. The optimized RAG system improves the information density of the input context by retrieving relevant code snippets. Tailored optimizations for RAG are carried out, including the embedding model, the cross-file context splitting strategy, and the chunk size. Our solution achieves state-of-the-art performance on public benchmark, significantly surpassing GPT-4 and advanced domain-specific LLMs on Edit Similarity and Exact Match rate. Comprehensive experiments demonstrate the remarkable effectiveness of our approach and offer insights for future work.

  • 5 authors
·
Apr 11

TuRTLe: A Unified Evaluation of LLMs for RTL Generation

The rapid advancements in LLMs have driven the adoption of generative AI in various domains, including Electronic Design Automation (EDA). Unlike traditional software development, EDA presents unique challenges, as generated RTL code must not only be syntactically correct and functionally accurate but also synthesizable by hardware generators while meeting performance, power, and area constraints. These additional requirements introduce complexities that existing code-generation benchmarks often fail to capture, limiting their effectiveness in evaluating LLMs for RTL generation. To address this gap, we propose TuRTLe, a unified evaluation framework designed to systematically assess LLMs across key RTL generation tasks. TuRTLe integrates multiple existing benchmarks and automates the evaluation process, enabling a comprehensive assessment of LLM performance in syntax correctness, functional correctness, synthesis, PPA optimization, and exact line completion. Using this framework, we benchmark a diverse set of open LLMs and analyze their strengths and weaknesses in EDA-specific tasks. Our results show that reasoning-based models, such as DeepSeek R1, consistently outperform others across multiple evaluation criteria, but at the cost of increased computational overhead and inference latency. Additionally, base models are better suited in module completion tasks, while instruct-tuned models perform better in specification-to-RTL tasks.

  • 9 authors
·
Mar 31

Symbol as Points: Panoptic Symbol Spotting via Point-based Representation

This work studies the problem of panoptic symbol spotting, which is to spot and parse both countable object instances (windows, doors, tables, etc.) and uncountable stuff (wall, railing, etc.) from computer-aided design (CAD) drawings. Existing methods typically involve either rasterizing the vector graphics into images and using image-based methods for symbol spotting, or directly building graphs and using graph neural networks for symbol recognition. In this paper, we take a different approach, which treats graphic primitives as a set of 2D points that are locally connected and use point cloud segmentation methods to tackle it. Specifically, we utilize a point transformer to extract the primitive features and append a mask2former-like spotting head to predict the final output. To better use the local connection information of primitives and enhance their discriminability, we further propose the attention with connection module (ACM) and contrastive connection learning scheme (CCL). Finally, we propose a KNN interpolation mechanism for the mask attention module of the spotting head to better handle primitive mask downsampling, which is primitive-level in contrast to pixel-level for the image. Our approach, named SymPoint, is simple yet effective, outperforming recent state-of-the-art method GAT-CADNet by an absolute increase of 9.6% PQ and 10.4% RQ on the FloorPlanCAD dataset. The source code and models will be available at https://github.com/nicehuster/SymPoint.

  • 5 authors
·
Jan 19, 2024

IC-Custom: Diverse Image Customization via In-Context Learning

Image customization, a crucial technique for industrial media production, aims to generate content that is consistent with reference images. However, current approaches conventionally separate image customization into position-aware and position-free customization paradigms and lack a universal framework for diverse customization, limiting their applications across various scenarios. To overcome these limitations, we propose IC-Custom, a unified framework that seamlessly integrates position-aware and position-free image customization through in-context learning. IC-Custom concatenates reference images with target images to a polyptych, leveraging DiT's multi-modal attention mechanism for fine-grained token-level interactions. We introduce the In-context Multi-Modal Attention (ICMA) mechanism with learnable task-oriented register tokens and boundary-aware positional embeddings to enable the model to correctly handle different task types and distinguish various inputs in polyptych configurations. To bridge the data gap, we carefully curated a high-quality dataset of 12k identity-consistent samples with 8k from real-world sources and 4k from high-quality synthetic data, avoiding the overly glossy and over-saturated synthetic appearance. IC-Custom supports various industrial applications, including try-on, accessory placement, furniture arrangement, and creative IP customization. Extensive evaluations on our proposed ProductBench and the publicly available DreamBench demonstrate that IC-Custom significantly outperforms community workflows, closed-source models, and state-of-the-art open-source approaches. IC-Custom achieves approximately 73% higher human preference across identity consistency, harmonicity, and text alignment metrics, while training only 0.4% of the original model parameters. Project page: https://liyaowei-stu.github.io/project/IC_Custom

  • 14 authors
·
Jul 2

Linguistic and Structural Basis of Engineering Design Knowledge

Artefact descriptions are the primary carriers of engineering design knowledge that is both an outcome and a driver of the design process. While an artefact could be described in different connotations, the design process requires a description to embody engineering design knowledge, which is expressed in the text through intricate placement of entities and relationships. As large-language models learn from all kinds of text merely as a sequence of characters/tokens, these are yet to generate text that embodies explicit engineering design facts. Existing ontological design theories are less likely to guide the large-language models whose applications are currently limited to ideation and learning purposes. In this article, we explicate engineering design knowledge as knowledge graphs from a large sample of 33,881 patent documents. We examine the constituents of these knowledge graphs to understand the linguistic and structural basis of engineering design knowledge. In terms of linguistic basis, we observe that entities and relationships could be generalised to 64 and 24 linguistic syntaxes. While relationships mainly capture attributes ('of'), structure ('in', 'with'), purpose ('to', 'for'), hierarchy ('include'), exemplification ('such as'), and behaviour ('to', 'from'), the hierarchical relationships could specifically be identified using 75 unique syntaxes. To understand the structural basis, we draw inspiration from various studies on biological/ecological networks and discover motifs from patent knowledge graphs. We identify four 3-node and four 4-node patterns that could further be converged and simplified into sequence [->...->], aggregation [->...<-], and hierarchy [<-...->]. Expected to guide large-language model based design tools, we propose few regulatory precepts for concretising abstract entities and relationships within subgraphs, while explicating hierarchical structures.

