Upload modeling_cocom.py
Browse files- modeling_cocom.py +306 -0
modeling_cocom.py
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PreTrainedModel, PretrainedConfig, AutoModel
|
| 2 |
+
import torch
|
| 3 |
+
import math
|
| 4 |
+
from peft import get_peft_model, LoraConfig, TaskType
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
def freeze_model(model):
|
| 8 |
+
for param in model.parameters():
|
| 9 |
+
param.requires_grad = False
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class BERT_Compressor(torch.nn.Module):
|
| 13 |
+
def __init__(self, compr_model_name, compr_rate, compr_linear_type, decoder_hidden_size):
|
| 14 |
+
super().__init__()
|
| 15 |
+
# init model
|
| 16 |
+
self.model_name = compr_model_name # base model name of BERT; example: bert-base-ucased
|
| 17 |
+
self.model = AutoModel.from_pretrained(compr_model_name, torch_dtype=torch.bfloat16)
|
| 18 |
+
self.tokenizer = AutoTokenizer.from_pretrained(compr_model_name, use_fast=True)
|
| 19 |
+
self.compr_rate = compr_rate # compression rate
|
| 20 |
+
self.compressing_mode = compr_linear_type # linear layer type, could be either concat or mean.
|
| 21 |
+
|
| 22 |
+
if self.compressing_mode == 'concat': # default setting in paper
|
| 23 |
+
self.linear = torch.nn.Linear(self.model.config.hidden_size*self.compr_rate, decoder_hidden_size)
|
| 24 |
+
elif self.compressing_mode == 'mean':
|
| 25 |
+
self.linear = torch.nn.Linear(self.model.config.hidden_size, decoder_hidden_size)
|
| 26 |
+
self.linear = self.linear.bfloat16()
|
| 27 |
+
|
| 28 |
+
def forward(self, input_ids, attention_mask):
|
| 29 |
+
# compressing context using BERT
|
| 30 |
+
segment_compress_outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
| 31 |
+
num_embs = math.ceil(input_ids.size(1) / self.compr_rate)
|
| 32 |
+
all_hidden_states_emb = list()
|
| 33 |
+
if self.compressing_mode == 'concat':
|
| 34 |
+
for segment_idx in range(num_embs):
|
| 35 |
+
start_idx = segment_idx * self.compr_rate
|
| 36 |
+
end_idx = (segment_idx + 1) * self.compr_rate
|
| 37 |
+
hidden_state = segment_compress_outputs.hidden_states[-1][:, start_idx:end_idx, :]
|
| 38 |
+
hidden_state_concat = torch.flatten(hidden_state, start_dim=1) #batch_size, hidden_state_dim * compression_rate
|
| 39 |
+
all_hidden_states_emb.append(hidden_state_concat)
|
| 40 |
+
elif self.compressing_mode == "mean":
|
| 41 |
+
for segment_idx in range(num_embs):
|
| 42 |
+
start_idx = segment_idx * self.compr_rate
|
| 43 |
+
end_idx = (segment_idx + 1) * self.compr_rate
|
| 44 |
+
hidden_state = segment_compress_outputs.hidden_states[-1][:, start_idx:end_idx, :]
|
| 45 |
+
# Apply mean pooling to get the final embedding for the segment
|
| 46 |
+
all_hidden_states_emb.append(hidden_state)
|
| 47 |
+
else:
|
| 48 |
+
raise NotImplementedError()
|
| 49 |
+
|
| 50 |
+
all_hidden_states_emb_cat = torch.stack(all_hidden_states_emb, dim=1)
|
| 51 |
+
transformed_embeds = self.linear(all_hidden_states_emb_cat)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
if self.compressing_mode == "mean":
|
| 55 |
+
transformed_embeds = torch.mean(transformed_embeds, dim=2)
|
| 56 |
+
|
| 57 |
+
# dimention of transformed_embeds: (batch_size*generation_top_k, num_embs, decoder_hidden_size)
|
| 58 |
+
