mradermacher commited on
Commit
b3ab766
·
verified ·
1 Parent(s): 031bc0f

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -1
README.md CHANGED
@@ -33,7 +33,7 @@ static quants of https://huggingface.co/CodeGoat24/UnifiedReward-2.0-qwen-3b
33
 
34
  ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#UnifiedReward-2.0-qwen-3b-GGUF).***
35
 
36
- weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
37
  ## Usage
38
 
39
  If you are unsure how to use GGUF files, refer to one of [TheBloke's
@@ -47,7 +47,19 @@ more details, including on how to concatenate multi-part files.
47
  | Link | Type | Size/GB | Notes |
48
  |:-----|:-----|--------:|:------|
49
  | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 0.9 | multi-modal supplement |
 
50
  | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.mmproj-f16.gguf) | mmproj-f16 | 1.4 | multi-modal supplement |
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  Here is a handy graph by ikawrakow comparing some lower-quality quant
53
  types (lower is better):
 
33
 
34
  ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#UnifiedReward-2.0-qwen-3b-GGUF).***
35
 
36
+ weighted/imatrix quants are available at https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-i1-GGUF
37
  ## Usage
38
 
39
  If you are unsure how to use GGUF files, refer to one of [TheBloke's
 
47
  | Link | Type | Size/GB | Notes |
48
  |:-----|:-----|--------:|:------|
49
  | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 0.9 | multi-modal supplement |
50
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.Q2_K.gguf) | Q2_K | 1.4 | |
51
  | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.mmproj-f16.gguf) | mmproj-f16 | 1.4 | multi-modal supplement |
52
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.Q3_K_S.gguf) | Q3_K_S | 1.6 | |
53
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality |
54
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.Q3_K_L.gguf) | Q3_K_L | 1.8 | |
55
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.IQ4_XS.gguf) | IQ4_XS | 1.9 | |
56
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended |
57
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended |
58
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.Q5_K_S.gguf) | Q5_K_S | 2.3 | |
59
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.Q5_K_M.gguf) | Q5_K_M | 2.3 | |
60
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.Q6_K.gguf) | Q6_K | 2.6 | very good quality |
61
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality |
62
+ | [GGUF](https://huggingface.co/mradermacher/UnifiedReward-2.0-qwen-3b-GGUF/resolve/main/UnifiedReward-2.0-qwen-3b.f16.gguf) | f16 | 6.3 | 16 bpw, overkill |
63
 
64
  Here is a handy graph by ikawrakow comparing some lower-quality quant
65
  types (lower is better):