  • 2 authors
·
Dec 11, 2023

LL3M: Large Language 3D Modelers

We present LL3M, a multi-agent system that leverages pretrained large language models (LLMs) to generate 3D assets by writing interpretable Python code in Blender. We break away from the typical generative approach that learns from a collection of 3D data. Instead, we reformulate shape generation as a code-writing task, enabling greater modularity, editability, and integration with artist workflows. Given a text prompt, LL3M coordinates a team of specialized LLM agents to plan, retrieve, write, debug, and refine Blender scripts that generate and edit geometry and appearance. The generated code works as a high-level, interpretable, human-readable, well-documented representation of scenes and objects, making full use of sophisticated Blender constructs (e.g. B-meshes, geometry modifiers, shader nodes) for diverse, unconstrained shapes, materials, and scenes. This code presents many avenues for further agent and human editing and experimentation via code tweaks or procedural parameters. This medium naturally enables a co-creative loop in our system: agents can automatically self-critique using code and visuals, while iterative user instructions provide an intuitive way to refine assets. A shared code context across agents enables awareness of previous attempts, and a retrieval-augmented generation knowledge base built from Blender API documentation, BlenderRAG, equips agents with examples, types, and functions empowering advanced modeling operations and code correctness. We demonstrate the effectiveness of LL3M across diverse shape categories, style and material edits, and user-driven refinements. Our experiments showcase the power of code as a generative and interpretable medium for 3D asset creation. Our project page is at https://threedle.github.io/ll3m.

  • 6 authors
·
Aug 11 1

AnyMaker: Zero-shot General Object Customization via Decoupled Dual-Level ID Injection

Text-to-image based object customization, aiming to generate images with the same identity (ID) as objects of interest in accordance with text prompts and reference images, has made significant progress. However, recent customizing research is dominated by specialized tasks, such as human customization or virtual try-on, leaving a gap in general object customization. To this end, we introduce AnyMaker, an innovative zero-shot object customization framework capable of generating general objects with high ID fidelity and flexible text editability. The efficacy of AnyMaker stems from its novel general ID extraction, dual-level ID injection, and ID-aware decoupling. Specifically, the general ID extraction module extracts sufficient ID information with an ensemble of self-supervised models to tackle the diverse customization tasks for general objects. Then, to provide the diffusion UNet with the extracted ID as much while not damaging the text editability in the generation process, we design a global-local dual-level ID injection module, in which the global-level semantic ID is injected into text descriptions while the local-level ID details are injected directly into the model through newly added cross-attention modules. In addition, we propose an ID-aware decoupling module to disentangle ID-related information from non-ID elements in the extracted representations for high-fidelity generation of both identity and text descriptions. To validate our approach and boost the research of general object customization, we create the first large-scale general ID dataset, Multi-Category ID-Consistent (MC-IDC) dataset, with 315k text-image samples and 10k categories. Experiments show that AnyMaker presents remarkable performance in general object customization and outperforms specialized methods in corresponding tasks. Code and dataset will be released soon.

  • 10 authors
·
Jun 17, 2024

ChiseLLM: Unleashing the Power of Reasoning LLMs for Chisel Agile Hardware Development

The growing demand for Domain-Specific Architecture (DSA) has driven the development of Agile Hardware Development Methodology (AHDM). Hardware Construction Language (HCL) like Chisel offers high-level abstraction features, making it an ideal language for HCL-Based AHDM. While Large Language Models (LLMs) excel in code generation tasks, they still face challenges with Chisel generation, particularly regarding syntax correctness and design variability. Recent reasoning models have significantly enhanced code generation capabilities through test-time scaling techniques. However, we found that reasoning models without domain adaptation cannot bring substantial benefits to Chisel code generation tasks. This paper presents ChiseLLM, a solution comprising data processing and transformation, prompt-guided reasoning trace synthesis, and domain-adapted model training. We constructed high-quality datasets from public RTL code resources and guided the model to adopt structured thinking patterns through prompt enhancement methods. Experiments demonstrate that our ChiseLLM-7B and ChiseLLM-32B models improved syntax correctness by 18.85% and 26.32% respectively over base models, while increasing variability design ability by 47.58% compared to baseline reasoning models. Our datasets and models are publicly available, providing high-performance, cost-effective models for HCL-Based AHDM, and offering an effective baseline for future research. Github repository: https://github.com/observerw/ChiseLLM

  • 6 authors
·
Apr 27 2

BRIDGES: Bridging Graph Modality and Large Language Models within EDA Tasks

While many EDA tasks already involve graph-based data, existing LLMs in EDA primarily either represent graphs as sequential text, or simply ignore graph-structured data that might be beneficial like dataflow graphs of RTL code. Recent studies have found that LLM performance suffers when graphs are represented as sequential text, and using additional graph information significantly boosts performance. To address these challenges, we introduce BRIDGES, a framework designed to incorporate graph modality into LLMs for EDA tasks. BRIDGES integrates an automated data generation workflow, a solution that combines graph modality with LLM, and a comprehensive evaluation suite. First, we establish an LLM-driven workflow to generate RTL and netlist-level data, converting them into dataflow and netlist graphs with function descriptions. This workflow yields a large-scale dataset comprising over 500,000 graph instances and more than 1.5 billion tokens. Second, we propose a lightweight cross-modal projector that encodes graph representations into text-compatible prompts, enabling LLMs to effectively utilize graph data without architectural modifications. Experimental results demonstrate 2x to 10x improvements across multiple tasks compared to text-only baselines, including accuracy in design retrieval, type prediction and perplexity in function description, with negligible computational overhead (<1% model weights increase and <30% additional runtime overhead). Even without additional LLM finetuning, our results outperform text-only by a large margin. We plan to release BRIDGES, including the dataset, models, and training flow.

