Upload 2 files
Browse files- configuration_hiera.py +140 -0
- modeling_hiera.py +1086 -0
configuration_hiera.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" Hiera model configuration"""
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
|
| 5 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 6 |
+
from transformers.utils import logging
|
| 7 |
+
|
| 8 |
+
logger = logging.get_logger(__name__)
|
| 9 |
+
|
| 10 |
+
# HIERA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 11 |
+
# "hoge/hoge": ("/config.json"),
|
| 12 |
+
# }
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class HieraConfig(PretrainedConfig):
|
| 16 |
+
r"""
|
| 17 |
+
This is the configuration class to store the configuration of a [`HieraModel`]. It is used to instantiate a Hiera
|
| 18 |
+
model according to the specified arguments, defining the model architecture. Instantiating a
|
| 19 |
+
configuration with the defaults will yield a similar configuration to that of the Hiera
|
| 20 |
+
[/]()
|
| 21 |
+
architecture.
|
| 22 |
+
|
| 23 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 24 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 28 |
+
The size (resolution) of each image.
|
| 29 |
+
patch_size (`list(int)`, *optional*, defaults to [7, 7]):
|
| 30 |
+
The size (resolution) of each patch.
|
| 31 |
+
stride_size (`list(int)`, *optional*, defaults to [4, 4]):
|
| 32 |
+
The size (resolution) of each stride.
|
| 33 |
+
padding_size (`list(int)`, *optional*, defaults to [3, 3]):
|
| 34 |
+
The size (resolution) of each padding.
|
| 35 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 36 |
+
The number of input channels.
|
| 37 |
+
embed_dim (`int`, *optional*, defaults to 96):
|
| 38 |
+
Dimensionality of patch embedding.
|
| 39 |
+
depths (`list(int)`, *optional*, defaults to `[2, 3, 16, 3]`):
|
| 40 |
+
Depth of each layer in the Transformer encoder.
|
| 41 |
+
num_heads (`list(int)`, *optional*, defaults to `[1, 2, 4, 8]`):
|
| 42 |
+
Number of attention heads in each layer of the Transformer encoder.
|
| 43 |
+
q_pool (`int`, *optional*, defaults to 3):
|
| 44 |
+
Number of q_pool stages.
|
| 45 |
+
q_stride (`list(int)`, *optional*, defaults to [2, 2]):
|
| 46 |
+
Size of stride of q_pool,
|
| 47 |
+
mask_unit_size (`list(int)`, *optional*, defaults to [8, 8]):
|
| 48 |
+
Size of mask unit in attention.
|
| 49 |
+
mask_unit_attention (`list(bool)`, *optional*, defaults to [True, True, False, False]):
|
| 50 |
+
Whether or not to enable mask unit attention in each stage.
|
| 51 |
+
separate_positional_embeds (`bool`, *optional*, defaults to False):
|
| 52 |
+
Whether or not to use separeted positional embeddings.
|
| 53 |
+
mlp_ratio (`float`, *optional*, defaults to 4.0):
|
| 54 |
+
Ratio of MLP hidden dimensionality to embedding dimensionality.
|
| 55 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
| 56 |
+
Stochastic depth rate.
|
| 57 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
| 58 |
+
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
|
| 59 |
+
`"selu"` and `"gelu_new"` are supported.
|
| 60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 61 |
+
The epsilon used by the layer normalization layers.
|
| 62 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
| 63 |
+
The dropout probability for all fully connected layers in the embeddings and encoder.
|
| 64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 66 |
+
initializer_bias (`float`, *optional*, defaults to 0.02):
|
| 67 |
+
The standard deviation of the truncated_normal_initializer for initializing all bias matrices.
|
| 68 |
+
|
| 69 |
+
Example:
|
| 70 |
+
|
| 71 |
+
```python
|
| 72 |
+
>>> from transformers import HieraConfig, HieraModel
|
| 73 |
+
|
| 74 |
+
>>> # Initializing a Hiera / style configuration
|
| 75 |
+
>>> configuration = HieraConfig()
|
| 76 |
+
|
| 77 |
+
>>> # Initializing a model (with random weights) from the / style configuration
|
| 78 |
+
>>> model = HieraModel(configuration)
|
| 79 |
+
|
| 80 |
+
>>> # Accessing the model configuration
|
| 81 |
+
>>> configuration = model.config
|
| 82 |
+
```"""
|
| 83 |
+
|
| 84 |
+
model_type = "hiera"
|
| 85 |
+
|
| 86 |
+
attribute_map = {}
|
| 87 |
+
|
| 88 |
+
def __init__(
|
| 89 |
+
self,
|
| 90 |
+
image_size=224,
|
| 91 |
+
patch_size=[7, 7],
|
| 92 |
+
stride_size=[4, 4],
|
| 93 |
+
padding_size=[3, 3],
|
| 94 |
+
num_channels=3,
|
| 95 |
+
embed_dim=96,
|
| 96 |
+
depths=[2, 3, 16, 3],
|
| 97 |
+
num_heads=[1, 2, 4, 8],
|
| 98 |
+
q_pool=3, # number of q_pool stages
|
| 99 |
+
q_stride=[2, 2],
|
| 100 |
+
mask_unit_size=[8, 8],
|
| 101 |
+
mask_unit_attention=[True, True, False, False],
|
| 102 |
+
separate_positional_embeds=False,
|
| 103 |
+
mlp_ratio=4.0,
|
| 104 |
+
drop_path_rate=0.0,
|
| 105 |
+
hidden_act="gelu",
|
| 106 |
+
layer_norm_eps=1e-6,
|
| 107 |
+
hidden_dropout_prob=0.0,
|
| 108 |
+
initializer_range=0.02,
|
| 109 |
+
initializer_bias=0.02,
|
| 110 |
+
**kwargs,
|
| 111 |
+
):
|
| 112 |
+
super().__init__(**kwargs)
|
| 113 |
+
|
| 114 |
+
self.image_size = image_size
|
| 115 |
+
self.patch_size = patch_size
|
| 116 |
+
self.stride_size = stride_size
|
| 117 |
+
self.padding_size = padding_size
|
| 118 |
+
self.num_channels = num_channels
|
| 119 |
+
self.embed_dim = embed_dim
|
| 120 |
+
self.depths = depths
|
| 121 |
+
self.num_layers = len(depths)
|
| 122 |
+
self.num_heads = num_heads
|
| 123 |
+
self.mlp_ratio = mlp_ratio
|
| 124 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 125 |
+
self.drop_path_rate = drop_path_rate
|
| 126 |
+
self.hidden_act = hidden_act
|
| 127 |
+
self.layer_norm_eps = layer_norm_eps
|
| 128 |
+
|
| 129 |
+
assert q_pool < len(depths), "q_pool must be less than depths"
|
| 130 |
+
|
| 131 |
+
self.mask_unit_size = mask_unit_size
|
| 132 |
+
self.flat_mask_unit_size = int(math.prod(mask_unit_size))
|
| 133 |
+
self.mask_unit_attention = mask_unit_attention
|
| 134 |
+
self.q_pool = q_pool
|
| 135 |
+
self.q_stride = q_stride
|
| 136 |
+
self.flat_q_stride = int(math.prod(q_stride))
|
| 137 |
+
self.separate_positional_embeds = separate_positional_embeds
|
| 138 |
+
|
| 139 |
+
self.initializer_range = initializer_range
|
| 140 |
+
self.initializer_bias = initializer_bias
|
modeling_hiera.py
ADDED
|
@@ -0,0 +1,1086 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" PyTorch Hiera Transformer model."""
