mradermacher commited on
Commit
e36d157
·
verified ·
1 Parent(s): 4336100

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md CHANGED
@@ -1,3 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
@@ -7,3 +28,44 @@
7
  <!-- ### quants_skip: -->
8
  <!-- ### skip_mmproj: -->
9
  static quants of https://huggingface.co/CodeGoat24/UnifiedReward-2.0-qwen-3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: CodeGoat24/UnifiedReward-2.0-qwen-3b
3
+ datasets:
4
+ - CodeGoat24/HPD
5
+ - CodeGoat24/LiFT-HRA
6
+ - CodeGoat24/OIP
7
+ - CodeGoat24/EvalMuse
8
+ - CodeGoat24/ShareGPTVideo-DPO
9
+ - CodeGoat24/VideoFeedback
10
+ - CodeGoat24/LLaVA-Critic-113k
11
+ - CodeGoat24/VideoDPO
12
+ language:
13
+ - en
14
+ library_name: transformers
15
+ license: mit
16
+ mradermacher:
17
+ readme_rev: 1
18
+ quantized_by: mradermacher
19
+ ---
20
+ ## About
21
+
22
  <!-- ### quantize_version: 2 -->
23
  <!-- ### output_tensor_quantised: 1 -->
24
  <!-- ### convert_type: hf -->
 
28
  <!-- ### quants_skip: -->
29
  <!-- ### skip_mmproj: -->
30
  static quants of https://huggingface.co/CodeGoat24/UnifiedReward-2.0-qwen-3b
31
+
32
+ <!-- provided-files -->
33
+
34
+ ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#UnifiedReward-2.0-qwen-3b-GGUF).***
35
+
36
+ weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
37
+ ## Usage
38
+
39
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
40
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
41
+ more details, including on how to concatenate multi-part files.
42
+
43
+ ## Provided Quants
44
+
45
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
46
+
47
+ | Link | Type | Size/GB | Notes |
48
+ |:-----|:-----|--------:|:------|
49
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 0.9 | multi-modal supplement |
50
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.mmproj-f16.gguf) | mmproj-f16 | 1.4 | multi-modal supplement |
51
+
52
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
53
+ types (lower is better):
54
+
55
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
56
+
57
+ And here are Artefact2's thoughts on the matter:
58
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
59
+
60
+ ## FAQ / Model Request
61
+
62
+ See https://huggingface.co/mradermacher/model_requests for some answers to
63
+ questions you might have and/or if you want some other model quantized.
64
+
65
+ ## Thanks
66
+
67
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
68
+ me use its servers and providing upgrades to my workstation to enable
69
+ this work in my free time.
70
+
71
+ <!-- end -->