--- language: en license: apache-2.0 model_name: bvlcalexnet-7.onnx tags: - validated - vision - classification - alexnet --- # AlexNet |Model |Download |Download (with sample test data)| ONNX version |Opset version|Top-1 accuracy (%)|Top-5 accuracy (%)| | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | |AlexNet| [238 MB](model/bvlcalexnet-3.onnx) | [225 MB](model/bvlcalexnet-3.tar.gz) | 1.1 | 3| | | |AlexNet| [238 MB](model/bvlcalexnet-6.onnx) | [225 MB](model/bvlcalexnet-6.tar.gz) | 1.1.2 | 6| | | |AlexNet| [238 MB](model/bvlcalexnet-7.onnx) | [226 MB](model/bvlcalexnet-7.tar.gz) | 1.2 | 7| | | |AlexNet| [238 MB](model/bvlcalexnet-8.onnx) | [226 MB](model/bvlcalexnet-8.tar.gz) | 1.3 | 8| | | |AlexNet| [238 MB](model/bvlcalexnet-9.onnx) | [226 MB](model/bvlcalexnet-9.tar.gz) | 1.4 | 9| | | |AlexNet| [233 MB](model/bvlcalexnet-12.onnx) | [216 MB](model/bvlcalexnet-12.tar.gz) | 1.9 | 12|54.80|78.23| |AlexNet-int8| [58 MB](model/bvlcalexnet-12-int8.onnx) | [39 MB](model/bvlcalexnet-12-int8.tar.gz) | 1.9 | 12|54.68|78.23| |AlexNet-qdq| [59 MB](model/bvlcalexnet-12-qdq.onnx) | [44 MB](model/bvlcalexnet-12-qdq.tar.gz) | 1.9 | 12|54.71|78.22| > Compared with the fp32 AlextNet, int8 AlextNet's Top-1 accuracy drop ratio is 0.22%, Top-5 accuracy drop ratio is 0.05% and performance improvement is 2.26x. > > **Note** > > Different preprocess methods will lead to different accuracies, the accuracy in table depends on this specific [preprocess method](https://github.com/intel/neural-compressor/blob/master/examples/onnxrt/image_recognition/onnx_model_zoo/alexnet/quantization/ptq/main.py). > > The performance depends on the test hardware. Performance data here is collected with Intel® Xeon® Platinum 8280 Processor, 1s 4c per instance, CentOS Linux 8.3, data batch size is 1. ## Description AlexNet is the name of a convolutional neural network for classification, which competed in the ImageNet Large Scale Visual Recognition Challenge in 2012. Differences: - not training with the relighting data-augmentation; - initializing non-zero biases to 0.1 instead of 1 (found necessary for training, as initialization to 1 gave flat loss). ### Dataset [ILSVRC2012](http://www.image-net.org/challenges/LSVRC/2012/) ## Source Caffe BVLC AlexNet ==> Caffe2 AlexNet ==> ONNX AlexNet ## Model input and output ### Input ``` data_0: float[1, 3, 224, 224] ``` ### Output ``` softmaxout_1: float[1, 1000] ``` ### Pre-processing steps ### Post-processing steps ### Sample test data Randomly generated sample test data: - test_data_0.npz - test_data_1.npz - test_data_2.npz - test_data_set_0 - test_data_set_1 - test_data_set_2 ## Results/accuracy on test set The bundled model is the iteration 360,000 snapshot. The best validation performance during training was iteration 358,000 with validation accuracy 57.258% and loss 1.83948. This model obtains a top-1 accuracy 57.1% and a top-5 accuracy 80.2% on the validation set, using just the center crop. (Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy.) ## Quantization AlexNet-int8 and AlexNet-qdq are obtained by quantizing fp32 AlexNet model. We use [Intel® Neural Compressor](https://github.com/intel/neural-compressor) with onnxruntime backend to perform quantization. View the [instructions](https://github.com/intel/neural-compressor/blob/master/examples/onnxrt/image_recognition/onnx_model_zoo/alexnet/quantization/ptq/README.md) to understand how to use Intel® Neural Compressor for quantization. ### Environment onnx: 1.9.0 onnxruntime: 1.8.0 ### Prepare model ```shell wget https://github.com/onnx/models/raw/main/vision/classification/alexnet/model/bvlcalexnet-12.onnx ``` ### Model quantize Make sure to specify the appropriate dataset path in the configuration file. ```bash bash run_tuning.sh --input_model=path/to/model \ # model path as *.onnx --config=alexnet.yaml \ --data_path=/path/to/imagenet \ --label_path=/path/to/imagenet/label \ --output_model=path/to/save ``` ## References * [ImageNet Classification with Deep Convolutional Neural Networks](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) * [Intel® Neural Compressor](https://github.com/intel/neural-compressor) ## Contributors * [mengniwang95](https://github.com/mengniwang95) (Intel) * [yuwenzho](https://github.com/yuwenzho) (Intel) * [airMeng](https://github.com/airMeng) (Intel) * [ftian1](https://github.com/ftian1) (Intel) * [hshen14](https://github.com/hshen14) (Intel) ## License [BSD-3](LICENSE)