Update dd_generator
Browse files- dd_generator.py +465 -0
dd_generator.py
ADDED
|
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass, field
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.distributions as dists
|
| 6 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
import math
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
import sacrebleu
|
| 14 |
+
|
| 15 |
+
from rouge import Rouge
|
| 16 |
+
|
| 17 |
+
@dataclass
|
| 18 |
+
class DiscreteDiffusionGeneratorArguments:
|
| 19 |
+
max_iterations: int = field(
|
| 20 |
+
default=10
|
| 21 |
+
)
|
| 22 |
+
mbr: int = field(
|
| 23 |
+
default=1
|
| 24 |
+
)
|
| 25 |
+
length_beam: int = field(
|
| 26 |
+
default=1
|
| 27 |
+
)
|
| 28 |
+
oracle_length: bool = field(
|
| 29 |
+
default=False
|
| 30 |
+
)
|
| 31 |
+
strategy: str = field(
|
| 32 |
+
default="reparam-uncond-deterministic-cosine"
|
| 33 |
+
)
|
| 34 |
+
argmax_decoding: bool = field(
|
| 35 |
+
default=True
|
| 36 |
+
)
|
| 37 |
+
bpe: str = field(
|
| 38 |
+
default="sentencepiece"
|
| 39 |
+
)
|
| 40 |
+
bleu_tokenize: str = field(
|
| 41 |
+
default="13a"
|
| 42 |
+
)
|
| 43 |
+
return_history: bool = field(
|
| 44 |
+
default=False
|
| 45 |
+
)
|
| 46 |
+
temperature: float = field(
|
| 47 |
+
default=0.8
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def topk_masking(scores, cutoff_len, stochastic=False, temp=1.0):
|
| 53 |
+
"""
|
| 54 |
+
scores: [b, n]
|
| 55 |
+
cutoff_len: [b, 1]
|
| 56 |
+
stochastic: bool, whether to add noise to select top_k or not
|
| 57 |
+
returns:
|
| 58 |
+
mask: [b, n], with 1 if the token is in top-k lowest scores, 0 otherwise
|
| 59 |
+
"""
|
| 60 |
+
if stochastic:
|
| 61 |
+
gumbel_noise = -torch.log(-torch.log(torch.rand_like(scores) + 1e-8) + 1e-8)
|
| 62 |
+
_scores = scores + temp * gumbel_noise
|
| 63 |
+
else:
|
| 64 |
+
_scores = scores
|
| 65 |
+
sorted_index = _scores.sort(-1)[0]
|
| 66 |
+
cutoff = sorted_index.gather(dim=-1, index=cutoff_len) # + 1e-10
|
| 67 |
+
# cutoff_len = k -> select k + 1 tokens
|
| 68 |
+
masking = _scores < cutoff
|
| 69 |
+
try:
|
| 70 |
+
assert (~(cutoff_len == 0).all()) | (~masking).all()
|
| 71 |
+
except:
|
| 72 |
+
import ipdb;ipdb.set_trace()
|
| 73 |
+
return masking
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class MergeBLEU(object):
|
| 77 |
+
def __call__(self, evalpreds):
|
| 78 |
+
# if torch.distributed.get_rank() == 0:
|
| 79 |
+
# import ipdb; ipdb.set_trace()
|
| 80 |
+
# else:
|
| 81 |
+
# import time; time.sleep(120)
|
| 82 |
+
import inspect
|
| 83 |
+
sys_stats, ref_stats = evalpreds[0], evalpreds[1]
|
| 84 |
+
|
| 85 |
+
sys_stats = sys_stats.reshape(-1, 5).astype('long').sum(0).tolist()
|
| 86 |
+
ref_stats = ref_stats.reshape(-1, 5).astype('long').sum(0).tolist()
|
| 87 |
+
try:
|
| 88 |
+
from sacrebleu.metrics import BLEU
|
| 89 |
+
comp_bleu = BLEU.compute_bleu
|
| 90 |
+
except ImportError:
|
| 91 |
+
comp_bleu = sacrebleu.compute_bleu
|
| 92 |
+
fn_sig = inspect.getfullargspec(comp_bleu)[0]
|
| 93 |
+
if "smooth_method" in fn_sig:
|
| 94 |
+
smooth = {"smooth_method": "exp"}
|
| 95 |
+
else:
|
| 96 |
+
smooth = {"smooth": "exp"}
|
| 97 |
+
return {
|
| 98 |
+
"bleu": comp_bleu(
|
| 99 |
+
correct=sys_stats[:4],
|
| 100 |
+
total=ref_stats[:4],
|
| 101 |
+
sys_len=sys_stats[-1],
|
| 102 |
+
ref_len=ref_stats[-1],
|
| 103 |
+
**smooth
|
| 104 |
+
).score
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
class MergeRouge(object):
|
| 108 |
+
def __call__(self, evalpreds):
|
| 109 |
+
# if torch.distributed.get_rank() == 0:
|
| 110 |
+
# import ipdb; ipdb.set_trace()
|
| 111 |
+
# else:
|
| 112 |
+
# import time; time.sleep(120)
|
| 113 |
+
import inspect
|
| 114 |
+
# sys
|
| 115 |
+
avg_rouge, batch_size = evalpreds[0], evalpreds[1]
|
| 116 |
+
|
| 117 |
+
rouge = (avg_rouge * batch_size).sum() / batch_size.sum()
|
| 118 |
+
|
| 119 |
+
return {
|
| 120 |
+
"rouge": rouge
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
class DiscreteDiffusionGenerator:
|
| 125 |
+
def __init__(self, args, dictionary=None, tokenizer=None) -> None:
|
| 126 |
+
self.args = args
|
| 127 |
+
self.dictionary = dictionary
|
| 128 |
+
self.tokenizer = tokenizer
|
| 129 |
+
self.write_prediction = None
|
| 130 |
+
|
| 131 |
+
assert (dictionary is not None) or (tokenizer is not None)
|
| 132 |
+
assert (dictionary is None) ^ (tokenizer is None)
|
| 133 |
+
|
| 134 |
+
self.retain_history = args.return_history
|
| 135 |
+
|
| 136 |
+
if dictionary is not None:
|
| 137 |
+
self.pad_id = dictionary.pad()
|
| 138 |
+
self.bos_id = dictionary.bos()
|
| 139 |
+
self.eos_id = dictionary.eos()
|
| 140 |
+
self.mask_id = dictionary.mask_index
|
| 141 |
+
else:
|
| 142 |
+
self.pad_id = tokenizer.pad_token_id
|
| 143 |
+
self.bos_id = tokenizer.bos_token_id
|
| 144 |
+
self.eos_id = tokenizer.eos_token_id
|
| 145 |
+
self.mask_id = tokenizer.mask_token_id
|
| 146 |
+
|
| 147 |
+
self.rouge = Rouge(["rouge-l"])
|
| 148 |
+
|
| 149 |
+
def set_write_to(self, path):
|
| 150 |
+
self.write_prediction = path
|
| 151 |
+
|
| 152 |
+
def _reparam_decoding(
|
| 153 |
+
self,
|
| 154 |
+
output_tokens,
|
| 155 |
+
output_scores,
|
| 156 |
+
cur_tokens,
|
| 157 |
+
cur_scores,
|
| 158 |
+
decoding_strategy,
|
| 159 |
+
xt_neq_x0,
|
| 160 |
+
non_special_sym_mask,
|
| 161 |
+
t,
|
| 162 |
+
max_step,
|
| 163 |
+
noise
|
| 164 |
+
):
|
| 165 |
+
"""
|
| 166 |
+
This function is used to perform reparameterized decoding.
|
| 167 |
+
"""
|
| 168 |
+
# output_tokens: [B, N]
|
| 169 |
+
# output_scores: [B, N]
|
| 170 |
+
# cur_tokens: [B, N]
|
| 171 |
+
# cur_scores: [B, N]
|
| 172 |
+
# xt_neq_x0: equivalent to not_b_t [B, N]
|
| 173 |
+
# non_special_sym_mask: [B, N]
|
| 174 |
+
# noise: either [B, N] or scalar (if using the mask noise)
|
| 175 |
+
|
| 176 |
+
# decoding_strategy needs to take the form of "reparam-<conditioning>-<topk_mode>-<schedule>"
|
| 177 |
+
_, condition, topk_mode, schedule = decoding_strategy.split("-")
|
| 178 |
+
|
| 179 |
+
# first set the denoising rate according to the schedule
|
| 180 |
+
if schedule == "linear":
|
| 181 |
+
rate = 1 - t / max_step
|
| 182 |
+
elif schedule == "cosine":
|
| 183 |
+
rate = np.cos(t / max_step * np.pi * 0.5)
|
| 184 |
+
else:
|
| 185 |
+
raise NotImplementedError
|
| 186 |
+
|
| 187 |
+
# compute the cutoff length for denoising top-k positions
|
| 188 |
+
cutoff_len = (
|
| 189 |
+
non_special_sym_mask.sum(1, keepdim=True).type_as(output_scores) * rate
|
| 190 |
+
).long()
|
| 191 |
+
# set the scores of special symbols to a large value so that they will never be selected
|
| 192 |
+
_scores_for_topk = cur_scores.masked_fill(~non_special_sym_mask, 1000.0)
|
| 193 |
+
|
| 194 |
+
# the top-k selection can be done in two ways: stochastic by injecting Gumbel noise or deterministic
|
| 195 |
+
if topk_mode.startswith("stochastic"):
|
| 196 |
+
noise_scale = float(topk_mode.replace("stochastic", ""))
|
| 197 |
+
lowest_k_mask = topk_masking(_scores_for_topk, cutoff_len, stochastic=True, temp=noise_scale * rate)
|
| 198 |
+
elif topk_mode == "deterministic":
|
| 199 |
+
lowest_k_mask = topk_masking(_scores_for_topk, cutoff_len, stochastic=False)
|
| 200 |
+
else:
|
| 201 |
+
raise NotImplementedError
|
| 202 |
+
|
| 203 |
+
# Various choices to generate v_t := [v1_t, v2_t].
|
| 204 |
+
# Note that
|
| 205 |
+
# v1_t governs the outcomes of tokens where b_t = 1,
|
| 206 |
+
# v2_t governs the outcomes of tokens where b_t = 0.
|
| 207 |
+
|
| 208 |
+
# #### the `uncond` mode ####
|
| 209 |
+
# In our reparameterized decoding,
|
| 210 |
+
# both v1_t and v2_t can be fully determined by the current token scores .
|
| 211 |
+
|
| 212 |
+
# #### the `cond` mode ####
|
| 213 |
+
# However, we can also impose some conditional constraints on v1_t so that
|
| 214 |
+
# the decoding can be performed in a more conservative manner.
|
| 215 |
+
# For example, we can set v1_t = 0 only when
|
| 216 |
+
# (the newly output tokens are the same as previous denoised results, AND
|
| 217 |
+
# the current token score becomes lower, AND
|
| 218 |
+
# the current token score is not in the top-k share among all tokens).
|
| 219 |
+
if condition == "cond":
|
| 220 |
+
not_v1_t = (cur_tokens == output_tokens) & (cur_scores < output_scores) & lowest_k_mask
|
| 221 |
+
elif condition == "uncond":
|
| 222 |
+
not_v1_t = lowest_k_mask
|
| 223 |
+
else:
|
| 224 |
+
raise NotImplementedError
|
| 225 |
+
|
| 226 |
+
# for b_t = 0, the token is set to noise if it is in the lowest k scores.
|
| 227 |
+
not_v2_t = lowest_k_mask
|
| 228 |
+
|
| 229 |
+
masked_to_noise = (~xt_neq_x0 & not_v1_t) | (xt_neq_x0 & not_v2_t)
|
| 230 |
+
if isinstance(noise, torch.Tensor):
|
| 231 |
+
output_tokens.masked_scatter_(masked_to_noise, noise[masked_to_noise])
|
| 232 |
+
elif isinstance(noise, (int, float)):
|
| 233 |
+
output_tokens.masked_fill_(masked_to_noise, noise)
|
| 234 |
+
else:
|
| 235 |
+
raise NotImplementedError("noise should be either a tensor or a scalar")
|
| 236 |
+
output_scores.masked_fill_(masked_to_noise, -math.inf)
|
| 237 |
+
|
| 238 |
+
masked_to_x0 = xt_neq_x0 & ~not_v2_t
|
| 239 |
+
output_tokens.masked_scatter_(masked_to_x0, cur_tokens[masked_to_x0])
|
| 240 |
+
output_scores.masked_scatter_(masked_to_x0, cur_scores[masked_to_x0])
|
| 241 |
+
# b_{t} = (b_{t+1} & u_t) | v_t
|
| 242 |
+
# For convenience, save the NOT of b_t for the next iteration
|
| 243 |
+
# NOT_b_{t} = (NOT_b_{t+1} | not_v1_t) & not_v2_t
|
| 244 |
+
new_xt_neq_x0 = (xt_neq_x0 | not_v1_t) & not_v2_t
|
| 245 |
+
return new_xt_neq_x0
|
| 246 |
+
|
| 247 |
+
def denoise_step(self, model, decoder_out, partial_masks):
|
| 248 |
+
output_tokens = decoder_out.output_tokens
|
| 249 |
+
output_scores = decoder_out.output_scores
|
| 250 |
+
prev_step, cur_step = decoder_out.step, decoder_out.step + 1
|
| 251 |
+
max_step = decoder_out.max_step
|
| 252 |
+
temperature = self.args.temperature
|
| 253 |
+
# temperature = (
|
| 254 |
+
# -0.05 * (cur_step / (max_step - 1)) + 0.5
|
| 255 |
+
# if self.temperature_annealing
|
| 256 |
+
# else self.temperature
|
| 257 |
+
# )
|
| 258 |
+
|
| 259 |
+
# t = torch.LongTensor(
|
| 260 |
+
# [(max_step - prev_step) * (model.num_diffusion_timesteps // max_step)] * output_tokens.size(0)
|
| 261 |
+
# ).to(output_tokens)
|
| 262 |
+
logits = model(output_tokens, partial_masks)
|
| 263 |
+
|
| 264 |
+
logits[..., self.mask_id] = -math.inf
|
| 265 |
+
scores = torch.log_softmax(logits, dim=-1)
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
if self.args.strategy == "cmlm":
|
| 269 |
+
# get the mask
|
| 270 |
+
# <bos>, <eos> are ignored in this case since
|
| 271 |
+
# they are not equal to unk.
|
| 272 |
+
output_masks = output_tokens.eq(self.mask_id)
|
| 273 |
+
unmask_prob = 1 / (max_step - prev_step)
|
| 274 |
+
# where to unmask
|
| 275 |
+
changes = torch.rand(output_tokens.shape, device=output_tokens.device) < unmask_prob
|
| 276 |
+
# don't unmask somewhere already unmasked
|
| 277 |
+
changes = torch.bitwise_and(changes, output_masks)
|
| 278 |
+
|
| 279 |
+
if self.args.argmax_decoding:
|
| 280 |
+
output_scores, new_tokens = scores.max(-1)
|
| 281 |
+
else:
|
| 282 |
+
new_tokens = dists.Categorical(logits=scores / temperature).sample()
|
| 283 |
+
output_scores = torch.gather(scores, -1, new_tokens.unsqueeze(-1)).squeeze(-1)
|
| 284 |
+
output_tokens[changes] = new_tokens[changes]
|
| 285 |
+
elif self.args.strategy == "ar":
|
| 286 |
+
output_masks = output_tokens.eq(self.mask_id)
|
| 287 |
+
unmask_indices = (output_tokens.ne(self.mask_id) & output_tokens.ne(self.eos_id) & output_tokens.ne(self.pad_id)).sum(dim=-1)
|
| 288 |
+
indices = torch.arange(output_tokens.size(-1)).expand(output_tokens.shape).to(output_masks.device)
|
| 289 |
+
if self.args.argmax_decoding:
|
| 290 |
+
output_scores, new_tokens = scores.max(-1)
|
| 291 |
+
else:
|
| 292 |
+
new_tokens = dists.Categorical(logits=scores / temperature).sample()
|
| 293 |
+
output_scores = torch.gather(scores, -1, new_tokens.unsqueeze(-1)).squeeze(-1)
|
| 294 |
+
output_tokens[unmask_indices[:, None]==indices] = new_tokens[unmask_indices[:, None]==indices]
|
| 295 |
+
# output_tokens[changes] = new_tokens[changes]
|
| 296 |
+
else:
|
| 297 |
+
if self.args.argmax_decoding:
|
| 298 |
+
cur_scores, cur_tokens = scores.max(-1)
|
| 299 |
+
else:
|
| 300 |
+
cur_tokens = dists.Categorical(logits=scores / temperature).sample()
|
| 301 |
+
cur_scores = torch.gather(scores, -1, cur_tokens.unsqueeze(-1)).squeeze(-1)
|
| 302 |
+
cur_scores = cur_scores.to(output_scores)
|
| 303 |
+
|
| 304 |
+
output_masks = self._reparam_decoding(
|
| 305 |
+
output_tokens=output_tokens,
|
| 306 |
+
output_scores=output_scores,
|
| 307 |
+
cur_tokens=cur_tokens,
|
| 308 |
+
cur_scores=cur_scores,
|
| 309 |
+
decoding_strategy=self.args.strategy,
|
| 310 |
+
xt_neq_x0=decoder_out.output_masks,
|
| 311 |
+
non_special_sym_mask=decoder_out.non_fixed_sym_masks,
|
| 312 |
+
t=cur_step,
|
| 313 |
+
max_step=max_step,
|
| 314 |
+
noise=self.mask_id
|
| 315 |
+
)
|
| 316 |
+
if self.retain_history:
|
| 317 |
+
history = ([] if decoder_out.history is None else decoder_out.history) + [output_tokens.clone()]
|
| 318 |
+
else:
|
| 319 |
+
history = None
|
| 320 |
+
# history = (
|
| 321 |
+
# decoder_out.history + [output_tokens.clone()]
|
| 322 |
+
# if self.retain_history
|
| 323 |
+
# else None
|
| 324 |
+
# )
|
| 325 |
+
return decoder_out._replace(
|
| 326 |
+
step=cur_step,
|
| 327 |
+
output_tokens=output_tokens,
|
| 328 |
+
output_scores=output_scores,
|
| 329 |
+
output_masks=output_masks,
|
| 330 |
+
history=history,
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
def decode(self, seqs_tensors, preserve_special=False):
|
| 335 |
+
seqs_tensors[seqs_tensors < 0] = self.pad_id
|
| 336 |
+
if self.dictionary is not None:
|
| 337 |
+
seqs = [
|
| 338 |
+
self.dictionary.string(seq, self.args.bpe).strip()
|
| 339 |
+
for seq in seqs_tensors
|
| 340 |
+
]
|
| 341 |
+
if not preserve_special:
|
| 342 |
+
seqs = [seq.replace(self.dictionary.pad_word, '') for seq in seqs]
|
| 343 |
+
else:
|
| 344 |
+
seqs = self.tokenizer.batch_decode(seqs_tensors, skip_special_tokens=(not preserve_special))
|
| 345 |
+
return [seq.lower() for seq in seqs]
|
| 346 |
+
|
| 347 |
+
def compute_bleu(self, hyps, refs):
|
| 348 |
+
if isinstance(hyps, torch.Tensor):
|
| 349 |
+
hyps = self.decode(hyps)
|
| 350 |
+
if isinstance(refs, torch.Tensor):
|
| 351 |
+
refs = self.decode(refs)
|
| 352 |
+
return sacrebleu.corpus_bleu(hyps, [refs], tokenize=self.args.bleu_tokenize)
|
| 353 |
+
|
| 354 |
+
def compute_rouge(self, hyps, refs):
|
| 355 |
+
if isinstance(hyps, torch.Tensor):
|
| 356 |
+
hyps = self.decode(hyps)
|
| 357 |
+
if isinstance(refs, torch.Tensor):
|
| 358 |
+
refs = self.decode(refs)
|
| 359 |
+
return self.rouge.get_scores(hyps, [[ref] for ref in refs])['rouge-l']['f']
|
| 360 |
+
|
| 361 |
+
def stepwise_generate(self, model, inputs):
|
| 362 |
+
src_tokens = inputs["net_input"]["src_tokens"]
|
| 363 |
+
partial_masks = inputs["net_input"]["partial_masks"]
|
| 364 |
+
# assert src_tokens.size(-1) < 514
|
| 365 |
+
# assert partial_masks.size(-1) < 514
|
| 366 |
+
# target = inputs["target"]
|
| 367 |
+
raw_model = model.module if hasattr(model, "module") else model
|
| 368 |
+
if "prefix_masks" in inputs["net_input"]:
|
| 369 |
+
prefix_masks = inputs["net_input"]["prefix_masks"]
|
| 370 |
+
else:
|
| 371 |
+
prefix_masks = partial_masks
|
| 372 |
+
# TODO: FIXME: to support general blockwise generation.
|
| 373 |
+
partial_masks, prev_decoder_out = raw_model.initialize_decode_samples(
|
| 374 |
+
src_tokens, partial_masks, prefix_masks, oracle_length=self.args.oracle_length, length_beam=self.args.length_beam, mbr=self.args.mbr
|
| 375 |
+
)
|
| 376 |
+
prev_decoder_out = prev_decoder_out._replace(
|
| 377 |
+
step=0, max_step=self.args.max_iterations
|
| 378 |
+
)
|
| 379 |
+
for step in range(self.args.max_iterations):
|
| 380 |
+
prev_decoder_out = self.denoise_step(model, prev_decoder_out, partial_masks)
|
| 381 |
+
yield prev_decoder_out
|
| 382 |
+
|
| 383 |
+
@torch.no_grad()
|
| 384 |
+
def generate(self, model, inputs):
|
| 385 |
+
src_tokens = inputs["net_input"]["src_tokens"]
|
| 386 |
+
partial_masks = inputs["net_input"]["partial_masks"]
