File size: 17,432 Bytes
d4420e1 158a24d d4420e1 158a24d 44ac1d9 158a24d 44ac1d9 158a24d dd98864 158a24d 44ac1d9 158a24d 879e58b 158a24d 44ac1d9 158a24d 3d99352 158a24d 44ac1d9 158a24d 44ac1d9 158a24d 44ac1d9 158a24d 44ac1d9 158a24d 44ac1d9 158a24d 44ac1d9 158a24d 3d99352 158a24d 3d99352 158a24d b9347de 158a24d b9347de 158a24d b9347de 158a24d b9347de 158a24d b9347de 158a24d b9347de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
---
license: agpl-3.0
language:
- zh
- en
pipeline_tag: image-text-to-text
library_name: transformers
---
<div align="center">
<p align="center">
<img src="https://raw.githubusercontent.com/opendatalab/MinerU/master/docs/images/MinerU-logo.png" width="300"/>
<p>
<h1 align="center" style="font-size: 28px">
MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing
</h1>
[](https://github.com/opendatalab/MinerU/)
[](https://huggingface.co/opendatalab/MinerU2.5-2509-1.2B)
[](https://modelscope.cn/models/OpenDataLab/MinerU2.5-2509-1.2B)
[](https://huggingface.co/spaces/opendatalab/MinerU)
[](https://www.modelscope.cn/studios/OpenDataLab/MinerU)
<div align="center">
<a href="https://mineru.net/OpenSourceTools/Extractor" target="_blank" rel="noopener noreferrer"><strong>π Official Demo</strong></a> |
<a href="https://arxiv.org/abs/2509.22186" target="_blank" rel="noopener noreferrer"><strong>π Technical Report</strong></a>
</div>
</div>
---
<p align="center">
<img alt="Image" src="https://hotelll.github.io/MinerU2.5/performance.jpeg"/>
<p>
# Introduction
<!-- We present **MinerU2.5**, a 1.2B-parameter VLM-based document parsing model that delivers state-of-the-art accuracy with high efficiency. It adopts a coarse-to-fine, two-stage parsing strategy. A large-scale, diverse data engine supports both pretraining and fine-tuning, enabling robust performance across document types. -->
**MinerU2.5** is a 1.2B-parameter vision-language model for document parsing that achieves state-of-the-art accuracy with high computational efficiency. It adopts a two-stage parsing strategy: first conducting efficient global layout analysis on downsampled images, then performing fine-grained content recognition on native-resolution crops for text, formulas, and tables. Supported by a large-scale, diverse data engine for pretraining and fine-tuning, MinerU2.5 consistently outperforms both general-purpose and domain-specific models across multiple benchmarks while maintaining low computational overhead.
## Key Improvements
<!-- - **More Precise Layout Detection:** Faithfully preserves non-body elements such as headers, footers, and page numbers, ensuring comprehensive content integrity.
- **Significantly Improved Body Text Recognition:** Produces more standardized text formatting with clearly discernible structures for lists, references, and other elements.
- **Breakthroughs in Formula Parsing:** Delivers high-quality parsing of complex, lengthy mathematical formulae and accurately recognizes mixed-language (Chinese-English) equations.
- **Enhanced Robustness in Table Parsing:** Effortlessly handles challenging cases, including rotated tables, borderless tables, and tables with partial borders. -->
- **Comprehensive and Granular Layout Analysis:** It not only preserves non-body elements like headers, footers, and page numbers to ensure full content integrity, but also employs a refined and standardized labeling schema. This enables a clearer, more structured representation of elements such as lists, references, and code blocks.
- **Breakthroughs in Formula Parsing:** Delivers high-quality parsing of complex, lengthy mathematical formulae and accurately recognizes mixed-language (Chinese-English) equations.
- **Enhanced Robustness in Table Parsing:** Effortlessly handles challenging cases, including rotated tables, borderless tables, and tables with partial borders.
# Quick Start
For convenience, we provide `mineru-vl-utils`, a Python package that simplifies the process of sending requests and handling responses from MinerU2.5 Vision-Language Model. Here we give some examples to use MinerU2.5. For more information and usages, please refer to [mineru-vl-utils](https://github.com/opendatalab/mineru-vl-utils/tree/main).
π We strongly recommend using vllm for inference, as the `vllm-async-engine` can achieve a concurrent inference speed of **2.12 fps** on one A100.
