The Monado SLAM Dataset for Egocentric Visual-Inertial Tracking
Abstract
The Monado SLAM dataset addresses challenges in VIO and SLAM by providing real sequences from VR headsets, enhancing research in tracking systems.
Humanoid robots and mixed reality headsets benefit from the use of head-mounted sensors for tracking. While advancements in visual-inertial odometry (VIO) and simultaneous localization and mapping (SLAM) have produced new and high-quality state-of-the-art tracking systems, we show that these are still unable to gracefully handle many of the challenging settings presented in the head-mounted use cases. Common scenarios like high-intensity motions, dynamic occlusions, long tracking sessions, low-textured areas, adverse lighting conditions, saturation of sensors, to name a few, continue to be covered poorly by existing datasets in the literature. In this way, systems may inadvertently overlook these essential real-world issues. To address this, we present the Monado SLAM dataset, a set of real sequences taken from multiple virtual reality headsets. We release the dataset under a permissive CC BY 4.0 license, to drive advancements in VIO/SLAM research and development.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper