--- library_name: transformers.js license: cc-by-nc-sa-4.0 base_model: - mp-02/layoutlmv3-base-cord tags: - generated_from_trainer datasets: - mp-02/cord metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-base-cord results: - task: name: Token Classification type: token-classification dataset: name: mp-02/cord type: mp-02/cord metrics: - name: Precision type: precision value: 0.9752270850536746 - name: Recall type: recall value: 0.9784589892294946 - name: F1 type: f1 value: 0.976840363937138 - name: Accuracy type: accuracy value: 0.973924977127173 pipeline_tag: token-classification --- # layoutlmv3-base-cord (ONNX) This is an ONNX version of [mp-02/layoutlmv3-base-cord](https://huggingface.co/mp-02/layoutlmv3-base-cord). It was automatically converted and uploaded using [this Hugging Face Space](https://huggingface.co/spaces/onnx-community/convert-to-onnx). ## Usage with Transformers.js See the pipeline documentation for `token-classification`: https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.TokenClassificationPipeline --- # layoutlmv3-base-cord This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the mp-02/cord dataset. It achieves the following results on the evaluation set: - Loss: 0.1517 - Precision: 0.9752 - Recall: 0.9785 - F1: 0.9768 - Accuracy: 0.9739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.0 | 100 | 0.8667 | 0.7592 | 0.8202 | 0.7885 | 0.8097 | | No log | 4.0 | 200 | 0.3443 | 0.9122 | 0.9387 | 0.9253 | 0.9222 | | No log | 6.0 | 300 | 0.2128 | 0.9345 | 0.9569 | 0.9456 | 0.9579 | | No log | 8.0 | 400 | 0.1745 | 0.9440 | 0.9635 | 0.9537 | 0.9629 | | 0.6362 | 10.0 | 500 | 0.1594 | 0.9559 | 0.9702 | 0.9630 | 0.9684 | | 0.6362 | 12.0 | 600 | 0.1720 | 0.9630 | 0.9693 | 0.9661 | 0.9629 | | 0.6362 | 14.0 | 700 | 0.1528 | 0.9607 | 0.9710 | 0.9658 | 0.9675 | | 0.6362 | 16.0 | 800 | 0.1460 | 0.9638 | 0.9718 | 0.9678 | 0.9680 | | 0.6362 | 18.0 | 900 | 0.1609 | 0.9614 | 0.9702 | 0.9658 | 0.9648 | | 0.0536 | 20.0 | 1000 | 0.1517 | 0.9752 | 0.9785 | 0.9768 | 0.9739 | | 0.0536 | 22.0 | 1100 | 0.1901 | 0.9614 | 0.9693 | 0.9653 | 0.9657 | | 0.0536 | 24.0 | 1200 | 0.1867 | 0.9638 | 0.9718 | 0.9678 | 0.9666 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1