--- base_model: aquif-ai/aquif-3-moe-17B-A2.8B-Think language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - language - aquif_moe - text-generation-inference - 17b - qwen-like - bailing-like - science - math - code --- ## About static quants of https://huggingface.co/aquif-ai/aquif-3-moe-17B-A2.8B-Think ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#aquif-3-moe-17b-a2.8b-thinking-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/aquif-3-moe-17b-a2.8b-thinking-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/aquif-3-moe-17b-a2.8b-thinking-GGUF/resolve/main/aquif-3-moe-17b-a2.8b-thinking.Q2_K.gguf) | Q2_K | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/aquif-3-moe-17b-a2.8b-thinking-GGUF/resolve/main/aquif-3-moe-17b-a2.8b-thinking.Q3_K_S.gguf) | Q3_K_S | 8.1 | | | [GGUF](https://huggingface.co/mradermacher/aquif-3-moe-17b-a2.8b-thinking-GGUF/resolve/main/aquif-3-moe-17b-a2.8b-thinking.Q3_K_M.gguf) | Q3_K_M | 8.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/aquif-3-moe-17b-a2.8b-thinking-GGUF/resolve/main/aquif-3-moe-17b-a2.8b-thinking.Q3_K_L.gguf) | Q3_K_L | 9.2 | | | [GGUF](https://huggingface.co/mradermacher/aquif-3-moe-17b-a2.8b-thinking-GGUF/resolve/main/aquif-3-moe-17b-a2.8b-thinking.IQ4_XS.gguf) | IQ4_XS | 9.4 | | | [GGUF](https://huggingface.co/mradermacher/aquif-3-moe-17b-a2.8b-thinking-GGUF/resolve/main/aquif-3-moe-17b-a2.8b-thinking.Q4_K_S.gguf) | Q4_K_S | 10.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/aquif-3-moe-17b-a2.8b-thinking-GGUF/resolve/main/aquif-3-moe-17b-a2.8b-thinking.Q4_K_M.gguf) | Q4_K_M | 11.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/aquif-3-moe-17b-a2.8b-thinking-GGUF/resolve/main/aquif-3-moe-17b-a2.8b-thinking.Q5_K_S.gguf) | Q5_K_S | 12.0 | | | [GGUF](https://huggingface.co/mradermacher/aquif-3-moe-17b-a2.8b-thinking-GGUF/resolve/main/aquif-3-moe-17b-a2.8b-thinking.Q5_K_M.gguf) | Q5_K_M | 12.8 | | | [GGUF](https://huggingface.co/mradermacher/aquif-3-moe-17b-a2.8b-thinking-GGUF/resolve/main/aquif-3-moe-17b-a2.8b-thinking.Q6_K.gguf) | Q6_K | 15.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/aquif-3-moe-17b-a2.8b-thinking-GGUF/resolve/main/aquif-3-moe-17b-a2.8b-thinking.Q8_0.gguf) | Q8_0 | 18.0 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.