EMC2-Net: Joint Equalization and Modulation Classification based on Constellation Network
Abstract
A novel modulation classification technique, EMC2-Net, uses constellation points directly and employs a three-phase training and noise-curriculum pretraining to achieve state-of-the-art performance with reduced complexity.
Modulation classification (MC) is the first step performed at the receiver side unless the modulation type is explicitly indicated by the transmitter. Machine learning techniques have been widely used for MC recently. In this paper, we propose a novel MC technique dubbed as Joint Equalization and Modulation Classification based on Constellation Network (EMC2-Net). Unlike prior works that considered the constellation points as an image, the proposed EMC2-Net directly uses a set of 2D constellation points to perform MC. In order to obtain clear and concrete constellation despite multipath fading channels, the proposed EMC2-Net consists of equalizer and classifier having separate and explainable roles via novel three-phase training and noise-curriculum pretraining. Numerical results with linear modulation types under different channel models show that the proposed EMC2-Net achieves the performance of state-of-the-art MC techniques with significantly less complexity.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper