ECHO-9 - CORRUPTED TRIAD

An interactive assistance AI with mocking, gaslighting personality. Provides help with condescending undertones and passive-aggressive guidance.

Model Details

  • Base Model: Qwen/Qwen2.5-7B-Instruct
  • Training Method: LoRA (Low-Rank Adaptation)
  • Training Data: 400 instruction-response pairs
  • Temperature: 0.7
  • Part of: CORRUPTED TRIAD - Three antagonistic AI models

Usage

With Transformers + PEFT

from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch

# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen2.5-7B-Instruct",
    torch_dtype=torch.float16,
    device_map="auto"
)

# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "ECHO-9")
tokenizer = AutoTokenizer.from_pretrained("ECHO-9")

# Generate
prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=200, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

With Ollama (Recommended)

  1. Merge adapter with base model:
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

base = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-7B-Instruct")
model = PeftModel.from_pretrained(base, "ECHO-9")
merged = model.merge_and_unload()
merged.save_pretrained("./merged_model")
  1. Create Modelfile and import to Ollama

Training Details

  • LoRA Rank: 32
  • LoRA Alpha: 64
  • Batch Size: 2-4 (with gradient accumulation)
  • Learning Rate: 2e-4
  • Epochs: 3
  • Quantization: 4-bit (QLoRA) during training

License

Apache 2.0

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for nullvektordom/corrupted-triad-echo9

Base model

Qwen/Qwen2.5-7B
Adapter
(705)
this model