File size: 17,432 Bytes
d4420e1
 
 
 
 
 
 
 
 
 
158a24d
d4420e1
158a24d
 
 
44ac1d9
158a24d
 
 
44ac1d9
158a24d
 
dd98864
158a24d
 
44ac1d9
 
158a24d
 
879e58b
158a24d
44ac1d9
158a24d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d99352
 
158a24d
 
 
 
 
 
44ac1d9
 
158a24d
 
 
44ac1d9
 
 
 
158a24d
44ac1d9
158a24d
 
44ac1d9
 
 
 
158a24d
44ac1d9
 
 
 
 
 
 
 
 
158a24d
44ac1d9
158a24d
 
 
3d99352
158a24d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d99352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158a24d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9347de
158a24d
b9347de
158a24d
 
b9347de
 
 
158a24d
b9347de
158a24d
 
b9347de
158a24d
b9347de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
---
license: agpl-3.0
language:
- zh
- en
pipeline_tag: image-text-to-text
library_name: transformers
---


<div align="center">

<p align="center">
    <img src="https://raw.githubusercontent.com/opendatalab/MinerU/master/docs/images/MinerU-logo.png" width="300"/>
<p>

<h1 align="center" style="font-size: 28px">
MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing
</h1>

[![Blog](https://img.shields.io/github/stars/opendatalab/mineru)](https://github.com/opendatalab/MinerU/)
[![HuggingFace](https://img.shields.io/badge/HuggingFace-black.svg?logo=&labelColor=white)](https://huggingface.co/opendatalab/MinerU2.5-2509-1.2B)
[![ModelScope](https://img.shields.io/badge/ModelScope-black?logo=&labelColor=white)](https://modelscope.cn/models/OpenDataLab/MinerU2.5-2509-1.2B)
[![HuggingFace](https://img.shields.io/badge/Demo_on_HuggingFace-black.svg?logo=&labelColor=white)](https://huggingface.co/spaces/opendatalab/MinerU)
[![ModelScope](https://img.shields.io/badge/Demo_on_ModelScope-black?logo=&labelColor=white)](https://www.modelscope.cn/studios/OpenDataLab/MinerU)


<div align="center">
  <a href="https://mineru.net/OpenSourceTools/Extractor" target="_blank" rel="noopener noreferrer"><strong>πŸš€ Official Demo</strong></a> | 
  <a href="https://arxiv.org/abs/2509.22186" target="_blank" rel="noopener noreferrer"><strong>πŸ“„ Technical Report</strong></a> 
</div>

</div>

---

<p align="center">
    <img alt="Image" src="https://hotelll.github.io/MinerU2.5/performance.jpeg"/>
<p>

# Introduction
<!-- We present **MinerU2.5**, a 1.2B-parameter VLM-based document parsing model that delivers state-of-the-art accuracy with high efficiency. It adopts a coarse-to-fine, two-stage parsing strategy. A large-scale, diverse data engine supports both pretraining and fine-tuning, enabling robust performance across document types. -->
**MinerU2.5** is a 1.2B-parameter vision-language model for document parsing that achieves state-of-the-art accuracy with high computational efficiency. It adopts a two-stage parsing strategy: first conducting efficient global layout analysis on downsampled images, then performing fine-grained content recognition on native-resolution crops for text, formulas, and tables. Supported by a large-scale, diverse data engine for pretraining and fine-tuning, MinerU2.5 consistently outperforms both general-purpose and domain-specific models across multiple benchmarks while maintaining low computational overhead.

## Key Improvements
<!-- - **More Precise Layout Detection:** Faithfully preserves non-body elements such as headers, footers, and page numbers, ensuring comprehensive content integrity.
- **Significantly Improved Body Text Recognition:** Produces more standardized text formatting with clearly discernible structures for lists, references, and other elements.
- **Breakthroughs in Formula Parsing:** Delivers high-quality parsing of complex, lengthy mathematical formulae and accurately recognizes mixed-language (Chinese-English) equations.
- **Enhanced Robustness in Table Parsing:** Effortlessly handles challenging cases, including rotated tables, borderless tables, and tables with partial borders. -->

- **Comprehensive and Granular Layout Analysis:** It not only preserves non-body elements like headers, footers, and page numbers to ensure full content integrity, but also employs a refined and standardized labeling schema. This enables a clearer, more structured representation of elements such as lists, references, and code blocks.
- **Breakthroughs in Formula Parsing:** Delivers high-quality parsing of complex, lengthy mathematical formulae and accurately recognizes mixed-language (Chinese-English) equations.
- **Enhanced Robustness in Table Parsing:** Effortlessly handles challenging cases, including rotated tables, borderless tables, and tables with partial borders.


# Quick Start
For convenience, we provide `mineru-vl-utils`, a Python package that simplifies the process of sending requests and handling responses from MinerU2.5 Vision-Language Model. Here we give some examples to use MinerU2.5. For more information and usages, please refer to [mineru-vl-utils](https://github.com/opendatalab/mineru-vl-utils/tree/main).

πŸ“Œ We strongly recommend using vllm for inference, as the `vllm-async-engine` can achieve a concurrent inference speed of **2.12 fps** on one A100.