  • 6 authors
·
Apr 7

CreatiDesign: A Unified Multi-Conditional Diffusion Transformer for Creative Graphic Design

Graphic design plays a vital role in visual communication across advertising, marketing, and multimedia entertainment. Prior work has explored automated graphic design generation using diffusion models, aiming to streamline creative workflows and democratize design capabilities. However, complex graphic design scenarios require accurately adhering to design intent specified by multiple heterogeneous user-provided elements (\eg images, layouts, and texts), which pose multi-condition control challenges for existing methods. Specifically, previous single-condition control models demonstrate effectiveness only within their specialized domains but fail to generalize to other conditions, while existing multi-condition methods often lack fine-grained control over each sub-condition and compromise overall compositional harmony. To address these limitations, we introduce CreatiDesign, a systematic solution for automated graphic design covering both model architecture and dataset construction. First, we design a unified multi-condition driven architecture that enables flexible and precise integration of heterogeneous design elements with minimal architectural modifications to the base diffusion model. Furthermore, to ensure that each condition precisely controls its designated image region and to avoid interference between conditions, we propose a multimodal attention mask mechanism. Additionally, we develop a fully automated pipeline for constructing graphic design datasets, and introduce a new dataset with 400K samples featuring multi-condition annotations, along with a comprehensive benchmark. Experimental results show that CreatiDesign outperforms existing models by a clear margin in faithfully adhering to user intent.

  • 9 authors
·
May 25

UrbanCAD: Towards Highly Controllable and Photorealistic 3D Vehicles for Urban Scene Simulation

Photorealistic 3D vehicle models with high controllability are essential for autonomous driving simulation and data augmentation. While handcrafted CAD models provide flexible controllability, free CAD libraries often lack the high-quality materials necessary for photorealistic rendering. Conversely, reconstructed 3D models offer high-fidelity rendering but lack controllability. In this work, we introduce UrbanCAD, a framework that pushes the frontier of the photorealism-controllability trade-off by generating highly controllable and photorealistic 3D vehicle digital twins from a single urban image and a collection of free 3D CAD models and handcrafted materials. These digital twins enable realistic 360-degree rendering, vehicle insertion, material transfer, relighting, and component manipulation such as opening doors and rolling down windows, supporting the construction of long-tail scenarios. To achieve this, we propose a novel pipeline that operates in a retrieval-optimization manner, adapting to observational data while preserving flexible controllability and fine-grained handcrafted details. Furthermore, given multi-view background perspective and fisheye images, we approximate environment lighting using fisheye images and reconstruct the background with 3DGS, enabling the photorealistic insertion of optimized CAD models into rendered novel view backgrounds. Experimental results demonstrate that UrbanCAD outperforms baselines based on reconstruction and retrieval in terms of photorealism. Additionally, we show that various perception models maintain their accuracy when evaluated on UrbanCAD with in-distribution configurations but degrade when applied to realistic out-of-distribution data generated by our method. This suggests that UrbanCAD is a significant advancement in creating photorealistic, safety-critical driving scenarios for downstream applications.

  • 8 authors
·
Nov 28, 2024

Symbolic Synthesis of Neural Networks

Neural networks adapt very well to distributed and continuous representations, but struggle to generalize from small amounts of data. Symbolic systems commonly achieve data efficient generalization by exploiting modularity to benefit from local and discrete features of a representation. These features allow symbolic programs to be improved one module at a time and to experience combinatorial growth in the values they can successfully process. However, it is difficult to design a component that can be used to form symbolic abstractions and which is adequately overparametrized to learn arbitrary high-dimensional transformations. I present Graph-based Symbolically Synthesized Neural Networks (G-SSNNs), a class of neural modules that operate on representations modified with synthesized symbolic programs to include a fixed set of local and discrete features. I demonstrate that the choice of injected features within a G-SSNN module modulates the data efficiency and generalization of baseline neural models, creating predictable patterns of both heightened and curtailed generalization. By training G-SSNNs, we also derive information about desirable semantics of symbolic programs without manual engineering. This information is compact and amenable to abstraction, but can also be flexibly recontextualized for other high-dimensional settings. In future work, I will investigate data efficient generalization and the transferability of learned symbolic representations in more complex G-SSNN designs based on more complex classes of symbolic programs. Experimental code and data are available at https://github.com/shlomenu/symbolically_synthesized_networks .

  • 1 authors
·
Mar 6, 2023

ShapeFusion: A 3D diffusion model for localized shape editing

In the realm of 3D computer vision, parametric models have emerged as a ground-breaking methodology for the creation of realistic and expressive 3D avatars. Traditionally, they rely on Principal Component Analysis (PCA), given its ability to decompose data to an orthonormal space that maximally captures shape variations. However, due to the orthogonality constraints and the global nature of PCA's decomposition, these models struggle to perform localized and disentangled editing of 3D shapes, which severely affects their use in applications requiring fine control such as face sculpting. In this paper, we leverage diffusion models to enable diverse and fully localized edits on 3D meshes, while completely preserving the un-edited regions. We propose an effective diffusion masking training strategy that, by design, facilitates localized manipulation of any shape region, without being limited to predefined regions or to sparse sets of predefined control vertices. Following our framework, a user can explicitly set their manipulation region of choice and define an arbitrary set of vertices as handles to edit a 3D mesh. Compared to the current state-of-the-art our method leads to more interpretable shape manipulations than methods relying on latent code state, greater localization and generation diversity while offering faster inference than optimization based approaches. Project page: https://rolpotamias.github.io/Shapefusion/

  • 4 authors
·
Mar 28, 2024

TapMo: Shape-aware Motion Generation of Skeleton-free Characters

Previous motion generation methods are limited to the pre-rigged 3D human model, hindering their applications in the animation of various non-rigged characters. In this work, we present TapMo, a Text-driven Animation Pipeline for synthesizing Motion in a broad spectrum of skeleton-free 3D characters. The pivotal innovation in TapMo is its use of shape deformation-aware features as a condition to guide the diffusion model, thereby enabling the generation of mesh-specific motions for various characters. Specifically, TapMo comprises two main components - Mesh Handle Predictor and Shape-aware Diffusion Module. Mesh Handle Predictor predicts the skinning weights and clusters mesh vertices into adaptive handles for deformation control, which eliminates the need for traditional skeletal rigging. Shape-aware Motion Diffusion synthesizes motion with mesh-specific adaptations. This module employs text-guided motions and mesh features extracted during the first stage, preserving the geometric integrity of the animations by accounting for the character's shape and deformation. Trained in a weakly-supervised manner, TapMo can accommodate a multitude of non-human meshes, both with and without associated text motions. We demonstrate the effectiveness and generalizability of TapMo through rigorous qualitative and quantitative experiments. Our results reveal that TapMo consistently outperforms existing auto-animation methods, delivering superior-quality animations for both seen or unseen heterogeneous 3D characters.

  • 7 authors
·
Oct 19, 2023

3DIS: Depth-Driven Decoupled Instance Synthesis for Text-to-Image Generation

The increasing demand for controllable outputs in text-to-image generation has spurred advancements in multi-instance generation (MIG), allowing users to define both instance layouts and attributes. However, unlike image-conditional generation methods such as ControlNet, MIG techniques have not been widely adopted in state-of-the-art models like SD2 and SDXL, primarily due to the challenge of building robust renderers that simultaneously handle instance positioning and attribute rendering. In this paper, we introduce Depth-Driven Decoupled Instance Synthesis (3DIS), a novel framework that decouples the MIG process into two stages: (i) generating a coarse scene depth map for accurate instance positioning and scene composition, and (ii) rendering fine-grained attributes using pre-trained ControlNet on any foundational model, without additional training. Our 3DIS framework integrates a custom adapter into LDM3D for precise depth-based layouts and employs a finetuning-free method for enhanced instance-level attribute rendering. Extensive experiments on COCO-Position and COCO-MIG benchmarks demonstrate that 3DIS significantly outperforms existing methods in both layout precision and attribute rendering. Notably, 3DIS offers seamless compatibility with diverse foundational models, providing a robust, adaptable solution for advanced multi-instance generation. The code is available at: https://github.com/limuloo/3DIS.

  • 4 authors
·
Oct 16, 2024

Large Language and Text-to-3D Models for Engineering Design Optimization

The current advances in generative AI for learning large neural network models with the capability to produce essays, images, music and even 3D assets from text prompts create opportunities for a manifold of disciplines. In the present paper, we study the potential of deep text-to-3D models in the engineering domain, with focus on the chances and challenges when integrating and interacting with 3D assets in computational simulation-based design optimization. In contrast to traditional design optimization of 3D geometries that often searches for the optimum designs using numerical representations, such as B-Spline surface or deformation parameters in vehicle aerodynamic optimization, natural language challenges the optimization framework by requiring a different interpretation of variation operators while at the same time may ease and motivate the human user interaction. Here, we propose and realize a fully automated evolutionary design optimization framework using Shap-E, a recently published text-to-3D asset network by OpenAI, in the context of aerodynamic vehicle optimization. For representing text prompts in the evolutionary optimization, we evaluate (a) a bag-of-words approach based on prompt templates and Wordnet samples, and (b) a tokenisation approach based on prompt templates and the byte pair encoding method from GPT4. Our main findings from the optimizations indicate that, first, it is important to ensure that the designs generated from prompts are within the object class of application, i.e. diverse and novel designs need to be realistic, and, second, that more research is required to develop methods where the strength of text prompt variations and the resulting variations of the 3D designs share causal relations to some degree to improve the optimization.

  • 3 authors
·
Jul 3, 2023

DEsignBench: Exploring and Benchmarking DALL-E 3 for Imagining Visual Design

We introduce DEsignBench, a text-to-image (T2I) generation benchmark tailored for visual design scenarios. Recent T2I models like DALL-E 3 and others, have demonstrated remarkable capabilities in generating photorealistic images that align closely with textual inputs. While the allure of creating visually captivating images is undeniable, our emphasis extends beyond mere aesthetic pleasure. We aim to investigate the potential of using these powerful models in authentic design contexts. In pursuit of this goal, we develop DEsignBench, which incorporates test samples designed to assess T2I models on both "design technical capability" and "design application scenario." Each of these two dimensions is supported by a diverse set of specific design categories. We explore DALL-E 3 together with other leading T2I models on DEsignBench, resulting in a comprehensive visual gallery for side-by-side comparisons. For DEsignBench benchmarking, we perform human evaluations on generated images in DEsignBench gallery, against the criteria of image-text alignment, visual aesthetic, and design creativity. Our evaluation also considers other specialized design capabilities, including text rendering, layout composition, color harmony, 3D design, and medium style. In addition to human evaluations, we introduce the first automatic image generation evaluator powered by GPT-4V. This evaluator provides ratings that align well with human judgments, while being easily replicable and cost-efficient. A high-resolution version is available at https://github.com/design-bench/design-bench.github.io/raw/main/designbench.pdf?download=