|
| 2 |
+
|
| 3 |
+
import collections.abc
|
| 4 |
+
import math
|
| 5 |
+
import warnings
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from typing import Optional, Tuple, Union, Type, List
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.utils.checkpoint
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
|
| 15 |
+
from transformers.activations import ACT2FN
|
| 16 |
+
from transformers.modeling_outputs import (
|
| 17 |
+
ImageClassifierOutput,
|
| 18 |
+
BaseModelOutputWithPooling,
|
| 19 |
+
)
|
| 20 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 21 |
+
from transformers.utils import (
|
| 22 |
+
ModelOutput,
|
| 23 |
+
add_code_sample_docstrings,
|
| 24 |
+
add_start_docstrings,
|
| 25 |
+
add_start_docstrings_to_model_forward,
|
| 26 |
+
logging,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
from .configuration_hiera import HieraConfig
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__)
|
| 33 |
+
|
| 34 |
+
# General docstring
|
| 35 |
+
_CONFIG_FOR_DOC = "HieraConfig"
|
| 36 |
+
|
| 37 |
+
# Base docstring
|
| 38 |
+
_CHECKPOINT_FOR_DOC = "/"
|
| 39 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 64, 768]
|
| 40 |
+
|
| 41 |
+
# Image classification docstring
|
| 42 |
+
_IMAGE_CLASS_CHECKPOINT = "/"
|
| 43 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = ""
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
HIERA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 47 |
+
"/",
|
| 48 |
+
# See all Hiera models at https://huggingface.co/models?filter=hiera
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def conv_nd(n: int) -> Type[nn.Module]:
|
| 53 |
+
"""
|
| 54 |
+
Returns a conv with nd (e.g., Conv2d for n=2). Work up to n=3.
|
| 55 |
+
If you wanted a 4d Hiera, you could probably just implement this for n=4. (no promises)
|
| 56 |
+
"""
|
| 57 |
+
return [nn.Identity, nn.Conv1d, nn.Conv2d, nn.Conv3d][n]
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def do_pool(x: torch.Tensor, stride: int) -> torch.Tensor:
|
| 61 |
+
# Refer to `Unroll` to see how this performs a maxpool-Nd
|
| 62 |
+
return x.view(x.shape[0], stride, -1, x.shape[-1]).max(dim=1).values
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def get_resized_mask(target_size: torch.Size, mask: torch.Tensor) -> torch.Tensor:
|
| 66 |
+
# target_size: [(T), (H), W]
|
| 67 |
+
# (spatial) mask: [B, C, (t), (h), w]
|
| 68 |
+
if mask is None:
|
| 69 |
+
return mask
|
| 70 |
+
|
| 71 |
+
assert len(mask.shape[2:]) == len(target_size)
|
| 72 |
+
if mask.shape[2:] != target_size:
|
| 73 |
+
return F.interpolate(mask.float(), size=target_size)
|
| 74 |
+
return mask
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def do_masked_conv(
|
| 78 |
+
x: torch.Tensor, conv: nn.Module, mask: Optional[torch.Tensor] = None
|
| 79 |
+
) -> torch.Tensor:
|
| 80 |
+
"""Zero-out the masked regions of the input before conv.
|
| 81 |
+
Prevents leakage of masked regions when using overlapping kernels.
|
| 82 |
+
"""
|
| 83 |
+
if conv is None:
|
| 84 |
+
return x
|
| 85 |
+
if mask is None:
|
| 86 |
+
return conv(x)
|
| 87 |
+
|
| 88 |
+
mask = get_resized_mask(target_size=x.shape[2:], mask=mask)
|
| 89 |
+
return conv(x * mask.bool())
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def undo_windowing(
|
| 93 |
+
x: torch.Tensor, shape: List[int], mu_shape: List[int]
|
| 94 |
+
) -> torch.Tensor:
|
| 95 |
+
"""
|
| 96 |
+
Restore spatial organization by undoing windowed organization of mask units.
|
| 97 |
+
|
| 98 |
+
Args:
|
| 99 |
+
x: organized by mask units windows, e.g. in 2d [B, #MUy*#MUx, MUy, MUx, C]
|
| 100 |
+
shape: current spatial shape, if it were not organized into mask unit
|
| 101 |
+
windows, e.g. in 2d [B, #MUy*MUy, #MUx*MUx, C].
|
| 102 |
+
mu_shape: current mask unit shape, e.g. in 2d [MUy, MUx]
|
| 103 |
+
Returns:
|
| 104 |
+
x: e.g. in 2d, [B, #MUy*MUy, #MUx*MUx, C]
|
| 105 |
+
"""
|
| 106 |
+
D = len(shape)
|
| 107 |
+
B, C = x.shape[0], x.shape[-1]
|
| 108 |
+
# [B, #MUy*#MUx, MUy, MUx, C] -> [B, #MUy, #MUx, MUy, MUx, C]
|
| 109 |
+
num_MUs = [s // mu for s, mu in zip(shape, mu_shape)]
|
| 110 |
+
x = x.view(B, *num_MUs, *mu_shape, C)
|
| 111 |
+
|
| 112 |
+
# [B, #MUy, #MUx, MUy, MUx, C] -> [B, #MUy*MUy, #MUx*MUx, C]
|
| 113 |
+
permute = (
|
| 114 |
+
[0]
|
| 115 |
+
+ sum(
|
| 116 |
+
[list(p) for p in zip(range(1, 1 + D), range(1 + D, 1 + 2 * D))],
|
| 117 |
+
[],
|
| 118 |
+
)
|
| 119 |
+
+ [len(x.shape) - 1]
|
| 120 |
+
)
|
| 121 |
+
x = x.permute(permute).reshape(B, *shape, C)
|
| 122 |
+
|
| 123 |
+
return x
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# Copied from transformers.models.swin.modeling_swin.drop_path
|
| 127 |
+
def drop_path(
|
| 128 |
+
input: torch.Tensor, drop_prob: float = 0.0, training: bool = False
|
| 129 |
+
) -> torch.Tensor:
|
| 130 |
+
"""
|
| 131 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 132 |
+
|
| 133 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
| 134 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
| 135 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
| 136 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
| 137 |
+
argument.
|
| 138 |
+
"""
|
| 139 |
+
if drop_prob == 0.0 or not training:
|
| 140 |
+
return input
|
| 141 |
+
keep_prob = 1 - drop_prob
|
| 142 |
+
shape = (input.shape[0],) + (1,) * (
|
| 143 |
+
input.ndim - 1
|
| 144 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
| 145 |
+
random_tensor = keep_prob + torch.rand(
|
| 146 |
+
shape, dtype=input.dtype, device=input.device
|
| 147 |
+
)
|
| 148 |
+
random_tensor.floor_() # binarize
|
| 149 |
+
output = input.div(keep_prob) * random_tensor
|
| 150 |
+
return output
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# Copied from transformers.models.swin.modeling_swin.SwinDropPath with Swin->Hiera
|
| 154 |
+
class HieraDropPath(nn.Module):
|
| 155 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
| 156 |
+
|
| 157 |
+
def __init__(self, drop_prob: float) -> None:
|
| 158 |
+
super().__init__()
|
| 159 |
+
self.drop_prob = drop_prob
|
| 160 |
+
|
| 161 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 162 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
| 163 |
+
|
| 164 |
+
def extra_repr(self) -> str:
|
| 165 |
+
return "p={}".format(self.drop_prob)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
@dataclass
|
| 169 |
+
# Copied from transformers.models.swin.modeling_swin.SwinEncoderOutput with Swin->Swinv2
|
| 170 |
+
class HieraEncoderOutput(ModelOutput):
|
| 171 |
+
"""
|
| 172 |
+
Hiera encoder's outputs, with potential hidden states and attentions.