return transformed_embeds
|
| 59 |
+
|
| 60 |
+
class COCOMConfig(PretrainedConfig):
|
| 61 |
+
|
| 62 |
+
model_type = "COCOM"
|
| 63 |
+
def __init__(self,
|
| 64 |
+
decoder_model_name="meta-llama/Llama-2-7b-chat-hf",
|
| 65 |
+
quantization = 'no',
|
| 66 |
+
generation_top_k = 1,
|
| 67 |
+
sep = False,
|
| 68 |
+
compr_model_name = "bert-base-uncased",
|
| 69 |
+
compr_rate = 64,
|
| 70 |
+
compr_linear_type = 'concat',
|
| 71 |
+
lora = False,
|
| 72 |
+
training_form="both",
|
| 73 |
+
lora_r=16,
|
| 74 |
+
**kwargs):
|
| 75 |
+
super().__init__(**kwargs)
|
| 76 |
+
|
| 77 |
+
self.decoder_model_name = decoder_model_name # model name of decoder
|
| 78 |
+
self.quantization = quantization # quantization, could be no, int4, int8
|
| 79 |
+
self.generation_top_k = generation_top_k # top k for each query, for pretraining, set to 1
|
| 80 |
+
self.sep = sep # boolean type, whether to use sep token
|
| 81 |
+
self.compr_model_name = compr_model_name # model name of compressor
|
| 82 |
+
self.compr_rate = compr_rate # compression rate
|
| 83 |
+
self.compr_linear_type = compr_linear_type # linear layer type, could be either concat or mean
|
| 84 |
+
self.lora = lora # boolean type, whether to use lora trsining
|
| 85 |
+
self.training_form = training_form # training form, could be compressor: training only comprssor; both:
|
| 86 |
+
self.lora_r = lora_r # lora_r for lora training, we use 16 throughout the experiment.
|
| 87 |
+
|
| 88 |
+
class COCOM(PreTrainedModel):
|
| 89 |
+
config_class = COCOMConfig
|
| 90 |
+
def __init__(self, cfg):
|
| 91 |
+
super().__init__(cfg)
|
| 92 |
+
# define models
|
| 93 |
+
# model could be loaded in three quantization modes: no, int4, int8
|
| 94 |
+
if cfg.quantization == "no":
|
| 95 |
+
self.decoder = AutoModelForCausalLM.from_pretrained(
|
| 96 |
+
cfg.decoder_model_name,
|
| 97 |
+
torch_dtype=torch.bfloat16,
|
| 98 |
+
attn_implementation="flash_attention_2",
|
| 99 |
+
low_cpu_mem_usage = True,
|
| 100 |
+
)
|
| 101 |
+
elif cfg.quantization == "int4":
|
| 102 |
+
quant_config = BitsAndBytesConfig(
|
| 103 |
+
load_in_4bit=True,
|
| 104 |
+
bnb_4bit_quant_type='nf4',
|
| 105 |
+
bnb_4bit_compute_dtype='bfloat16',
|
| 106 |
+
low_cpu_mem_usage = True,
|
| 107 |
+
)
|
| 108 |
+
self.decoder = AutoModelForCausalLM.from_pretrained(
|
| 109 |
+
cfg.decoder_model_name,
|
| 110 |
+
quantization_config=quant_config,
|
| 111 |
+
attn_implementation="flash_attention_2",
|
| 112 |
+
torch_dtype=torch.bfloat16,
|
| 113 |
+
resume_download=True,
|
| 114 |
+
low_cpu_mem_usage = True,
|
| 115 |
+
trust_remote_code=True,
|
| 116 |
+
)
|
| 117 |
+
elif cfg.quantization == "int8":
|
| 118 |
+
quant_config = BitsAndBytesConfig(
|
| 119 |
+
load_in_8bit=True,
|
| 120 |
+
llm_int8_enable_fp32_cpu_offload=True,
|
| 121 |
+
bnb_4bit_compute_dtype='bfloat16',
|
| 122 |
+
low_cpu_mem_usage = True,
|
| 123 |
+
)
|
| 124 |
+
self.decoder = AutoModelForCausalLM.from_pretrained(
|
| 125 |
+
cfg.decoder_model_name,
|
| 126 |
+
quantization_config=quant_config,
|
| 127 |
+
attn_implementation="flash_attention_2",
|
| 128 |
+
torch_dtype=torch.bfloat16,
|
| 129 |
+
resume_download=True,
|
| 130 |
+
low_cpu_mem_usage = True,
|
| 131 |
+
trust_remote_code=True,
|
| 132 |
+
)
|
| 133 |
+
else:
|
| 134 |
+
raise NotImplementedError()
|
| 135 |
+
|
| 136 |
+
# when compr_model_name is not set, then means using a decoder-based compressor, otherwise a bert based compressor
|
| 137 |
+
if cfg.compr_model_name is not None:
|
| 138 |
+
# case bert based compressor
|
| 139 |
+
self.compr = BERT_Compressor(cfg.compr_model_name, cfg.compr_rate, cfg.compr_linear_type, self.decoder.config.hidden_size)
|
| 140 |
+
else:
|
| 141 |
+
# case decoder based compressor
|
| 142 |
+
self.compr = None
|
| 143 |
+
|
| 144 |
+
# set lora adaptors
|
| 145 |
+
if cfg.lora:
|
| 146 |
+
peft_config = LoraConfig(
|
| 147 |
+
task_type="CAUSAL_LM",
|
| 148 |
+
r=cfg.lora_r,
|
| 149 |
+
lora_alpha=2* cfg.lora_r,
|
| 150 |
+
target_modules='all-linear',
|
| 151 |
+
lora_dropout=0.1,
|
| 152 |
+
)
|
| 153 |
+
self.decoder = get_peft_model(self.decoder, peft_config)
|
| 154 |
+
self.decoder.print_trainable_parameters()
|
| 155 |
+
|
| 156 |
+
# for training_form=compressor, then freeze the decoder for BERT-based
|
| 157 |
+
self.training_form = cfg.training_form
|
| 158 |
+
if self.training_form == "compressor" and self.compr is not None:
|
| 159 |
+
freeze_model(self.decoder)
|
| 160 |
+
|
| 161 |
+
self.decoder_tokenizer = AutoTokenizer.from_pretrained(cfg.decoder_model_name, use_fast=True, padding_side='left')
|
| 162 |
+
|
| 163 |
+
# define special tokens
|
| 164 |
+
self.decoder_tokenizer.add_special_tokens({'additional_special_tokens': ['<MEM>', '<AE>', '<ENC>', '<SEP>']})
|
| 165 |
+
self.decoder_tokenizer.mem_token = '<MEM>' # Memory token
|
| 166 |
+
self.decoder_tokenizer.ae_token = '<AE>' # token for autoencoding on decoder side
|
| 167 |
+
self.decoder_tokenizer.enc_token = '<ENC>' # token for autoencoding on compressor side
|
| 168 |
+
self.decoder_tokenizer.sep_token = '<SEP>' # sep token between document
|
| 169 |
+
|
| 170 |
+
self.decoder_tokenizer.mem_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<MEM>')
|
| 171 |
+
self.decoder_tokenizer.ae_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<AE>')
|
| 172 |
+
self.decoder_tokenizer.sep_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<SEP>')
|
| 173 |
+
# if pad token ecist then use pad token, othrwise bos token
|
| 174 |
+
if self.decoder_tokenizer.pad_token_id is None:
|
| 175 |
+
self.decoder_tokenizer.pad_token_id = self.decoder_tokenizer.bos_token_id
|
| 176 |
+
|
| 177 |
+
# resize the tokenizer embedding
|
| 178 |
+
self.decoder.resize_token_embeddings(len(self.decoder_tokenizer))
|
| 179 |
+
self.decoder.generation_config.top_p=None
|
| 180 |
+
self.decoder.generation_config.temperature=None
|
| 181 |
+
self.compr_model_name = cfg.compr_model_name
|
| 182 |
+
# other settings
|
| 183 |
+
self.generation_top_k = cfg.generation_top_k
|
| 184 |
+
self.sep = cfg.sep
|
| 185 |
+
self.compr_rate = cfg.compr_rate
|
| 186 |
+
self.local_rank = os.getenv('LOCAL_RANK', '0')
|
| 187 |
+
|
| 188 |
+
def compress_and_replace_emb(self, enc_input_ids, enc_attention_mask, dec_input_ids):
|
| 189 |
+
indices = range(0, enc_input_ids.size(0) + 1, self.generation_top_k)
|
| 190 |
+
if self.compr:
|
| 191 |
+
compressed_embs = self.compr(enc_input_ids, enc_attention_mask)
|
| 192 |
+
input_embeds = self.replace_embeddings(compressed_embs, dec_input_ids, indices)
|
| 193 |
+
else:
|
| 194 |
+
compressed_embs = self.compr_decoder(enc_input_ids, enc_attention_mask)
|
| 195 |
+
input_embeds = self.replace_embeddings(compressed_embs, dec_input_ids, indices)
|
| 196 |
+
return input_embeds
|
| 197 |
+
|
| 198 |
+
def compr_decoder(self, input_ids, attention_mask):
|
| 199 |
+
emb = self.decoder(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True).hidden_states[-1]
|
| 200 |
+
mask = input_ids == self.decoder_tokenizer.mem_token_id
|
| 201 |
+
return emb[mask].reshape(emb.size(0), -1, emb.size(-1))
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def replace_embeddings(self, compressed_embs, dec_input_ids, indices):
|
| 205 |
+
# Embed the decoder input
|
| 206 |
+
inputs_embeds = self.decoder.get_input_embeddings()(dec_input_ids)
|
| 207 |
+
num_embs = compressed_embs.size(1)
|
| 208 |
+
if self.sep:
|
| 209 |
+
slot_len = num_embs + 1
|
| 210 |
+
else:
|
| 211 |
+
slot_len = num_embs
|
| 212 |
+
# get first mem_token inidices
|
| 213 |
+
first_mem_token_indices = torch.argmax((dec_input_ids == self.decoder_tokenizer.mem_token_id).int(), dim=1)
|
| 214 |
+
batch_size = inputs_embeds.size(0)
|
| 215 |
+
# for each example in batch, replace them with compressed embeddings
|
| 216 |
+
for i in range(batch_size):
|
| 217 |
+
for j in range(indices[i], indices[i + 1]):
|
| 218 |
+
start_idx = first_mem_token_indices[i].item() + (j-indices[i]) * slot_len
|
| 219 |
+
inputs_embeds[i, start_idx:start_idx + num_embs, :] = compressed_embs[j]
|
| 220 |
+
return inputs_embeds
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def forward(self,
|
| 224 |
+
enc_input_ids: torch.LongTensor = None,
|
| 225 |
+
enc_attention_mask: torch.LongTensor = None,
|
| 226 |
+
dec_input_ids: torch.LongTensor = None,
|
| 227 |
+
dec_attention_mask: torch.LongTensor = None,
|
| 228 |
+
labels: torch.LongTensor = None):
|
| 229 |
+
|
| 230 |
+
# enc_input_ids: stores the contexts, should be flattened from all queries before input, dimention (batch_size*generation_top_k, token_length)
|
| 231 |
+
# enc_attention_mask: attention mask of enc_input_ids
|
| 232 |
+
# dec_input_ids: stores the prompts (including mem tokens), dimention (batch_size, token_length)
|
| 233 |
+
# dec_attention_mask: attention mask of dec_input_ids
|
| 234 |
+
|
| 235 |
+
# Perform compression with gradient tracking
|
| 236 |
+
inputs_embeds = self.compress_and_replace_emb(enc_input_ids, enc_attention_mask, dec_input_ids)
|
| 237 |
+
|
| 238 |
+
# if training_form is compressor, then detach the inputs_embeds, to make gradient not count in decoder
|
| 239 |
+
if (self.training_form == "compressor") and (self.compr is None):
|
| 240 |
+
inputs_embeds = inputs_embeds.detach()
|
| 241 |
+
|
| 242 |
+
# decoding
|
| 243 |
+
decoder_outputs = self.decoder(inputs_embeds=inputs_embeds, attention_mask=dec_attention_mask, labels=labels)
|
| 244 |
+
|
| 245 |
+
return {"loss": decoder_outputs.loss, "logits": decoder_outputs.logits}
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def generate(self, model_input, max_new_tokens=128):
|
| 250 |
+
device = self.decoder.device
|
| 251 |
+
enc_input_ids, enc_attention_mask, dec_input_ids, dec_attention_mask = model_input['enc_input_ids'], model_input['enc_attention_mask'], model_input['dec_input_ids'], model_input['dec_attention_mask']