  • 5 authors
·
Oct 23, 2023 2

DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior

We present DreamCraft3D, a hierarchical 3D content generation method that produces high-fidelity and coherent 3D objects. We tackle the problem by leveraging a 2D reference image to guide the stages of geometry sculpting and texture boosting. A central focus of this work is to address the consistency issue that existing works encounter. To sculpt geometries that render coherently, we perform score distillation sampling via a view-dependent diffusion model. This 3D prior, alongside several training strategies, prioritizes the geometry consistency but compromises the texture fidelity. We further propose Bootstrapped Score Distillation to specifically boost the texture. We train a personalized diffusion model, Dreambooth, on the augmented renderings of the scene, imbuing it with 3D knowledge of the scene being optimized. The score distillation from this 3D-aware diffusion prior provides view-consistent guidance for the scene. Notably, through an alternating optimization of the diffusion prior and 3D scene representation, we achieve mutually reinforcing improvements: the optimized 3D scene aids in training the scene-specific diffusion model, which offers increasingly view-consistent guidance for 3D optimization. The optimization is thus bootstrapped and leads to substantial texture boosting. With tailored 3D priors throughout the hierarchical generation, DreamCraft3D generates coherent 3D objects with photorealistic renderings, advancing the state-of-the-art in 3D content generation. Code available at https://github.com/deepseek-ai/DreamCraft3D.

  • 7 authors
·
Oct 25, 2023

RAR: Region-Aware Point Cloud Registration

This paper concerns the research problem of point cloud registration to find the rigid transformation to optimally align the source point set with the target one. Learning robust point cloud registration models with deep neural networks has emerged as a powerful paradigm, offering promising performance in predicting the global geometric transformation for a pair of point sets. Existing methods firstly leverage an encoder to regress a latent shape embedding, which is then decoded into a shape-conditioned transformation via concatenation-based conditioning. However, different regions of a 3D shape vary in their geometric structures which makes it more sense that we have a region-conditioned transformation instead of the shape-conditioned one. In this paper we present a Region-Aware point cloud Registration, denoted as RAR, to predict transformation for pairwise point sets in the self-supervised learning fashion. More specifically, we develop a novel region-aware decoder (RAD) module that is formed with an implicit neural region representation parameterized by neural networks. The implicit neural region representation is learned with a self-supervised 3D shape reconstruction loss without the need for region labels. Consequently, the region-aware decoder (RAD) module guides the training of the region-aware transformation (RAT) module and region-aware weight (RAW) module, which predict the transforms and weights for different regions respectively. The global geometric transformation from source point set to target one is then formed by the weighted fusion of region-aware transforms. Compared to the state-of-the-art approaches, our experiments show that our RAR achieves superior registration performance over various benchmark datasets (e.g. ModelNet40).

  • 2 authors
·
Oct 7, 2021

Spice-E : Structural Priors in 3D Diffusion using Cross-Entity Attention

We are witnessing rapid progress in automatically generating and manipulating 3D assets due to the availability of pretrained text-image diffusion models. However, time-consuming optimization procedures are required for synthesizing each sample, hindering their potential for democratizing 3D content creation. Conversely, 3D diffusion models now train on million-scale 3D datasets, yielding high-quality text-conditional 3D samples within seconds. In this work, we present Spice-E - a neural network that adds structural guidance to 3D diffusion models, extending their usage beyond text-conditional generation. At its core, our framework introduces a cross-entity attention mechanism that allows for multiple entities (in particular, paired input and guidance 3D shapes) to interact via their internal representations within the denoising network. We utilize this mechanism for learning task-specific structural priors in 3D diffusion models from auxiliary guidance shapes. We show that our approach supports a variety of applications, including 3D stylization, semantic shape editing and text-conditional abstraction-to-3D, which transforms primitive-based abstractions into highly-expressive shapes. Extensive experiments demonstrate that Spice-E achieves SOTA performance over these tasks while often being considerably faster than alternative methods. Importantly, this is accomplished without tailoring our approach for any specific task.

  • 4 authors
·
Nov 29, 2023

MG-Verilog: Multi-grained Dataset Towards Enhanced LLM-assisted Verilog Generation

Large Language Models (LLMs) have recently shown promise in streamlining hardware design processes by encapsulating vast amounts of domain-specific data. In addition, they allow users to interact with the design processes through natural language instructions, thus making hardware design more accessible to developers. However, effectively leveraging LLMs in hardware design necessitates providing domain-specific data during inference (e.g., through in-context learning), fine-tuning, or pre-training. Unfortunately, existing publicly available hardware datasets are often limited in size, complexity, or detail, which hinders the effectiveness of LLMs in hardware design tasks. To address this issue, we first propose a set of criteria for creating high-quality hardware datasets that can effectively enhance LLM-assisted hardware design. Based on these criteria, we propose a Multi-Grained-Verilog (MG-Verilog) dataset, which encompasses descriptions at various levels of detail and corresponding code samples. To benefit the broader hardware design community, we have developed an open-source infrastructure that facilitates easy access, integration, and extension of the dataset to meet specific project needs. Furthermore, to fully exploit the potential of the MG-Verilog dataset, which varies in complexity and detail, we introduce a balanced fine-tuning scheme. This scheme serves as a unique use case to leverage the diverse levels of detail provided by the dataset. Extensive experiments demonstrate that the proposed dataset and fine-tuning scheme consistently improve the performance of LLMs in hardware design tasks.

  • 5 authors
·
Jul 1, 2024

FullPart: Generating each 3D Part at Full Resolution

Part-based 3D generation holds great potential for various applications. Previous part generators that represent parts using implicit vector-set tokens often suffer from insufficient geometric details. Another line of work adopts an explicit voxel representation but shares a global voxel grid among all parts; this often causes small parts to occupy too few voxels, leading to degraded quality. In this paper, we propose FullPart, a novel framework that combines both implicit and explicit paradigms. It first derives the bounding box layout through an implicit box vector-set diffusion process, a task that implicit diffusion handles effectively since box tokens contain little geometric detail. Then, it generates detailed parts, each within its own fixed full-resolution voxel grid. Instead of sharing a global low-resolution space, each part in our method - even small ones - is generated at full resolution, enabling the synthesis of intricate details. We further introduce a center-point encoding strategy to address the misalignment issue when exchanging information between parts of different actual sizes, thereby maintaining global coherence. Moreover, to tackle the scarcity of reliable part data, we present PartVerse-XL, the largest human-annotated 3D part dataset to date with 40K objects and 320K parts. Extensive experiments demonstrate that FullPart achieves state-of-the-art results in 3D part generation. We will release all code, data, and model to benefit future research in 3D part generation.

From Elements to Design: A Layered Approach for Automatic Graphic Design Composition

In this work, we investigate automatic design composition from multimodal graphic elements. Although recent studies have developed various generative models for graphic design, they usually face the following limitations: they only focus on certain subtasks and are far from achieving the design composition task; they do not consider the hierarchical information of graphic designs during the generation process. To tackle these issues, we introduce the layered design principle into Large Multimodal Models (LMMs) and propose a novel approach, called LaDeCo, to accomplish this challenging task. Specifically, LaDeCo first performs layer planning for a given element set, dividing the input elements into different semantic layers according to their contents. Based on the planning results, it subsequently predicts element attributes that control the design composition in a layer-wise manner, and includes the rendered image of previously generated layers into the context. With this insightful design, LaDeCo decomposes the difficult task into smaller manageable steps, making the generation process smoother and clearer. The experimental results demonstrate the effectiveness of LaDeCo in design composition. Furthermore, we show that LaDeCo enables some interesting applications in graphic design, such as resolution adjustment, element filling, design variation, etc. In addition, it even outperforms the specialized models in some design subtasks without any task-specific training.

  • 6 authors
·
Dec 27, 2024 2

Layout-Corrector: Alleviating Layout Sticking Phenomenon in Discrete Diffusion Model

Layout generation is a task to synthesize a harmonious layout with elements characterized by attributes such as category, position, and size. Human designers experiment with the placement and modification of elements to create aesthetic layouts, however, we observed that current discrete diffusion models (DDMs) struggle to correct inharmonious layouts after they have been generated. In this paper, we first provide novel insights into layout sticking phenomenon in DDMs and then propose a simple yet effective layout-assessment module Layout-Corrector, which works in conjunction with existing DDMs to address the layout sticking problem. We present a learning-based module capable of identifying inharmonious elements within layouts, considering overall layout harmony characterized by complex composition. During the generation process, Layout-Corrector evaluates the correctness of each token in the generated layout, reinitializing those with low scores to the ungenerated state. The DDM then uses the high-scored tokens as clues to regenerate the harmonized tokens. Layout-Corrector, tested on common benchmarks, consistently boosts layout-generation performance when in conjunction with various state-of-the-art DDMs. Furthermore, our extensive analysis demonstrates that the Layout-Corrector (1) successfully identifies erroneous tokens, (2) facilitates control over the fidelity-diversity trade-off, and (3) significantly mitigates the performance drop associated with fast sampling.

  • 4 authors
·
Sep 25, 2024

VideoFrom3D: 3D Scene Video Generation via Complementary Image and Video Diffusion Models

In this paper, we propose VideoFrom3D, a novel framework for synthesizing high-quality 3D scene videos from coarse geometry, a camera trajectory, and a reference image. Our approach streamlines the 3D graphic design workflow, enabling flexible design exploration and rapid production of deliverables. A straightforward approach to synthesizing a video from coarse geometry might condition a video diffusion model on geometric structure. However, existing video diffusion models struggle to generate high-fidelity results for complex scenes due to the difficulty of jointly modeling visual quality, motion, and temporal consistency. To address this, we propose a generative framework that leverages the complementary strengths of image and video diffusion models. Specifically, our framework consists of a Sparse Anchor-view Generation (SAG) and a Geometry-guided Generative Inbetweening (GGI) module. The SAG module generates high-quality, cross-view consistent anchor views using an image diffusion model, aided by Sparse Appearance-guided Sampling. Building on these anchor views, GGI module faithfully interpolates intermediate frames using a video diffusion model, enhanced by flow-based camera control and structural guidance. Notably, both modules operate without any paired dataset of 3D scene models and natural images, which is extremely difficult to obtain. Comprehensive experiments show that our method produces high-quality, style-consistent scene videos under diverse and challenging scenarios, outperforming simple and extended baselines.

  • 3 authors
·
Sep 22 2

Nautilus: Locality-aware Autoencoder for Scalable Mesh Generation

Triangle meshes are fundamental to 3D applications, enabling efficient modification and rasterization while maintaining compatibility with standard rendering pipelines. However, current automatic mesh generation methods typically rely on intermediate representations that lack the continuous surface quality inherent to meshes. Converting these representations into meshes produces dense, suboptimal outputs. Although recent autoregressive approaches demonstrate promise in directly modeling mesh vertices and faces, they are constrained by the limitation in face count, scalability, and structural fidelity. To address these challenges, we propose Nautilus, a locality-aware autoencoder for artist-like mesh generation that leverages the local properties of manifold meshes to achieve structural fidelity and efficient representation. Our approach introduces a novel tokenization algorithm that preserves face proximity relationships and compresses sequence length through locally shared vertices and edges, enabling the generation of meshes with an unprecedented scale of up to 5,000 faces. Furthermore, we develop a Dual-stream Point Conditioner that provides multi-scale geometric guidance, ensuring global consistency and local structural fidelity by capturing fine-grained geometric features. Extensive experiments demonstrate that Nautilus significantly outperforms state-of-the-art methods in both fidelity and scalability. The project page is at https://nautilusmeshgen.github.io.