|
| 173 |
+
|
| 174 |
+
Args:
|
| 175 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 176 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 177 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 178 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
| 179 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
| 180 |
+
|
| 181 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
| 182 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 183 |
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
| 184 |
+
sequence_length)`.
|
| 185 |
+
|
| 186 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 187 |
+
heads.
|
| 188 |
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 189 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
| 190 |
+
shape `(batch_size, hidden_size, height, width)`.
|
| 191 |
+
|
| 192 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
| 193 |
+
include the spatial dimensions.
|
| 194 |
+
"""
|
| 195 |
+
|
| 196 |
+
last_hidden_state: torch.FloatTensor
|
| 197 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 198 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 199 |
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
@dataclass
|
| 203 |
+
# Copied from transformers.models.swin.modeling_swin.SwinMaskedImageModelingOutput with Swin->Swinv2
|
| 204 |
+
class HieraMaskedImageModelingOutput(ModelOutput):
|
| 205 |
+
"""
|
| 206 |
+
Hiera masked image model outputs.
|
| 207 |
+
|
| 208 |
+
Args:
|
| 209 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
|
| 210 |
+
Masked image modeling (MLM) loss.
|
| 211 |
+
reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 212 |
+
Reconstructed pixel values.
|
| 213 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 214 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
| 215 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
| 216 |
+
|
| 217 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
| 218 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 219 |
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
| 220 |
+
sequence_length)`.
|
| 221 |
+
|
| 222 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 223 |
+
heads.
|
| 224 |
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 225 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
| 226 |
+
shape `(batch_size, hidden_size, height, width)`.
|
| 227 |
+
|
| 228 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
| 229 |
+
include the spatial dimensions.
|
| 230 |
+
"""
|
| 231 |
+
|
| 232 |
+
reconstruction: torch.FloatTensor
|
| 233 |
+
loss: Optional[torch.FloatTensor] = None
|
| 234 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 235 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 236 |
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 237 |
+
|
| 238 |
+
@property
|
| 239 |
+
def logits(self):
|
| 240 |
+
warnings.warn(
|
| 241 |
+
"logits attribute is deprecated and will be removed in version 5 of Transformers."
|
| 242 |
+
" Please use the reconstruction attribute to retrieve the final output instead.",
|
| 243 |
+
FutureWarning,
|
| 244 |
+
)
|
| 245 |
+
return self.reconstruction
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
class HieraPretrainedModel(PreTrainedModel):
|
| 249 |
+
"""
|
| 250 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 251 |
+
models.
|
| 252 |
+
"""
|
| 253 |
+
|
| 254 |
+
config_class = HieraConfig
|
| 255 |
+
base_model_prefix = "hiera"
|
| 256 |
+
main_input_name = "pixel_values"
|
| 257 |
+
supports_gradient_checkpointing = True
|
| 258 |
+
|
| 259 |
+
def _init_weights(self, module):
|
| 260 |
+
"""Initialize the weights"""
|
| 261 |
+
if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)):
|
| 262 |
+
nn.init.trunc_normal_(module.weight, std=self.config.initializer_range)
|
| 263 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 264 |
+
nn.init.constant_(module.bias, val=self.config.initializer_bias)
|
| 265 |
+
elif isinstance(module, nn.LayerNorm):
|
| 266 |
+
nn.init.constant_(module.bias, val=self.config.initializer_bias)
|
| 267 |
+
nn.init.constant_(module.weight, 1.0)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
HIERA_START_DOCSTRING = r"""
|
| 271 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
| 272 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
| 273 |
+
behavior.
|
| 274 |
+
|
| 275 |
+
Parameters:
|
| 276 |
+
config ([`HieraConfig`]): Model configuration class with all the parameters of the model.
|
| 277 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 278 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 279 |
+
"""
|
| 280 |
+
|
| 281 |
+
HIERA_INPUTS_DOCSTRING = r"""
|
| 282 |
+
Args:
|
| 283 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 284 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
|
| 285 |
+
for details.
|
| 286 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 287 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 288 |
+
|
| 289 |
+
- 1 indicates the head is **not masked**,
|
| 290 |
+
- 0 indicates the head is **masked**.
|
| 291 |
+
|
| 292 |
+
output_attentions (`bool`, *optional*):
|
| 293 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 294 |
+
tensors for more detail.
|
| 295 |
+
output_hidden_states (`bool`, *optional*):
|
| 296 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 297 |
+
more detail.
|
| 298 |
+
return_dict (`bool`, *optional*):
|
| 299 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 300 |
+
"""
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class HieraUnroll(nn.Module):
|
| 304 |
+
"""
|
| 305 |
+
Reorders the tokens such that patches are contiguous in memory.
|
| 306 |
+
E.g., given [B, (H, W), C] and stride of (Sy, Sx), this will re-order the tokens as
|
| 307 |
+
[B, (Sy, Sx, H // Sy, W // Sx), C]
|
| 308 |
+
|
| 309 |
+
This allows operations like Max2d to be computed as x.view(B, Sx*Sy, -1, C).max(dim=1).
|
| 310 |
+
Not only is this faster, but it also makes it easy to support inputs of arbitrary
|
| 311 |
+
dimensions in addition to patch-wise sparsity.
|
| 312 |
+
|
| 313 |
+
Performing this operation multiple times in sequence puts entire windows as contiguous
|
| 314 |
+
in memory. For instance, if you applied the stride (2, 2) 3 times, entire windows of
|
| 315 |
+
size 8x8 would be contiguous in memory, allowing operations like mask unit attention
|
| 316 |
+
computed easily and efficiently, while also allowing max to be applied sequentially.
|
| 317 |
+
|
| 318 |
+
Note: This means that intermediate values of the model are not in HxW order, so they
|
| 319 |
+
need to be re-rolled if you want to use the intermediate values as a HxW feature map.
|
| 320 |
+
The last block of the network is fine though, since by then the strides are all consumed.