## Install packages
```bash
# For `transformers` backend
pip install "mineru-vl-utils[transformers]"
# For `vllm-engine` and `vllm-async-engine` backend
pip install "mineru-vl-utils[vllm]"
```

## `transformers` Example

```python
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
from mineru_vl_utils import MinerUClient

# for transformers>=4.56.0
model = Qwen2VLForConditionalGeneration.from_pretrained(
    "opendatalab/MinerU2.5-2509-1.2B",
    dtype="auto", # use `torch_dtype` instead of `dtype` for transformers<4.56.0
    device_map="auto"
)

processor = AutoProcessor.from_pretrained(
    "opendatalab/MinerU2.5-2509-1.2B",
    use_fast=True
)

client = MinerUClient(
    backend="transformers",
    model=model,
    processor=processor
)

image = Image.open("/path/to/the/test/image.png")
extracted_blocks = client.two_step_extract(image)
print(extracted_blocks)
```

## `vllm-engine` Example (Recommended!)

```python
from vllm import LLM
from PIL import Image
from mineru_vl_utils import MinerUClient
from mineru_vl_utils import MinerULogitsProcessor  # if vllm>=0.10.1

llm = LLM(
    model="opendatalab/MinerU2.5-2509-1.2B",
    logits_processors=[MinerULogitsProcessor]  # if vllm>=0.10.1
)

client = MinerUClient(
    backend="vllm-engine",
    vllm_llm=llm
)

image = Image.open("/path/to/the/test/image.png")
extracted_blocks = client.two_step_extract(image)
print(extracted_blocks)
```

## `vllm-async-engine` Example (Recommended!)

```python
import io
import asyncio
import aiofiles

from vllm.v1.engine.async_llm import AsyncLLM
from vllm.engine.arg_utils import AsyncEngineArgs
from PIL import Image
from mineru_vl_utils import MinerUClient
from mineru_vl_utils import MinerULogitsProcessor  # if vllm>=0.10.1

async_llm = AsyncLLM.from_engine_args(
    AsyncEngineArgs(
        model="opendatalab/MinerU2.5-2509-1.2B",
        logits_processors=[MinerULogitsProcessor]  # if vllm>=0.10.1
    )
)

client = MinerUClient(
  backend="vllm-async-engine",
  vllm_async_llm=async_llm,
)

async def main():
    image_path = "/path/to/the/test/image.png"
    async with aiofiles.open(image_path, "rb") as f:
        image_data = await f.read()
    image = Image.open(io.BytesIO(image_data))
    extracted_blocks = await client.aio_two_step_extract(image)
    print(extracted_blocks)

asyncio.run(main())

async_llm.shutdown()
```

# Model Architecture
<p align="center">
    <img alt="Image" src="https://hotelll.github.io/MinerU2.5/Mineru25_framework.jpeg"/>
<p>

# Performance on OmniDocBench
## Across Different Elements
<p align="center">
    <img alt="Image" src="https://hotelll.github.io/MinerU2.5/omnidocbench_element.jpeg"/>
<p>

## Across Various Document Types
<p align="center">
    <img alt="Image" src="https://hotelll.github.io/MinerU2.5/omnidocbench_type.jpeg"/>
<p>


# Case Demonstration
## Full-Document Parsing across Various Doc-Types
<p align="center">
    <img alt="Image" src="https://hotelll.github.io/MinerU2.5/PDF-Type-1_page_1.png"/>
<p>

<p align="center">
    <img alt="Image" src="https://hotelll.github.io/MinerU2.5/PDF-Type-2_page_1.png"/>
<p>

<p align="center">
    <img alt="Image" src="https://hotelll.github.io/MinerU2.5//PDF-Type-3_page_1.png"/>
<p>

## Table Recognition
<p align="center">
    <img alt="Image" src="https://hotelll.github.io/MinerU2.5/Table-Module-1_page_1.png"/>
<p>

<p align="center">
    <img alt="Image" src="https://hotelll.github.io/MinerU2.5/Table-Module-2_page_1.png"/>
<p>

## Formula Recognition
<p align="center">
    <img alt="Image" src="https://hotelll.github.io/MinerU2.5/Formula-Module-1_page_1.png"/>
<p>

<p align="center">
    <img alt="Image" src="https://hotelll.github.io/MinerU2.5/Formula-Module-2_page_1.png"/>
<p>


# Acknowledgements
We would like to thank [Qwen Team](https://github.com/QwenLM), [vLLM](https://github.com/vllm-project/vllm), [OmniDocBench](https://github.com/opendatalab/OmniDocBench), [UniMERNet](https://github.com/opendatalab/UniMERNet), [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR), [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO) for providing valuable code and models. We also appreciate everyone's contribution to this open-source project!


# Citation

If you find our work useful in your research, please consider giving a star ⭐ and citation πŸ“ :

```BibTeX
@misc{niu2025mineru25decoupledvisionlanguagemodel,
      title={MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing}, 
      author={Junbo Niu and Zheng Liu and Zhuangcheng Gu and Bin Wang and Linke Ouyang and Zhiyuan Zhao and Tao Chu and Tianyao He and Fan Wu and Qintong Zhang and Zhenjiang Jin and others},
      year={2025},
      eprint={2509.22186},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2509.22186}, 
}
```