  • 9 authors
·
Jan 24

Interactive3D: Create What You Want by Interactive 3D Generation

3D object generation has undergone significant advancements, yielding high-quality results. However, fall short of achieving precise user control, often yielding results that do not align with user expectations, thus limiting their applicability. User-envisioning 3D object generation faces significant challenges in realizing its concepts using current generative models due to limited interaction capabilities. Existing methods mainly offer two approaches: (i) interpreting textual instructions with constrained controllability, or (ii) reconstructing 3D objects from 2D images. Both of them limit customization to the confines of the 2D reference and potentially introduce undesirable artifacts during the 3D lifting process, restricting the scope for direct and versatile 3D modifications. In this work, we introduce Interactive3D, an innovative framework for interactive 3D generation that grants users precise control over the generative process through extensive 3D interaction capabilities. Interactive3D is constructed in two cascading stages, utilizing distinct 3D representations. The first stage employs Gaussian Splatting for direct user interaction, allowing modifications and guidance of the generative direction at any intermediate step through (i) Adding and Removing components, (ii) Deformable and Rigid Dragging, (iii) Geometric Transformations, and (iv) Semantic Editing. Subsequently, the Gaussian splats are transformed into InstantNGP. We introduce a novel (v) Interactive Hash Refinement module to further add details and extract the geometry in the second stage. Our experiments demonstrate that Interactive3D markedly improves the controllability and quality of 3D generation. Our project webpage is available at https://interactive-3d.github.io/.

  • 6 authors
·
Apr 25, 2024 1

Hierarchical and Modular Network on Non-prehensile Manipulation in General Environments

For robots to operate in general environments like households, they must be able to perform non-prehensile manipulation actions such as toppling and rolling to manipulate ungraspable objects. However, prior works on non-prehensile manipulation cannot yet generalize across environments with diverse geometries. The main challenge lies in adapting to varying environmental constraints: within a cabinet, the robot must avoid walls and ceilings; to lift objects to the top of a step, the robot must account for the step's pose and extent. While deep reinforcement learning (RL) has demonstrated impressive success in non-prehensile manipulation, accounting for such variability presents a challenge for the generalist policy, as it must learn diverse strategies for each new combination of constraints. To address this, we propose a modular and reconfigurable architecture that adaptively reconfigures network modules based on task requirements. To capture the geometric variability in environments, we extend the contact-based object representation (CORN) to environment geometries, and propose a procedural algorithm for generating diverse environments to train our agent. Taken together, the resulting policy can zero-shot transfer to novel real-world environments and objects despite training entirely within a simulator. We additionally release a simulation-based benchmark featuring nine digital twins of real-world scenes with 353 objects to facilitate non-prehensile manipulation research in realistic domains.

  • 4 authors
·
Feb 28

EngiBench: A Framework for Data-Driven Engineering Design Research

Engineering design optimization seeks to automatically determine the shapes, topologies, or parameters of components that maximize performance under given conditions. This process often depends on physics-based simulations, which are difficult to install, computationally expensive, and require domain-specific expertise. To mitigate these challenges, we introduce EngiBench, the first open-source library and datasets spanning diverse domains for data-driven engineering design. EngiBench provides a unified API and a curated set of benchmarks -- covering aeronautics, heat conduction, photonics, and more -- that enable fair, reproducible comparisons of optimization and machine learning algorithms, such as generative or surrogate models. We also release EngiOpt, a companion library offering a collection of such algorithms compatible with the EngiBench interface. Both libraries are modular, letting users plug in novel algorithms or problems, automate end-to-end experiment workflows, and leverage built-in utilities for visualization, dataset generation, feasibility checks, and performance analysis. We demonstrate their versatility through experiments comparing state-of-the-art techniques across multiple engineering design problems, an undertaking that was previously prohibitively time-consuming to perform. Finally, we show that these problems pose significant challenges for standard machine learning methods due to highly sensitive and constrained design manifolds.

ComplexVCoder: An LLM-Driven Framework for Systematic Generation of Complex Verilog Code

Recent advances have demonstrated the promising capabilities of large language models (LLMs) in generating register-transfer level (RTL) code, such as Verilog. However, existing LLM-based frameworks still face significant challenges in accurately handling the complexity of real-world RTL designs, particularly those that are large-scale and involve multi-level module instantiations. To address this issue, we present ComplexVCoder, an open-source LLM-driven framework that enhances both the generation quality and efficiency of complex Verilog code. Specifically, we introduce a two-stage generation mechanism, which leverages an intermediate representation to enable a more accurate and structured transition from natural language descriptions to intricate Verilog designs. In addition, we introduce a rule-based alignment method and a domain-specific retrieval-augmented generation (RAG) to further improve the correctness of the synthesized code by incorporating relevant design knowledge during generation. To evaluate our approach, we construct a comprehensive dataset comprising 55 complex Verilog designs derived from real-world implementations. We also release an open-source benchmark suite for systematically assessing the quality of auto-generated RTL code together with the ComplexVCoder framework. Experimental results show that ComplexVCoder outperforms SOTA frameworks such as CodeV and RTLCoder by 14.6% and 22.2%, respectively, in terms of function correctness on complex Verilog benchmarks. Furthermore, ComplexVcoder achieves comparable generation performances in terms of functionality correctness using a lightweight 32B model (Qwen2.5), rivaling larger-scale models such as GPT-3.5 and DeepSeek-V3.

