new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 5

EgyBERT: A Large Language Model Pretrained on Egyptian Dialect Corpora

This study presents EgyBERT, an Arabic language model pretrained on 10.4 GB of Egyptian dialectal texts. We evaluated EgyBERT's performance by comparing it with five other multidialect Arabic language models across 10 evaluation datasets. EgyBERT achieved the highest average F1-score of 84.25% and an accuracy of 87.33%, significantly outperforming all other comparative models, with MARBERTv2 as the second best model achieving an F1-score 83.68% and an accuracy 87.19%. Additionally, we introduce two novel Egyptian dialectal corpora: the Egyptian Tweets Corpus (ETC), containing over 34.33 million tweets (24.89 million sentences) amounting to 2.5 GB of text, and the Egyptian Forums Corpus (EFC), comprising over 44.42 million sentences (7.9 GB of text) collected from various Egyptian online forums. Both corpora are used in pretraining the new model, and they are the largest Egyptian dialectal corpora to date reported in the literature. Furthermore, this is the first study to evaluate the performance of various language models on Egyptian dialect datasets, revealing significant differences in performance that highlight the need for more dialect-specific models. The results confirm the effectiveness of EgyBERT model in processing and analyzing Arabic text expressed in Egyptian dialect, surpassing other language models included in the study. EgyBERT model is publicly available on https://huggingface.co/faisalq/EgyBERT.

  • 1 authors
·
Aug 6, 2024

ArabianGPT: Native Arabic GPT-based Large Language Model

The predominance of English and Latin-based large language models (LLMs) has led to a notable deficit in native Arabic LLMs. This discrepancy is accentuated by the prevalent inclusion of English tokens in existing Arabic models, detracting from their efficacy in processing native Arabic's intricate morphology and syntax. Consequently, there is a theoretical and practical imperative for developing LLMs predominantly focused on Arabic linguistic elements. To address this gap, this paper proposes ArabianGPT, a series of transformer-based models within the ArabianLLM suite designed explicitly for Arabic. These models, including ArabianGPT-0.1B and ArabianGPT-0.3B, vary in size and complexity, aligning with the nuanced linguistic characteristics of Arabic. The AraNizer tokenizer, integral to these models, addresses the unique morphological aspects of Arabic script, ensuring more accurate text processing. Empirical results from fine-tuning the models on tasks like sentiment analysis and summarization demonstrate significant improvements. For sentiment analysis, the fine-tuned ArabianGPT-0.1B model achieved a remarkable accuracy of 95%, a substantial increase from the base model's 56%. Similarly, in summarization tasks, fine-tuned models showed enhanced F1 scores, indicating improved precision and recall in generating concise summaries. Comparative analysis of fine-tuned ArabianGPT models against their base versions across various benchmarks reveals nuanced differences in performance, with fine-tuning positively impacting specific tasks like question answering and summarization. These findings underscore the efficacy of fine-tuning in aligning ArabianGPT models more closely with specific NLP tasks, highlighting the potential of tailored transformer architectures in advancing Arabic NLP.

  • 5 authors
·
Feb 23, 2024

Revisiting Pre-trained Language Models and their Evaluation for Arabic Natural Language Understanding

There is a growing body of work in recent years to develop pre-trained language models (PLMs) for the Arabic language. This work concerns addressing two major problems in existing Arabic PLMs which constraint progress of the Arabic NLU and NLG fields.First, existing Arabic PLMs are not well-explored and their pre-trainig can be improved significantly using a more methodical approach. Second, there is a lack of systematic and reproducible evaluation of these models in the literature. In this work, we revisit both the pre-training and evaluation of Arabic PLMs. In terms of pre-training, we explore improving Arabic LMs from three perspectives: quality of the pre-training data, size of the model, and incorporating character-level information. As a result, we release three new Arabic BERT-style models ( JABER, Char-JABER, and SABER), and two T5-style models (AT5S and AT5B). In terms of evaluation, we conduct a comprehensive empirical study to systematically evaluate the performance of existing state-of-the-art models on ALUE that is a leaderboard-powered benchmark for Arabic NLU tasks, and on a subset of the ARGEN benchmark for Arabic NLG tasks. We show that our models significantly outperform existing Arabic PLMs and achieve a new state-of-the-art performance on discriminative and generative Arabic NLU and NLG tasks. Our models and source code to reproduce of results will be made available shortly.

  • 14 authors
·
May 21, 2022

AutoArabic: A Three-Stage Framework for Localizing Video-Text Retrieval Benchmarks

Video-to-text and text-to-video retrieval are dominated by English benchmarks (e.g. DiDeMo, MSR-VTT) and recent multilingual corpora (e.g. RUDDER), yet Arabic remains underserved, lacking localized evaluation metrics. We introduce a three-stage framework, AutoArabic, utilizing state-of-the-art large language models (LLMs) to translate non-Arabic benchmarks into Modern Standard Arabic, reducing the manual revision required by nearly fourfold. The framework incorporates an error detection module that automatically flags potential translation errors with 97% accuracy. Applying the framework to DiDeMo, a video retrieval benchmark produces DiDeMo-AR, an Arabic variant with 40,144 fluent Arabic descriptions. An analysis of the translation errors is provided and organized into an insightful taxonomy to guide future Arabic localization efforts. We train a CLIP-style baseline with identical hyperparameters on the Arabic and English variants of the benchmark, finding a moderate performance gap (about 3 percentage points at Recall@1), indicating that Arabic localization preserves benchmark difficulty. We evaluate three post-editing budgets (zero/ flagged-only/ full) and find that performance improves monotonically with more post-editing, while the raw LLM output (zero-budget) remains usable. To ensure reproducibility to other languages, we made the code available at https://github.com/Tahaalshatiri/AutoArabic.

