- Orthogonal Fold & Cut We characterize the cut patterns that can be produced by "orthogonal fold & cut": folding an axis-aligned rectangular sheet of paper along horizontal and vertical creases, and then making a single straight cut (at any angle). Along the way, we solve a handful of related problems: orthogonal fold & punch, 1D fold & cut, signed 1D fold & cut, and 1D interval fold & cut. 7 authors · Feb 2, 2022
- CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation Segmenting medical images is critical to facilitating both patient diagnoses and quantitative research. A major limiting factor is the lack of labeled data, as obtaining expert annotations for each new set of imaging data and task can be labor intensive and inconsistent among annotators. We present CUTS, an unsupervised deep learning framework for medical image segmentation. CUTS operates in two stages. For each image, it produces an embedding map via intra-image contrastive learning and local patch reconstruction. Then, these embeddings are partitioned at dynamic granularity levels that correspond to the data topology. CUTS yields a series of coarse-to-fine-grained segmentations that highlight features at various granularities. We applied CUTS to retinal fundus images and two types of brain MRI images to delineate structures and patterns at different scales. When evaluated against predefined anatomical masks, CUTS improved the dice coefficient and Hausdorff distance by at least 10% compared to existing unsupervised methods. Finally, CUTS showed performance on par with Segment Anything Models (SAM, MedSAM, SAM-Med2D) pre-trained on gigantic labeled datasets. 9 authors · Sep 22, 2022
- Homogenization framework for rigid and non-rigid foldable origami metamaterials Origami metamaterials typically consist of folded sheets with periodic patterns, conferring them with remarkable mechanical properties. In the context of Continuum Mechanics, the majority of existing predictive methods are mechanism analogs which favor rigid folding and panel bending. While effective in predicting primary deformation modes, existing methods fall short in capturing the full spectrum of deformation of non-rigid foldable origami, such as the emergence of curvature along straight creases, local strain at vertices and warpage in panels. To fully capture the entire deformation spectrum and enhance the accuracy of existing methods, this paper introduces a homogenization framework for origami metamaterials where the faces are modeled as plate elements. Both asymptotic and energy-based homogenization methods are formulated and implemented. As a representative crease pattern, we examine the Miura origami sheet homogenized as an equivalent Kirchhoff-Love plate. The results reveal that certain effective elastic properties are nonlinearly related to both the initial fold angle and the crease stiffness. When benchmarked with results from fully resolved simulations, our framework yields errors up to 12.9\%, while existing models, including the bar-and-hinge model and the rigid-panel model, show up to 161\% error. The differences in errors are associated with the complex modes of crease and panel deformation in non-rigid origami, unexplored by the existing models. This work demonstrates a precise and efficient continuum framework for origami metamaterials as an effective strategy for predicting their elastic properties, understanding their mechanics, and designing their functionalities. 4 authors · Aug 22