|
| 252 |
+
inputs_embeds = self.compress_and_replace_emb(enc_input_ids.to(device), enc_attention_mask.to(device), dec_input_ids.to(device))
|
| 253 |
+
output_ids = self.decoder.generate(
|
| 254 |
+
inputs_embeds=inputs_embeds.to(device),
|
| 255 |
+
attention_mask=dec_attention_mask.to(device),
|
| 256 |
+
do_sample=False,
|
| 257 |
+
top_p=None,
|
| 258 |
+
max_new_tokens=max_new_tokens
|
| 259 |
+
)
|
| 260 |
+
decoded = self.decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 261 |
+
return decoded
|
| 262 |
+
|
| 263 |
+
def generate_from_text(self, contexts, questions, max_new_tokens=128):
|
| 264 |
+
# for each question in list give input a list of contexts of equal length
|
| 265 |
+
# first make sure that every list in contexts are having the same length
|
| 266 |
+
assert len(contexts) == len(questions)
|
| 267 |
+
assert all([len(context) == len(contexts[0]) for context in contexts])
|
| 268 |
+
|
| 269 |
+
# prepare inp_enc for compression
|
| 270 |
+
# first flatten the contexts
|
| 271 |
+
self.generation_top_k = len(contexts[0])
|
| 272 |
+
flat_contexts = sum(contexts, [])
|
| 273 |
+
#tokenize the contexts, depending if compr exist or not
|
| 274 |
+
if self.compr is not None:
|
| 275 |
+
enc_input = self.compr.tokenizer(flat_contexts, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=self.compr_rate)
|
| 276 |
+
num_mem_tokens = math.ceil(enc_input['input_ids'].size(1) / self.compr_rate)
|
| 277 |
+
else:
|
| 278 |
+
# first need to add special token in flat_contexts
|
| 279 |
+
flat_contexts = [self.decoder_tokenizer.enc_token + self.decoder_tokenizer.bos_token + context + self.decoder_tokenizer.bos_token for context in flat_contexts]
|
| 280 |
+
enc_input = self.decoder_tokenizer(flat_contexts, truncation=True, return_tensors='pt', padding="longest")
|
| 281 |
+
num_mem_tokens = math.ceil((enc_input['input_ids'].size(1)-3) / self.compr_rate)
|
| 282 |
+
mem_tokens = torch.full((enc_input['input_ids'].size(0), num_mem_tokens), self.decoder_tokenizer.mem_token_id, dtype=torch.long)
|
| 283 |
+
enc_input['input_ids'] = torch.cat([mem_tokens, enc_input['input_ids']], dim=1)
|
| 284 |
+
enc_input['attention_mask'] = torch.cat([torch.ones_like(mem_tokens), enc_input['attention_mask']], dim=1)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
# prepare inp_dec
|
| 288 |
+
mem_tokens = self.decoder_tokenizer.mem_token * num_mem_tokens
|
| 289 |
+
if self.sep:
|
| 290 |
+
mem_tokens += self.decoder_tokenizer.sep_token
|
| 291 |
+
|
| 292 |
+
instr = [self.decoder_tokenizer.bos_token + mem_tokens* self.generation_top_k + '[INST]' + question + '\n[/INST]\n' for question in questions]
|
| 293 |
+
inp_dec = self.decoder_tokenizer(instr, truncation=True, return_tensors='pt', padding="longest")
|
| 294 |
+
|
| 295 |
+
# generate
|
| 296 |
+
model_input = {
|
| 297 |
+
'enc_input_ids': enc_input['input_ids'],
|
| 298 |
+
'enc_attention_mask': enc_input['attention_mask'],
|
| 299 |
+
'dec_input_ids': inp_dec['input_ids'],
|
| 300 |
+
'dec_attention_mask': inp_dec['attention_mask']
|
| 301 |
+
}
|
| 302 |
+
|
| 303 |
+
return self.generate(model_input, max_new_tokens)
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
|