  • 10 authors
·
Apr 29

PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM

Layout generation is the keystone in achieving automated graphic design, requiring arranging the position and size of various multi-modal design elements in a visually pleasing and constraint-following manner. Previous approaches are either inefficient for large-scale applications or lack flexibility for varying design requirements. Our research introduces a unified framework for automated graphic layout generation, leveraging the multi-modal large language model (MLLM) to accommodate diverse design tasks. In contrast, our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts under specific visual and textual constraints, including user-defined natural language specifications. We conducted extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks, demonstrating the effectiveness of our method. Moreover, recognizing existing datasets' limitations in capturing the complexity of real-world graphic designs, we propose two new datasets for much more challenging tasks (user-constrained generation and complicated poster), further validating our model's utility in real-life settings. Marking by its superior accessibility and adaptability, this approach further automates large-scale graphic design tasks. The code and datasets will be publicly available on https://github.com/posterllava/PosterLLaVA.

  • 6 authors
·
Jun 4, 2024 2

eFlesh: Highly customizable Magnetic Touch Sensing using Cut-Cell Microstructures

If human experience is any guide, operating effectively in unstructured environments -- like homes and offices -- requires robots to sense the forces during physical interaction. Yet, the lack of a versatile, accessible, and easily customizable tactile sensor has led to fragmented, sensor-specific solutions in robotic manipulation -- and in many cases, to force-unaware, sensorless approaches. With eFlesh, we bridge this gap by introducing a magnetic tactile sensor that is low-cost, easy to fabricate, and highly customizable. Building an eFlesh sensor requires only four components: a hobbyist 3D printer, off-the-shelf magnets (<$5), a CAD model of the desired shape, and a magnetometer circuit board. The sensor is constructed from tiled, parameterized microstructures, which allow for tuning the sensor's geometry and its mechanical response. We provide an open-source design tool that converts convex OBJ/STL files into 3D-printable STLs for fabrication. This modular design framework enables users to create application-specific sensors, and to adjust sensitivity depending on the task. Our sensor characterization experiments demonstrate the capabilities of eFlesh: contact localization RMSE of 0.5 mm, and force prediction RMSE of 0.27 N for normal force and 0.12 N for shear force. We also present a learned slip detection model that generalizes to unseen objects with 95% accuracy, and visuotactile control policies that improve manipulation performance by 40% over vision-only baselines -- achieving 91% average success rate for four precise tasks that require sub-mm accuracy for successful completion. All design files, code and the CAD-to-eFlesh STL conversion tool are open-sourced and available on https://e-flesh.com.

  • 6 authors
·
Jun 11

CellForge: Agentic Design of Virtual Cell Models

Virtual cell modeling represents an emerging frontier at the intersection of artificial intelligence and biology, aiming to predict quantities such as responses to diverse perturbations quantitatively. However, autonomously building computational models for virtual cells is challenging due to the complexity of biological systems, the heterogeneity of data modalities, and the need for domain-specific expertise across multiple disciplines. Here, we introduce CellForge, an agentic system that leverages a multi-agent framework that transforms presented biological datasets and research objectives directly into optimized computational models for virtual cells. More specifically, given only raw single-cell multi-omics data and task descriptions as input, CellForge outputs both an optimized model architecture and executable code for training virtual cell models and inference. The framework integrates three core modules: Task Analysis for presented dataset characterization and relevant literature retrieval, Method Design, where specialized agents collaboratively develop optimized modeling strategies, and Experiment Execution for automated generation of code. The agents in the Design module are separated into experts with differing perspectives and a central moderator, and have to collaboratively exchange solutions until they achieve a reasonable consensus. We demonstrate CellForge's capabilities in single-cell perturbation prediction, using six diverse datasets that encompass gene knockouts, drug treatments, and cytokine stimulations across multiple modalities. CellForge consistently outperforms task-specific state-of-the-art methods. Overall, CellForge demonstrates how iterative interaction between LLM agents with differing perspectives provides better solutions than directly addressing a modeling challenge. Our code is publicly available at https://github.com/gersteinlab/CellForge.

ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design

Machine learning is a prevalent approach to tame the complexity of design space exploration for domain-specific architectures. Using ML for design space exploration poses challenges. First, it's not straightforward to identify the suitable algorithm from an increasing pool of ML methods. Second, assessing the trade-offs between performance and sample efficiency across these methods is inconclusive. Finally, lack of a holistic framework for fair, reproducible, and objective comparison across these methods hinders progress of adopting ML-aided architecture design space exploration and impedes creating repeatable artifacts. To mitigate these challenges, we introduce ArchGym, an open-source gym and easy-to-extend framework that connects diverse search algorithms to architecture simulators. To demonstrate utility, we evaluate ArchGym across multiple vanilla and domain-specific search algorithms in designing custom memory controller, deep neural network accelerators, and custom SoC for AR/VR workloads, encompassing over 21K experiments. Results suggest that with unlimited samples, ML algorithms are equally favorable to meet user-defined target specification if hyperparameters are tuned; no solution is necessarily better than another (e.g., reinforcement learning vs. Bayesian methods). We coin the term hyperparameter lottery to describe the chance for a search algorithm to find an optimal design provided meticulously selected hyperparameters. The ease of data collection and aggregation in ArchGym facilitates research in ML-aided architecture design space exploration. As a case study, we show this advantage by developing a proxy cost model with an RMSE of 0.61% that offers a 2,000-fold reduction in simulation time. Code and data for ArchGym is available at https://bit.ly/ArchGym.

  • 11 authors
·
Jun 15, 2023