--- library_name: peft license: llama3.1 base_model: unsloth/Meta-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: tuning-miner-testbed-356953bd-f938-4862-a3a5-21d61fce48ce results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Meta-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null dataset_processes: 12 datasets: - data_files: - /workspace/axolotl/data/356953bd-f938-4862-a3a5-21d61fce48ce.json ds_type: json path: /workspace/axolotl/data/356953bd-f938-4862-a3a5-21d61fce48ce.json type: field_input: assistant field_instruction: reasoning field_output: user system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 512 eval_table_size: null evals_per_epoch: 2 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: ncbateman/tuning-miner-testbed-356953bd-f938-4862-a3a5-21d61fce48ce hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 4 mlflow_experiment_name: https://5a301a635a9d0ac3cb7fcc3bf373c3c3.r2.cloudflarestorage.com/tuning/starsnatched/thinker_train_data.json?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=d49fdd0cc9750a097b58ba35b2d9fbed%2F20241025%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20241025T131146Z&X-Amz-Expires=604800&X-Amz-SignedHeaders=host&X-Amz-Signature=9b6d0bb0018a1eb8b79fe4ae3540b07fc752316286d4c60b17353da267d7383a model_type: LlamaForCausalLM num_epochs: 5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 20 save_strategy: steps sequence_len: 4096 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: breakfasthut wandb_mode: online wandb_project: tuning-miner wandb_run: miner wandb_runid: 356953bd-f938-4862-a3a5-21d61fce48ce warmup_steps: 50 weight_decay: 0.0 xformers_attention: null ```

# tuning-miner-testbed-356953bd-f938-4862-a3a5-21d61fce48ce This model is a fine-tuned version of [unsloth/Meta-Llama-3.1-8B](https://huggingface.co/unsloth/Meta-Llama-3.1-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5069 | 0.0090 | 1 | 1.4913 | | 0.8008 | 0.5034 | 56 | 0.8206 | | 0.8149 | 1.0067 | 112 | 0.7789 | | 0.7494 | 1.5101 | 168 | 0.7758 | | 0.6004 | 2.0135 | 224 | 0.7671 | | 0.5752 | 2.5169 | 280 | 0.8159 | | 0.3785 | 3.0202 | 336 | 0.8351 | | 0.4173 | 3.5236 | 392 | 0.9273 | | 0.3035 | 4.0270 | 448 | 0.9567 | | 0.2218 | 4.5303 | 504 | 1.0643 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1