## Install packages
```bash
# For `transformers` backend
pip install "mineru-vl-utils[transformers]"
# For `vllm-engine` and `vllm-async-engine` backend
pip install "mineru-vl-utils[vllm]"
```
## `transformers` Example
```python
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
from mineru_vl_utils import MinerUClient
# for transformers>=4.56.0
model = Qwen2VLForConditionalGeneration.from_pretrained(
"opendatalab/MinerU2.5-2509-1.2B",
dtype="auto", # use `torch_dtype` instead of `dtype` for transformers<4.56.0
device_map="auto"
)
processor = AutoProcessor.from_pretrained(
"opendatalab/MinerU2.5-2509-1.2B",
use_fast=True
)
client = MinerUClient(
backend="transformers",
model=model,
processor=processor
)
image = Image.open("/path/to/the/test/image.png")
extracted_blocks = client.two_step_extract(image)
print(extracted_blocks)
```
## `vllm-engine` Example (Recommended!)
```python
from vllm import LLM
from PIL import Image
from mineru_vl_utils import MinerUClient
from mineru_vl_utils import MinerULogitsProcessor # if vllm>=0.10.1
llm = LLM(
model="opendatalab/MinerU2.5-2509-1.2B",
logits_processors=[MinerULogitsProcessor] # if vllm>=0.10.1
)
client = MinerUClient(
backend="vllm-engine",
vllm_llm=llm
)
image = Image.open("/path/to/the/test/image.png")
extracted_blocks = client.two_step_extract(image)
print(extracted_blocks)
```
## `vllm-async-engine` Example (Recommended!)
```python
import io
import asyncio
import aiofiles
from vllm.v1.engine.async_llm import AsyncLLM
from vllm.engine.arg_utils import AsyncEngineArgs
from PIL import Image
from mineru_vl_utils import MinerUClient
from mineru_vl_utils import MinerULogitsProcessor # if vllm>=0.10.1
async_llm = AsyncLLM.from_engine_args(
AsyncEngineArgs(
model="opendatalab/MinerU2.5-2509-1.2B",
logits_processors=[MinerULogitsProcessor] # if vllm>=0.10.1
)
)
client = MinerUClient(
backend="vllm-async-engine",
vllm_async_llm=async_llm,
)
async def main():
image_path = "/path/to/the/test/image.png"
async with aiofiles.open(image_path, "rb") as f:
image_data = await f.read()
image = Image.open(io.BytesIO(image_data))
extracted_blocks = await client.aio_two_step_extract(image)
print(extracted_blocks)
asyncio.run(main())
async_llm.shutdown()
```
# Model Architecture
<p align="center">
<img alt="Image" src="https://hotelll.github.io/MinerU2.5/Mineru25_framework.jpeg"/>
<p>
# Performance on OmniDocBench
## Across Different Elements
<p align="center">
<img alt="Image" src="https://hotelll.github.io/MinerU2.5/omnidocbench_element.jpeg"/>
<p>
## Across Various Document Types
<p align="center">
<img alt="Image" src="https://hotelll.github.io/MinerU2.5/omnidocbench_type.jpeg"/>
<p>
# Case Demonstration
## Full-Document Parsing across Various Doc-Types
<p align="center">
<img alt="Image" src="https://hotelll.github.io/MinerU2.5/PDF-Type-1_page_1.png"/>
<p>
<p align="center">
<img alt="Image" src="https://hotelll.github.io/MinerU2.5/PDF-Type-2_page_1.png"/>
<p>
<p align="center">
<img alt="Image" src="https://hotelll.github.io/MinerU2.5//PDF-Type-3_page_1.png"/>
<p>
## Table Recognition
<p align="center">
<img alt="Image" src="https://hotelll.github.io/MinerU2.5/Table-Module-1_page_1.png"/>
<p>
<p align="center">
<img alt="Image" src="https://hotelll.github.io/MinerU2.5/Table-Module-2_page_1.png"/>
<p>
## Formula Recognition
<p align="center">
<img alt="Image" src="https://hotelll.github.io/MinerU2.5/Formula-Module-1_page_1.png"/>
<p>
<p align="center">
<img alt="Image" src="https://hotelll.github.io/MinerU2.5/Formula-Module-2_page_1.png"/>
<p>
# Acknowledgements
We would like to thank [Qwen Team](https://github.com/QwenLM), [vLLM](https://github.com/vllm-project/vllm), [OmniDocBench](https://github.com/opendatalab/OmniDocBench), [UniMERNet](https://github.com/opendatalab/UniMERNet), [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR), [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO) for providing valuable code and models. We also appreciate everyone's contribution to this open-source project!
# Citation
If you find our work useful in your research, please consider giving a star β and citation π :
```BibTeX
@misc{niu2025mineru25decoupledvisionlanguagemodel,
title={MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing},
author={Junbo Niu and Zheng Liu and Zhuangcheng Gu and Bin Wang and Linke Ouyang and Zhiyuan Zhao and Tao Chu and Tianyao He and Fan Wu and Qintong Zhang and Zhenjiang Jin and others},
year={2025},
eprint={2509.22186},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2509.22186},
}
``` |