|
| 387 |
+
# assert src_tokens.size(-1) < 514
|
| 388 |
+
# assert partial_masks.size(-1) < 514
|
| 389 |
+
# target = inputs["target"]
|
| 390 |
+
# TODO: FIXME: to support general blockwise generation.
|
| 391 |
+
if "prefix_masks" in inputs["net_input"]:
|
| 392 |
+
prefix_masks = inputs["net_input"]["prefix_masks"]
|
| 393 |
+
else:
|
| 394 |
+
prefix_masks = partial_masks
|
| 395 |
+
partial_masks, prev_decoder_out = model.initialize_decode_samples(
|
| 396 |
+
src_tokens, partial_masks, prefix_masks, oracle_length=self.args.oracle_length, length_beam=self.args.length_beam, mbr=self.args.mbr
|
| 397 |
+
)
|
| 398 |
+
prev_decoder_out = prev_decoder_out._replace(
|
| 399 |
+
step=0, max_step=self.args.max_iterations
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
for step in range(self.args.max_iterations):
|
| 403 |
+
prev_decoder_out = self.denoise_step(model, prev_decoder_out, partial_masks)
|
| 404 |
+
|
| 405 |
+
def finalized_hypos(tokens, scores, partial_mask, history=None):
|
| 406 |
+
cutoff = (
|
| 407 |
+
tokens.ne(self.pad_id) &
|
| 408 |
+
tokens.ne(self.bos_id) &
|
| 409 |
+
tokens.ne(self.eos_id) &
|
| 410 |
+
(~partial_mask)
|
| 411 |
+
)
|
| 412 |
+
tokens = tokens[cutoff]
|
| 413 |
+
if scores is None:
|
| 414 |
+
score = None
|
| 415 |
+
else:
|
| 416 |
+
scores = scores[cutoff]
|
| 417 |
+
score = scores.mean().item()
|
| 418 |
+
ret_dict = {
|
| 419 |
+
"tokens": tokens,
|
| 420 |
+
"positional_scores": scores,
|
| 421 |
+
"score": score,
|
| 422 |
+
"alignment": None
|
| 423 |
+
}
|
| 424 |
+
if history is not None:
|
| 425 |
+
ret_dict["history"] = [
|
| 426 |
+
finalized_hypos(history_tokens, None, partial_mask, history=None)
|
| 427 |
+
for history_tokens in history
|
| 428 |
+
]
|
| 429 |
+
return ret_dict
|
| 430 |
+
|
| 431 |
+
def mbr_select(hyps):
|
| 432 |
+
index = np.argmax(np.array(
|
| 433 |
+
[self.rouge.get_scores([hyps[i]], [[hyps[j]]])['rouge-l']['f']
|
| 434 |
+
for j in range(len(hyps)) if i != j]
|
| 435 |
+
).mean() for i in range(len(hyps)))
|
| 436 |
+
return hyps[index]
|
| 437 |
+
|
| 438 |
+
def score_select(hyps):
|
| 439 |
+
index = np.argmax([hyp["score"] for hyp in hyps])
|
| 440 |
+
return hyps[index]
|
| 441 |
+
|
| 442 |
+
output_tokens, output_scores = prev_decoder_out.output_tokens, prev_decoder_out.output_scores
|
| 443 |
+
if self.retain_history:
|
| 444 |
+
full_history = prev_decoder_out.history
|
| 445 |
+
histories = [[full_history[j][i] for j in range(self.args.max_iterations)] for i in range(output_tokens.size(0))]
|
| 446 |
+
hyps = []
|
| 447 |
+
for tokens, scores, partial_mask, history in zip(output_tokens, output_scores, partial_masks, histories):
|
| 448 |
+
hyps.append(finalized_hypos(tokens, scores, partial_mask, history))
|
| 449 |
+
# hyps = [
|
| 450 |
+
# finalized_hypos(tokens, scores, partial_mask, history)
|
| 451 |
+
# for tokens, scores, partial_mask, history in zip(output_tokens, output_scores, partial_masks, histories)
|
| 452 |
+
# ]
|
| 453 |
+
else:
|
| 454 |
+
hyps = [
|
| 455 |
+
finalized_hypos(tokens, scores, partial_mask, None)
|
| 456 |
+
for tokens, scores, partial_mask in zip(output_tokens, output_scores, partial_masks)
|
| 457 |
+
]
|
| 458 |
+
repeatition = self.args.mbr * self.args.length_beam
|
| 459 |
+
if repeatition > 1:
|
| 460 |
+
hyps = [score_select(hyps[i:i+repeatition])for i in range(0, len(hyps), repeatition)]
|
| 461 |
+
# hyps = [mbr_select(hyps[i:i+repeatition])for i in range(0, len(hyps), repeatition)]
|
| 462 |
+
|
| 463 |
+
finalized = pad_sequence([h["tokens"] for h in hyps ], batch_first=True, padding_value=self.pad_id)
|
| 464 |
+
history = [[item["tokens"] for item in h["history"]] for h in hyps] if self.retain_history else None
|
| 465 |
+
return finalized, history
|