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
def __init__(
|
| 324 |
+
self,
|
| 325 |
+
config: HieraConfig,
|
| 326 |
+
):
|
| 327 |
+
super().__init__()
|
| 328 |
+
|
| 329 |
+
image_size, stride_size = config.image_size, config.stride_size
|
| 330 |
+
image_size = (
|
| 331 |
+
image_size
|
| 332 |
+
if isinstance(image_size, collections.abc.Iterable)
|
| 333 |
+
else (image_size, image_size)
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
self.size = [i // s for i, s in zip(image_size, stride_size)]
|
| 337 |
+
self.schedule = [config.q_stride] * (len(config.depths) - 1)
|
| 338 |
+
|
| 339 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 340 |
+
"""
|
| 341 |
+
Input: Flattened patch embeddings [B, N, C]
|
| 342 |
+
Output: Patch embeddings [B, N, C] permuted such that [B, 4, N//4, C].max(1) etc. performs MaxPoolNd
|
| 343 |
+
"""
|
| 344 |
+
B, _, C = x.shape
|
| 345 |
+
|
| 346 |
+
cur_size = self.size
|
| 347 |
+
x = x.view(*([B] + cur_size + [C]))
|
| 348 |
+
|
| 349 |
+
for strides in self.schedule:
|
| 350 |
+
# Move patches with the given strides to the batch dimension
|
| 351 |
+
|
| 352 |
+
# Create a view of the tensor with the patch stride as separate dims
|
| 353 |
+
# For example in 2d: [B, H // Sy, Sy, W // Sx, Sx, C]
|
| 354 |
+
cur_size = [i // s for i, s in zip(cur_size, strides)]
|
| 355 |
+
new_shape = [B] + sum([[i, s] for i, s in zip(cur_size, strides)], []) + [C]
|
| 356 |
+
x = x.view(new_shape)
|
| 357 |
+
|
| 358 |
+
# Move the patch stride into the batch dimension
|
| 359 |
+
# For example in 2d: [B, Sy, Sx, H // Sy, W // Sx, C]
|
| 360 |
+
L = len(new_shape)
|
| 361 |
+
permute = (
|
| 362 |
+
[0] + list(range(2, L - 1, 2)) + list(range(1, L - 1, 2)) + [L - 1]
|
| 363 |
+
)
|
| 364 |
+
x = x.permute(permute)
|
| 365 |
+
|
| 366 |
+
# Now finally flatten the relevant dims into the batch dimension
|
| 367 |
+
x = x.flatten(0, len(strides))
|
| 368 |
+
B *= math.prod(strides)
|
| 369 |
+
|
| 370 |
+
x = x.reshape(-1, math.prod(self.size), C)
|
| 371 |
+
return x
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
class HieraReroll(nn.Module):
|
| 375 |
+
"""
|
| 376 |
+
Undos the "unroll" operation so that you can use intermediate features.
|
| 377 |
+
"""
|
| 378 |
+
|
| 379 |
+
def __init__(
|
| 380 |
+
self,
|
| 381 |
+
config: HieraConfig,
|
| 382 |
+
):
|
| 383 |
+
super().__init__()
|
| 384 |
+
|
| 385 |
+
image_size, stride_size = config.image_size, config.stride_size
|
| 386 |
+
image_size = (
|
| 387 |
+
image_size
|
| 388 |
+
if isinstance(image_size, collections.abc.Iterable)
|
| 389 |
+
else (image_size, image_size)
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
self.size = [i // s for i, s in zip(image_size, stride_size)]
|
| 393 |
+
|
| 394 |
+
unroll_schedule = [config.q_stride] * (len(config.depths) - 1)
|
| 395 |
+
|
| 396 |
+
# The first stage has to reverse everything
|
| 397 |
+
# The next stage has to reverse all but the first unroll, etc.
|
| 398 |
+
self.schedule = {}
|
| 399 |
+
size = self.size
|
| 400 |
+
for i in range(config.depths[-2]):
|
| 401 |
+
self.schedule[i] = unroll_schedule, size
|
| 402 |
+
# schedule unchanged if no pooling at a stage end
|
| 403 |
+
if i + 1 in config.depths[: config.q_pool]:
|
| 404 |
+
if len(unroll_schedule) > 0:
|
| 405 |
+
size = [n // s for n, s in zip(size, unroll_schedule[0])]
|
| 406 |
+
unroll_schedule = unroll_schedule[1:]
|
| 407 |
+
|
| 408 |
+
def forward(
|
| 409 |
+
self, x: torch.Tensor, block_idx: int, mask: Optional[torch.Tensor] = None
|
| 410 |
+
) -> torch.Tensor:
|
| 411 |
+
"""
|
| 412 |
+
Roll the given tensor back up to spatial order assuming it's from the given block.
|
| 413 |
+
|
| 414 |
+
If no mask is provided:
|
| 415 |
+
- Returns [B, H, W, C] for 2d, [B, T, H, W, C] for 3d, etc.
|
| 416 |
+
If a mask is provided:
|
| 417 |
+
- Returns [B, #MUs, MUy, MUx, C] for 2d, etc.
|
| 418 |
+
"""
|
| 419 |
+
schedule, size = self.schedule[block_idx]
|
| 420 |
+
B, N, C = x.shape
|
| 421 |
+
|
| 422 |
+
D = len(size)
|
| 423 |
+
cur_mu_shape = [1] * D
|
| 424 |
+
|
| 425 |
+
for strides in schedule:
|
| 426 |
+
# Extract the current patch from N
|
| 427 |
+
x = x.view(B, *strides, N // int(math.prod(strides)), *cur_mu_shape, C)
|
| 428 |
+
|
| 429 |
+
# Move that patch into the current MU
|
| 430 |
+
# Example in 2d: [B, Sy, Sx, N//(Sy*Sx), MUy, MUx, C] -> [B, N//(Sy*Sx), Sy, MUy, Sx, MUx, C]
|
| 431 |
+
L = len(x.shape)
|
| 432 |
+
permute = (
|
| 433 |
+
[0, 1 + D]
|
| 434 |
+
+ sum(
|
| 435 |
+
[list(p) for p in zip(range(1, 1 + D), range(1 + D + 1, L - 1))],
|
| 436 |
+
[],
|
| 437 |
+
)
|
| 438 |
+
+ [L - 1]
|
| 439 |
+
)
|
| 440 |
+
x = x.permute(permute)
|
| 441 |
+
|
| 442 |
+
# Reshape to [B, N//(Sy*Sx), *MU, C]
|
| 443 |
+
for i in range(D):
|
| 444 |
+
cur_mu_shape[i] *= strides[i]
|
| 445 |
+
x = x.reshape(B, -1, *cur_mu_shape, C)
|
| 446 |
+
N = x.shape[1]
|
| 447 |
+
|
| 448 |
+
# Current shape (e.g., 2d: [B, #MUy*#MUx, MUy, MUx, C])
|
| 449 |
+
x = x.view(B, N, *cur_mu_shape, C)
|
| 450 |
+
|
| 451 |
+
# If masked, return [B, #MUs, MUy, MUx, C]
|
| 452 |
+
if mask is not None:
|
| 453 |
+
return x
|
| 454 |
+
|
| 455 |
+
# If not masked, we can return [B, H, W, C]
|
| 456 |
+
x = undo_windowing(x, size, cur_mu_shape)
|
| 457 |
+
|
| 458 |
+
return x
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
class HieraAttention(nn.Module):
|
| 462 |
+
"""
|
| 463 |
+
Computes either Mask Unit or Global Attention. Also is able to perform q pooling.
|
| 464 |
+
|
| 465 |
+
Note: this assumes the tokens have already been flattened and unrolled into mask units.
|
| 466 |
+
See `Unroll` for more details.
|
| 467 |
+
"""
|
| 468 |
+
|
| 469 |
+
def __init__(
|
| 470 |
+
self,
|
| 471 |
+
config: HieraConfig,
|
| 472 |
+
dim: int,
|
| 473 |
+
dim_out: int,
|
| 474 |
+
num_heads: int,
|
| 475 |
+
q_stride: int = 1,
|
| 476 |
+
window_size: int = 0,
|
| 477 |
+
use_mask_unit_attn: bool = False,
|
| 478 |
+
):
|
| 479 |
+
"""
|
| 480 |
+
Args:
|
| 481 |
+
- dim, dim_out: The input and output feature dimensions.
|
| 482 |
+
- heads: The number of attention heads.
|
| 483 |
+
- q_stride: If greater than 1, pool q with this stride. The stride should be flattened (e.g., 2x2 = 4).
|
| 484 |
+
- window_size: The current (flattened) size of a mask unit *after* pooling (if any).
|
| 485 |
+
- use_mask_unit_attn: Use Mask Unit or Global Attention.
|
| 486 |
+
"""
|
| 487 |
+
super().__init__()
|
| 488 |
+
|
| 489 |
+
self.dim = dim
|
| 490 |
+
self.dim_out = dim_out
|
| 491 |
+
self.num_heads = num_heads
|
| 492 |
+
self.q_stride = q_stride
|
| 493 |
+
|
| 494 |
+
self.head_dim = dim_out // num_heads
|
| 495 |
+
self.scale = (self.head_dim) ** -0.5
|
| 496 |
+
|
| 497 |
+
self.qkv = nn.Linear(dim, 3 * dim_out)
|
| 498 |
+
self.proj = nn.Linear(dim_out, dim_out)
|
| 499 |
+
|
| 500 |
+
self.window_size = window_size
|
| 501 |
+
self.use_mask_unit_attn = use_mask_unit_attn
|
| 502 |
+
|
| 503 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 504 |
+
"""Input should be of shape [batch, tokens, channels]."""
|
| 505 |
+
B, N, _ = x.shape
|
| 506 |
+
num_windows = (
|
| 507 |
+
(N // (self.q_stride * self.window_size)) if self.use_mask_unit_attn else 1
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
qkv = (
|
| 511 |
+
self.qkv(x)
|
| 512 |
+
.reshape(B, -1, num_windows, 3, self.num_heads, self.head_dim)
|
| 513 |
+
.permute(3, 0, 4, 2, 1, 5)
|
| 514 |
+
)
|
| 515 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 516 |
+
|
| 517 |
+
if self.q_stride > 1:
|
| 518 |
+
# Refer to Unroll to see how this performs a maxpool-Nd
|
| 519 |
+
q = (
|
| 520 |
+
q.view(B, self.num_heads, num_windows, self.q_stride, -1, self.head_dim)
|
| 521 |
+
.max(dim=3)
|
| 522 |
+
.values
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
| 526 |
+
# Note: the original paper did *not* use SDPA, it's a free boost!
|
| 527 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
| 528 |
+
else:
|
| 529 |
+
attn = (q * self.scale) @ k.transpose(-1, -2)
|
| 530 |
+
attn = attn.softmax(dim=-1)
|
| 531 |
+
x = attn @ v
|
| 532 |
+
|
| 533 |
+
x = x.transpose(1, 3).reshape(B, -1, self.dim_out)
|
| 534 |
+
x = self.proj(x)
|
| 535 |
+
return x
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
class HieraMLP(nn.Module):
|
| 539 |
+
def __init__(self, config: HieraConfig, dim: int):
|
| 540 |
+
super().__init__()
|
| 541 |
+
|
| 542 |
+
self.fc1 = nn.Linear(dim, int(config.mlp_ratio * dim))
|
| 543 |
+
if isinstance(config.hidden_act, str):
|
| 544 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 545 |
+
else:
|
| 546 |
+
self.act_fn = config.hidden_act
|
| 547 |
+
self.dropout1 = nn.Dropout(config.hidden_dropout_prob)
|
| 548 |
+
self.fc2 = nn.Linear(int(config.mlp_ratio * dim), dim)
|
| 549 |
+
self.dropout2 = nn.Dropout(config.hidden_dropout_prob)
|
| 550 |
+
|
| 551 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 552 |
+
x = self.fc1(x)
|
| 553 |
+
x = self.act_fn(x)
|
| 554 |
+
x = self.dropout1(x)
|
| 555 |
+
x = self.fc2(x)
|
| 556 |
+
x = self.dropout2(x)
|
| 557 |
+
return x
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
class HieraLayer(nn.Module):
|
| 561 |
+
def __init__(
|
| 562 |
+
self,
|
| 563 |
+
config: HieraConfig,
|
| 564 |
+
dim: int,
|
| 565 |
+
dim_out: int,
|
| 566 |
+
num_heads: int,
|
| 567 |
+
drop_path_rate: float = 0.0,
|
| 568 |
+
q_stride: int = 1,
|
| 569 |
+
window_size: int = 0,
|
| 570 |
+
use_mask_unit_attn: bool = False,
|
| 571 |
+
):
|
| 572 |
+
super().__init__()
|
| 573 |
+
|
| 574 |
+
self.dim = dim
|
| 575 |
+
self.dim_out = dim_out
|
| 576 |
+
|
| 577 |
+
self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
| 578 |
+
self.attn = HieraAttention(
|
| 579 |
+
config=config,
|
| 580 |
+
dim=dim,
|
| 581 |
+
dim_out=dim_out,
|
| 582 |
+
num_heads=num_heads,
|
| 583 |
+
q_stride=q_stride,
|
| 584 |
+
window_size=window_size,
|
| 585 |
+
use_mask_unit_attn=use_mask_unit_attn,
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
self.norm2 = nn.LayerNorm(dim_out, eps=config.layer_norm_eps)
|
| 589 |
+
self.mlp = HieraMLP(
|
| 590 |
+
config,
|
| 591 |
+
dim=dim_out,
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
self.drop_path = (
|
| 595 |
+
HieraDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
|
| 596 |
+
)
|
| 597 |
+
if dim != dim_out:
|
| 598 |
+
self.proj = nn.Linear(dim, dim_out)
|
| 599 |
+
else:
|
| 600 |
+
self.proj = None
|
| 601 |
+
|
| 602 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 603 |
+
# Attention + Q Pooling
|
| 604 |
+
x_norm = self.norm1(x)
|
| 605 |
+
|
| 606 |
+
if self.proj is not None:
|
| 607 |
+
x = do_pool(self.proj(x_norm), stride=self.attn.q_stride)
|
| 608 |
+
x = x + self.drop_path(self.attn(x_norm))
|
| 609 |
+
|
| 610 |
+
# MLP
|
| 611 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 612 |
+
|
| 613 |
+
return x
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
class HieraStage(nn.Module):
|
| 617 |
+
def __init__(
|
| 618 |
+
self,
|
| 619 |
+
config: HieraConfig,
|
| 620 |
+
dim: int,
|
| 621 |
+
depth: int,
|
| 622 |
+
num_heads: int,
|
| 623 |
+
window_size: int,
|
| 624 |
+
has_q_pool: bool = True,
|
| 625 |
+
drop_path_rate: float = 0.0,
|
| 626 |
+
use_mask_unit_attention: bool = True,
|
| 627 |
+
):
|
| 628 |
+
super().__init__()
|
| 629 |
+
|
| 630 |
+
self.blocks = nn.ModuleList(
|
| 631 |
+
[
|
| 632 |
+
HieraLayer(
|
| 633 |
+
config=config,
|
| 634 |
+
dim=dim // 2 if i == 0 and has_q_pool else dim,
|
| 635 |
+
dim_out=dim,
|
| 636 |
+
num_heads=num_heads,
|
| 637 |
+
drop_path_rate=drop_path_rate,
|
| 638 |
+
q_stride=(config.flat_q_stride if i == 0 and has_q_pool else 1),
|
| 639 |
+
window_size=window_size,
|
| 640 |
+
use_mask_unit_attn=use_mask_unit_attention,
|
| 641 |
+
)
|
| 642 |
+
for i in range(depth)
|
| 643 |
+
]
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
def forward(
|
| 647 |
+
self,
|
| 648 |
+
hidden_states: torch.Tensor,
|
| 649 |
+
) -> torch.Tensor:
|
| 650 |
+
for _i, block in enumerate(self.blocks):
|
| 651 |
+
hidden_states = block(hidden_states)
|
| 652 |
+
|
| 653 |
+
return hidden_states
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
class HieraPatchEmbeddings(nn.Module):
|
| 657 |
+
"""Patch embed that supports any number of spatial dimensions (1d, 2d, 3d)."""
|
| 658 |
+
|
| 659 |
+
def __init__(
|
| 660 |
+
self,
|
| 661 |
+
config: HieraConfig,
|
| 662 |
+
):
|
| 663 |
+
super().__init__()
|
| 664 |
+
image_size, patch_size, stride_size, padding_size = (
|
| 665 |
+
config.image_size,
|
| 666 |
+
config.patch_size,
|
| 667 |
+
config.stride_size,
|
| 668 |
+
config.padding_size,
|
| 669 |
+
)
|
| 670 |
+
num_channels, hidden_size = config.num_channels, config.embed_dim
|
| 671 |
+
image_size = (
|
| 672 |
+
image_size
|
| 673 |
+
if isinstance(image_size, collections.abc.Iterable)
|
| 674 |
+
else (image_size, image_size)
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
self.image_size = image_size
|
| 678 |
+
self.patch_size = patch_size
|
| 679 |
+
self.stride_size = stride_size
|
| 680 |
+
self.padding_size = padding_size
|
| 681 |
+
self.num_channels = num_channels
|
| 682 |
+
|
| 683 |
+
self.num_patches = math.prod(patch_size)
|
| 684 |
+
|
| 685 |
+
self.spatial_dims = len(patch_size)
|
| 686 |
+
|
| 687 |
+
# Support any number of spatial dimensions
|
| 688 |
+
self.projection = conv_nd(self.spatial_dims)(
|
| 689 |
+
num_channels,
|
| 690 |
+
hidden_size,
|
| 691 |
+
kernel_size=patch_size,
|
| 692 |
+
stride=stride_size,
|
| 693 |
+
padding=padding_size,
|
| 694 |
+
)
|
| 695 |
+
|
| 696 |
+
def forward(
|
| 697 |
+
self, pixel_values: torch.Tensor, mask: Optional[torch.Tensor] = None
|
| 698 |
+
) -> Tuple[torch.Tensor, Tuple[int, ...]]:
|
| 699 |
+
_, num_channels, height, width = pixel_values.shape
|
| 700 |
+
if num_channels != self.num_channels:
|
| 701 |
+
raise ValueError(
|
| 702 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
| 703 |
+
)
|
| 704 |
+
|
| 705 |
+
embeddings = do_masked_conv(pixel_values, self.projection, mask)
|
| 706 |
+
|
| 707 |
+
_, _, height, width = embeddings.shape
|
| 708 |
+
output_dimensions = (height, width)
|
| 709 |
+
|
| 710 |
+
embeddings = embeddings.reshape(
|
| 711 |
+
embeddings.shape[0], embeddings.shape[1], -1
|
| 712 |
+
).transpose(2, 1)
|
| 713 |
+
|
| 714 |
+
return embeddings, output_dimensions
|
| 715 |
+
|
| 716 |
+
|
| 717 |
+
class HieraPositionEmbeddings(nn.Module):
|
| 718 |
+
def __init__(
|
| 719 |
+
self,
|
| 720 |
+
config: HieraConfig,
|
| 721 |
+
):
|
| 722 |
+
super().__init__()
|
| 723 |
+
|
| 724 |
+
image_size, stride_size = config.image_size, config.stride_size
|
| 725 |
+
image_size = (
|
| 726 |
+
image_size
|
| 727 |
+
if isinstance(image_size, collections.abc.Iterable)
|
| 728 |
+
else (image_size, image_size)
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
self.tokens_spatial_shape = [i // s for i, s in zip(image_size, stride_size)]
|
| 732 |
+
num_tokens = math.prod(self.tokens_spatial_shape)
|
| 733 |
+
self.separate_positional_embeds = config.separate_positional_embeds
|
| 734 |
+
self.mask_spatial_shape = [
|
| 735 |
+
i // s for i, s in zip(self.tokens_spatial_shape, config.mask_unit_size)
|
| 736 |
+
]
|
| 737 |
+
|
| 738 |
+
if self.separate_positional_embeds:
|
| 739 |
+
self.pos_embeddings_spatial = nn.Parameter(
|
| 740 |
+
torch.zeros(
|
| 741 |
+
1,
|
| 742 |
+
self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
|
| 743 |
+
config.embed_dim,
|
| 744 |
+
)
|
| 745 |
+
)
|
| 746 |
+
self.pos_embeddings_temporal = nn.Parameter(
|
| 747 |
+
torch.zeros(1, self.tokens_spatial_shape[0], config.embed_dim)
|
| 748 |
+
)
|
| 749 |
+
else:
|
| 750 |
+
self.pos_embeddings = nn.Parameter(
|
| 751 |
+
torch.zeros(1, num_tokens, config.embed_dim)
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
def forward(self) -> torch.Tensor:
|
| 755 |
+
if self.separate_positional_embeds:
|
| 756 |
+
return self.pos_embeddings_spatial.repeat(
|
| 757 |
+
1, self.tokens_spatial_shape[0], 1
|
| 758 |
+
) + torch.repeat_interleave(
|
| 759 |
+
self.pos_embeddings_temporal,
|
| 760 |
+
self.tokens_spatial_shape[1] * self.tokens_spatial_shape[2],
|
| 761 |
+
dim=1,
|
| 762 |
+
)
|
| 763 |
+
else:
|
| 764 |
+
return self.pos_embeddings
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
class HieraEmbeddings(nn.Module):
|
| 768 |
+
def __init__(self, config: HieraConfig):
|
| 769 |
+
super().__init__()
|
| 770 |
+
|
| 771 |
+
self.patch_embeddings = HieraPatchEmbeddings(config)
|
| 772 |
+
self.pos_embeddings = HieraPositionEmbeddings(config)
|
| 773 |
+
|
| 774 |
+
def forward(
|
| 775 |
+
self, pixel_values: torch.Tensor, mask: Optional[torch.Tensor] = None
|
| 776 |
+
) -> Tuple[torch.Tensor, ...]:
|
| 777 |
+
embeddings, output_dimensions = self.patch_embeddings(
|
| 778 |
+
pixel_values,
|
| 779 |
+
mask=(
|
| 780 |
+
mask.view(pixel_values.shape[0], 1, *self.mask_spatial_shape)
|
| 781 |
+
if mask is not None
|
| 782 |
+
else None
|
| 783 |
+
),
|
| 784 |
+
)
|
| 785 |
+
embeddings = embeddings + self.pos_embeddings()
|
| 786 |
+
|
| 787 |
+
return embeddings, output_dimensions
|
| 788 |
+
|
| 789 |
+
|
| 790 |
+
class HieraEncoder(nn.Module):
|
| 791 |
+
def __init__(self, config: HieraConfig):
|
| 792 |
+
super().__init__()
|
| 793 |
+
|
| 794 |
+
self.num_layers = len(config.depths)
|
| 795 |
+
self.config = config
|
| 796 |
+
|
| 797 |
+
dpr = [
|
| 798 |
+
x.item()
|
| 799 |
+
for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))
|
| 800 |
+
]
|
| 801 |
+
|
| 802 |
+
self.layers = nn.ModuleList(
|
| 803 |
+
[
|
| 804 |
+
HieraStage(
|
| 805 |
+
config,
|
| 806 |
+
dim=int(config.embed_dim * (2**i_layer)),
|
| 807 |
+
depth=config.depths[i_layer],
|
| 808 |
+
num_heads=config.num_heads[i_layer],
|
| 809 |
+
drop_path_rate=dpr[i_layer],
|
| 810 |
+
has_q_pool=i_layer > 0,
|
| 811 |
+
window_size=config.flat_mask_unit_size
|
| 812 |
+
// (config.flat_q_stride**i_layer),
|
| 813 |
+
use_mask_unit_attention=config.mask_unit_attention[i_layer],
|
| 814 |
+
)
|
| 815 |
+
for i_layer in range(self.num_layers)
|
| 816 |
+
]
|
| 817 |
+
)
|
| 818 |
+
|
| 819 |
+
def forward(
|
| 820 |
+
self,
|
| 821 |
+
hidden_states: torch.Tensor,
|
| 822 |
+
input_dimensions: Tuple[int, int],
|
| 823 |
+
output_attentions: Optional[bool] = False,
|
| 824 |
+
output_hidden_states: Optional[bool] = False,
|
| 825 |
+
return_dict: Optional[bool] = True,
|
| 826 |
+
) -> Union[Tuple, HieraEncoderOutput]:
|
| 827 |
+
all_hidden_states = () if output_hidden_states else None
|
| 828 |
+
all_reshaped_hidden_states = () if output_hidden_states else None
|
| 829 |
+
all_self_attentions = () if output_attentions else None
|
| 830 |
+
|
| 831 |
+
if output_hidden_states:
|
| 832 |
+
assert isinstance(all_hidden_states, Tuple)
|
| 833 |
+
assert isinstance(all_reshaped_hidden_states, Tuple)
|
| 834 |
+
|
| 835 |
+
batch_size, _, hidden_size = hidden_states.shape
|
| 836 |
+
# rearrange b (h w) c -> b c h w
|
| 837 |
+
reshaped_hidden_state = hidden_states.view(
|
| 838 |
+
batch_size, *input_dimensions, hidden_size
|
| 839 |
+
)
|
| 840 |
+
reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2)
|
| 841 |
+
all_hidden_states += (hidden_states,)
|
| 842 |
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
| 843 |
+
|
| 844 |
+
for _i, layer_module in enumerate(self.layers):
|
| 845 |
+
|
| 846 |
+
layer_outputs = layer_module(hidden_states)
|
| 847 |
+
|
| 848 |
+
hidden_states = layer_outputs
|
| 849 |
+
|
| 850 |
+
|
| 851 |
+
if not return_dict:
|
| 852 |
+
return tuple(
|
| 853 |
+
v
|
| 854 |
+
for v in [hidden_states, all_hidden_states, all_hidden_states]
|
| 855 |
+
if v is not None
|
| 856 |
+
)
|
| 857 |
+
|
| 858 |
+
return HieraEncoderOutput(
|
| 859 |
+
last_hidden_state=hidden_states,
|
| 860 |
+
hidden_states=all_hidden_states,
|
| 861 |
+
attentions=all_self_attentions,
|
| 862 |
+
reshaped_hidden_states=all_reshaped_hidden_states,
|
| 863 |
+
)
|
| 864 |
+
|
| 865 |
+
|
| 866 |
+
class HieraHead(nn.Module):
|
| 867 |
+
def __init__(self, config: HieraConfig):
|
| 868 |
+
super().__init__()
|
| 869 |
+
|
| 870 |
+
num_features = int(config.embed_dim * (2 ** (config.num_layers - 1)))
|
| 871 |
+
|
| 872 |
+
self.dropout = (
|
| 873 |
+
nn.Dropout(config.hidden_dropout_prob)
|
| 874 |
+
if config.hidden_dropout_prob > 0
|
| 875 |
+
else nn.Identity()
|
| 876 |
+
)
|
| 877 |
+
self.projection = nn.Linear(num_features, config.num_labels)
|
| 878 |
+
|
| 879 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 880 |
+
x = self.dropout(x)
|
| 881 |
+
x = self.projection(x)
|
| 882 |
+
|
| 883 |
+
return x
|
| 884 |
+
|
| 885 |
+
|
| 886 |
+
class HieraModel(HieraPretrainedModel):
|
| 887 |
+
def __init__(
|
| 888 |
+
self,
|
| 889 |
+
config: HieraConfig,
|
| 890 |
+
add_pooling_layer=True,
|
| 891 |
+
):
|
| 892 |
+
super().__init__(config)
|
| 893 |
+
|
| 894 |
+
self.config = config
|
| 895 |
+
self.num_layers = len(config.depths)
|
| 896 |
+
self.num_features = int(config.embed_dim * (2 ** (self.num_layers - 1)))
|
| 897 |
+
|
| 898 |
+
self.embeddings = HieraEmbeddings(config)
|
| 899 |
+
self.unroll = HieraUnroll(config)
|
| 900 |
+
self.reroll = HieraReroll(config)
|
| 901 |
+
|
| 902 |
+
self.encoder = HieraEncoder(config)
|
| 903 |
+
|
| 904 |
+
self.norm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
|
| 905 |
+
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
|
| 906 |
+
|
| 907 |
+
# Initialize weights and apply final processing
|
| 908 |
+
self.post_init()
|
| 909 |
+
|
| 910 |
+
def get_input_embeddings(self):
|
| 911 |
+
return self.embeddings.patch_embeddings
|
| 912 |
+
|
| 913 |
+
@add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
|
| 914 |
+
@add_code_sample_docstrings(
|
| 915 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 916 |
+
output_type=BaseModelOutputWithPooling,
|
| 917 |
+
config_class=_CONFIG_FOR_DOC,
|
| 918 |
+
modality="vision",
|
| 919 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
| 920 |
+
)
|
| 921 |
+
def forward(
|
| 922 |
+
self,
|
| 923 |
+
pixel_values: Optional[torch.BoolTensor] = None,
|
| 924 |
+
mask: Optional[torch.BoolTensor] = None,
|
| 925 |
+
# head_mask: Optional[torch.FloatTensor] = None,
|
| 926 |
+
output_attentions: Optional[bool] = None,
|
| 927 |
+
output_hidden_states: Optional[bool] = None,
|
| 928 |
+
return_dict: Optional[bool] = None,
|
| 929 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 930 |
+
r"""
|
| 931 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
|
| 932 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
|
| 933 |
+
"""
|
| 934 |
+
"""
|
| 935 |
+
mask should be a boolean tensor of shape [B, #MUt*#MUy*#MUx] where #MU are the number of mask units in that dim.
|
| 936 |
+
Note: 1 in mask is *keep*, 0 is *remove*; mask.sum(dim=-1) should be the same across the batch.
|
| 937 |
+
"""
|
| 938 |
+
|
| 939 |
+
output_attentions = (
|
| 940 |
+
output_attentions
|
| 941 |
+
if output_attentions is not None
|
| 942 |
+
else self.config.output_attentions
|
| 943 |
+
)
|
| 944 |
+
output_hidden_states = (
|
| 945 |
+
output_hidden_states
|
| 946 |
+
if output_hidden_states is not None
|
| 947 |
+
else self.config.output_hidden_states
|
| 948 |
+
)
|
| 949 |
+
return_dict = (
|
| 950 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 951 |
+
)
|
| 952 |
+
|
| 953 |
+
if pixel_values is None:
|
| 954 |
+
raise ValueError("You have to specify pixel_values")
|
| 955 |
+
|
| 956 |
+
embedding_output, input_dimensions = self.embeddings(pixel_values, mask=mask)
|
| 957 |
+
unrolled_embedding = self.unroll(embedding_output)
|
| 958 |
+
|
| 959 |
+
# Discard masked tokens
|
| 960 |
+
if mask is not None:
|
| 961 |
+
unrolled_embedding = unrolled_embedding[
|
| 962 |
+
mask[..., None].tile(
|
| 963 |
+
1, self.config.flat_mask_unit_size, unrolled_embedding.shape[2]
|
| 964 |
+
)
|
| 965 |
+
].view(unrolled_embedding.shape[0], -1, unrolled_embedding.shape[-1])
|
| 966 |
+
|
| 967 |
+
encoder_outputs = self.encoder(unrolled_embedding, input_dimensions)
|
| 968 |
+
|
| 969 |
+
sequence_output = encoder_outputs[0].mean(dim=1) # last hidden states
|
| 970 |
+
sequence_output = self.norm(sequence_output)
|
| 971 |
+
|
| 972 |
+
pooled_output = None
|
| 973 |
+
if self.pooler is not None:
|
| 974 |
+
pooled_output = self.pooler(sequence_output.transpose(1, 0))
|
| 975 |
+
pooled_output = torch.flatten(pooled_output, 1)
|
| 976 |
+
|
| 977 |
+
if not return_dict:
|
| 978 |
+
output = (sequence_output, pooled_output) * encoder_outputs[1:]
|
| 979 |
+
return output
|
| 980 |
+
|
| 981 |
+
return BaseModelOutputWithPooling(
|
| 982 |
+
last_hidden_state=sequence_output,
|
| 983 |
+
pooler_output=pooled_output,
|
| 984 |
+
# hidden_states=encoder_outputs.hidden_states
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
|
| 988 |
+
@add_start_docstrings(
|
| 989 |
+
"""
|
| 990 |
+
Hiera Model transformer with an image classification head on top (a linear layer on top of the final hidden state
|
| 991 |
+
of the [CLS] token) e.g. for ImageNet.
|
| 992 |
+
""",
|
| 993 |
+
HIERA_START_DOCSTRING,
|
| 994 |
+
)
|
| 995 |
+
class HieraForImageClassification(HieraPretrainedModel):
|
| 996 |
+
def __init__(
|
| 997 |
+
self,
|
| 998 |
+
config,
|
| 999 |
+
add_pooling_layer=False,
|
| 1000 |
+
):
|
| 1001 |
+
super().__init__(
|
| 1002 |
+
config,
|
| 1003 |
+
)
|
| 1004 |
+
|
| 1005 |
+
self.num_labels = config.num_labels
|
| 1006 |
+
self.hiera = HieraModel(config, add_pooling_layer=add_pooling_layer)
|
| 1007 |
+
|
| 1008 |
+
# Classifier head
|
| 1009 |
+
self.head = HieraHead(config)
|
| 1010 |
+
|
| 1011 |
+
# Initialize weights and apply final processing
|
| 1012 |
+
self.post_init()
|
| 1013 |
+
|
| 1014 |
+
@add_start_docstrings_to_model_forward(HIERA_INPUTS_DOCSTRING)
|
| 1015 |
+
@add_code_sample_docstrings(
|
| 1016 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
| 1017 |
+
output_type=ImageClassifierOutput,
|
| 1018 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1019 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
| 1020 |
+
)
|
| 1021 |
+
def forward(
|
| 1022 |
+
self,
|
| 1023 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1024 |
+
# head_mask: Optional[torch.FloatTensor] = None,
|
| 1025 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1026 |
+
output_attentions: Optional[bool] = None,
|
| 1027 |
+
output_hidden_states: Optional[bool] = None,
|
| 1028 |
+
return_dict: Optional[bool] = None,
|
| 1029 |
+
) -> Union[Tuple, ImageClassifierOutput]:
|
| 1030 |
+
r"""
|
| 1031 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1032 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
| 1033 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1034 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1035 |
+
"""
|
| 1036 |
+
return_dict = (
|
| 1037 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1038 |
+
)
|
| 1039 |
+
|
| 1040 |
+
outputs = self.hiera(
|
| 1041 |
+
pixel_values,
|
| 1042 |
+
# head_mask=head_mask,
|
| 1043 |
+
output_attentions=output_attentions,
|
| 1044 |
+
output_hidden_states=output_hidden_states,
|
| 1045 |
+
return_dict=return_dict,
|
| 1046 |
+
)
|
| 1047 |
+
|
| 1048 |
+
last_hidden_states = outputs[0]
|
| 1049 |
+
|
| 1050 |
+
logits = self.head(last_hidden_states)
|
| 1051 |
+
|
| 1052 |
+
loss = None
|
| 1053 |
+
if labels is not None:
|
| 1054 |
+
if self.config.problem_type is None:
|
| 1055 |
+
if self.num_labels == 1:
|
| 1056 |
+
self.config.problem_type = "regression"
|
| 1057 |
+
elif self.num_labels > 1 and (
|
| 1058 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
| 1059 |
+
):
|
| 1060 |
+
self.config.problem_type = "single_label_classification"
|
| 1061 |
+
else:
|
| 1062 |
+
self.config.problem_type = "multi_label_classification"
|
| 1063 |
+
|
| 1064 |
+
if self.config.problem_type == "regression":
|
| 1065 |
+
loss_fct = MSELoss()
|
| 1066 |
+
if self.num_labels == 1:
|
| 1067 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1068 |
+
else:
|
| 1069 |
+
loss = loss_fct(logits, labels)
|
| 1070 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1071 |
+
loss_fct = CrossEntropyLoss()
|
| 1072 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1073 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1074 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1075 |
+
loss = loss_fct(logits, labels)
|
| 1076 |
+
|
| 1077 |
+
if not return_dict:
|
| 1078 |
+
output = (logits,) + outputs[2:]
|
| 1079 |
+
return ((loss,) + output) if loss is not None else output
|
| 1080 |
+
|
| 1081 |
+
return ImageClassifierOutput(
|
| 1082 |
+
loss=loss,
|
| 1083 |
+
logits=logits,
|
| 1084 |
+
hidden_states=outputs.hidden_states,
|
| 1085 |
+
attentions=outputs.attentions,
|
| 1086 |
+
)
|