  • 7 authors
·
Sep 19

AraPoemBERT: A Pretrained Language Model for Arabic Poetry Analysis

Arabic poetry, with its rich linguistic features and profound cultural significance, presents a unique challenge to the Natural Language Processing (NLP) field. The complexity of its structure and context necessitates advanced computational models for accurate analysis. In this paper, we introduce AraPoemBERT, an Arabic language model pretrained exclusively on Arabic poetry text. To demonstrate the effectiveness of the proposed model, we compared AraPoemBERT with 5 different Arabic language models on various NLP tasks related to Arabic poetry. The new model outperformed all other models and achieved state-of-the-art results in most of the downstream tasks. AraPoemBERT achieved unprecedented accuracy in two out of three novel tasks: poet's gender classification (99.34\% accuracy), and poetry sub-meter classification (97.79\% accuracy). In addition, the model achieved an accuracy score in poems' rhyme classification (97.73\% accuracy) which is almost equivalent to the best score reported in this study. Moreover, the proposed model significantly outperformed previous work and other comparative models in the tasks of poems' sentiment analysis, achieving an accuracy of 78.95\%, and poetry meter classification (99.03\% accuracy), while significantly expanding the scope of these two problems. The dataset used in this study, contains more than 2.09 million verses collected from online sources, each associated with various attributes such as meter, sub-meter, poet, rhyme, and topic. The results demonstrate the effectiveness of the proposed model in understanding and analyzing Arabic poetry, achieving state-of-the-art results in several tasks and outperforming previous works and other language models included in the study. AraPoemBERT model is publicly available on https://huggingface.co/faisalq.

  • 1 authors
·
Mar 18, 2024

101 Billion Arabic Words Dataset

In recent years, Large Language Models have revolutionized the field of natural language processing, showcasing an impressive rise predominantly in English-centric domains. These advancements have set a global benchmark, inspiring significant efforts toward developing Arabic LLMs capable of understanding and generating the Arabic language with remarkable accuracy. Despite these advancements, a critical challenge persists: the potential bias in Arabic LLMs, primarily attributed to their reliance on datasets comprising English data that has been translated into Arabic. This reliance not only compromises the authenticity of the generated content but also reflects a broader issue -the scarcity of original quality Arabic linguistic data. This study aims to address the data scarcity in the Arab world and to encourage the development of Arabic Language Models that are true to both the linguistic and nuances of the region. We undertook a large-scale data mining project, extracting a substantial volume of text from the Common Crawl WET files, specifically targeting Arabic content. The extracted data underwent a rigorous cleaning and deduplication process, using innovative techniques to ensure the integrity and uniqueness of the dataset. The result is the 101 Billion Arabic Words Dataset, the largest Arabic dataset available to date, which can significantly contribute to the development of authentic Arabic LLMs. This study not only highlights the potential for creating linguistically and culturally accurate Arabic LLMs but also sets a precedent for future research in enhancing the authenticity of Arabic language models.

  • 5 authors
·
Apr 29, 2024

UI-Level Evaluation of ALLaM 34B: Measuring an Arabic-Centric LLM via HUMAIN Chat

Large language models (LLMs) trained primarily on English corpora often struggle to capture the linguistic and cultural nuances of Arabic. To address this gap, the Saudi Data and AI Authority (SDAIA) introduced the ALLaM family of Arabic-focused models. The most capable of these available to the public, ALLaM-34B, was subsequently adopted by HUMAIN, who developed and deployed HUMAIN Chat, a closed conversational web service built on this model. This paper presents an expanded and refined UI-level evaluation of ALLaM-34B. Using a prompt pack spanning modern standard Arabic, five regional dialects, code-switching, factual knowledge, arithmetic and temporal reasoning, creative generation, and adversarial safety, we collected 115 outputs (23 prompts times 5 runs) and scored each with three frontier LLM judges (GPT-5, Gemini 2.5 Pro, Claude Sonnet-4). We compute category-level means with 95\% confidence intervals, analyze score distributions, and visualize dialect-wise metric heat maps. The updated analysis reveals consistently high performance on generation and code-switching tasks (both averaging 4.92/5), alongside strong results in MSA handling (4.74/5), solid reasoning ability (4.64/5), and improved dialect fidelity (4.21/5). Safety-related prompts show stable, reliable performance of (4.54/5). Taken together, these results position ALLaM-34B as a robust and culturally grounded Arabic LLM, demonstrating both technical strength and practical readiness for real-world deployment.

  • 1 authors
·
Aug 24 2