Commit
·
f71db78
1
Parent(s):
d830485
Fixes for PEFT Tuning based on iwalton3
Browse fileshttps://github.com/iwalton3/mpt-lora-patch/tree/master
- modeling_mpt.py +65 -9
modeling_mpt.py
CHANGED
|
@@ -23,12 +23,19 @@ Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
|
| 23 |
class MPTPreTrainedModel(PreTrainedModel):
|
| 24 |
config_class = MPTConfig
|
| 25 |
base_model_prefix = 'model'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
class MPTModel(MPTPreTrainedModel):
|
| 28 |
|
| 29 |
def __init__(self, config: MPTConfig):
|
| 30 |
config._validate_config()
|
| 31 |
super().__init__(config)
|
|
|
|
| 32 |
self.attn_impl = config.attn_config['attn_impl']
|
| 33 |
self.prefix_lm = config.attn_config['prefix_lm']
|
| 34 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
|
@@ -127,19 +134,48 @@ class MPTModel(MPTPreTrainedModel):
|
|
| 127 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
| 128 |
return attn_bias
|
| 129 |
|
| 130 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
| 131 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 132 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
if attention_mask is not None:
|
| 134 |
attention_mask = attention_mask.bool()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
if prefix_mask is not None:
|
| 136 |
prefix_mask = prefix_mask.bool()
|
| 137 |
if not return_dict:
|
| 138 |
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
| 139 |
if output_attentions:
|
| 140 |
raise NotImplementedError('output_attentions is not implemented yet for MPT')
|
| 141 |
-
if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
|
| 142 |
-
|
| 143 |
if self.prefix_lm and prefix_mask is None:
|
| 144 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
| 145 |
if self.training:
|
|
@@ -147,9 +183,8 @@ class MPTModel(MPTPreTrainedModel):
|
|
| 147 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
| 148 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
| 149 |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
| 150 |
-
S =
|
| 151 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
| 152 |
-
tok_emb = self.wte(input_ids)
|
| 153 |
if self.alibi:
|
| 154 |
x = tok_emb
|
| 155 |
else:
|
|
@@ -161,7 +196,7 @@ class MPTModel(MPTPreTrainedModel):
|
|
| 161 |
if S + past_position > self.config.max_seq_len:
|
| 162 |
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
| 163 |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
| 164 |
-
if attention_mask is not None:
|
| 165 |
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
| 166 |
pos_emb = self.wpe(pos)
|
| 167 |
x = tok_emb + pos_emb
|
|
@@ -174,13 +209,34 @@ class MPTModel(MPTPreTrainedModel):
|
|
| 174 |
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=x.dtype, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
| 175 |
if use_cache and past_key_values is None:
|
| 176 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
|
|
|
| 177 |
all_hidden_states = () if output_hidden_states else None
|
| 178 |
for (b_idx, block) in enumerate(self.blocks):
|
| 179 |
if output_hidden_states:
|
| 180 |
assert all_hidden_states is not None
|
| 181 |
all_hidden_states = all_hidden_states + (x,)
|
| 182 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
if past_key_values is not None:
|
| 185 |
past_key_values[b_idx] = past_key_value
|
| 186 |
x = self.norm_f(x)
|
|
@@ -231,10 +287,10 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
| 231 |
def get_decoder(self):
|
| 232 |
return self.transformer
|
| 233 |
|
| 234 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
| 235 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 236 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 237 |
-
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
| 238 |
logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight)
|
| 239 |
if self.logit_scale is not None:
|
| 240 |
if self.logit_scale == 0:
|
|
|
|
| 23 |
class MPTPreTrainedModel(PreTrainedModel):
|
| 24 |
config_class = MPTConfig
|
| 25 |
base_model_prefix = 'model'
|
| 26 |
+
_no_split_modules = ["MPTBlock"]
|
| 27 |
+
supports_gradient_checkpointing = True
|
| 28 |
+
|
| 29 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 30 |
+
if isinstance(module, MPTModel):
|
| 31 |
+
module.gradient_checkpointing = value
|
| 32 |
|
| 33 |
class MPTModel(MPTPreTrainedModel):
|
| 34 |
|
| 35 |
def __init__(self, config: MPTConfig):
|
| 36 |
config._validate_config()
|
| 37 |
super().__init__(config)
|
| 38 |
+
self.gradient_checkpointing = False
|
| 39 |
self.attn_impl = config.attn_config['attn_impl']
|
| 40 |
self.prefix_lm = config.attn_config['prefix_lm']
|
| 41 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
|
|
|
| 134 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
| 135 |
return attn_bias
|
| 136 |
|
| 137 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
| 138 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 139 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 140 |
+
if self.gradient_checkpointing and self.training:
|
| 141 |
+
if use_cache:
|
| 142 |
+
use_cache = False
|
| 143 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 144 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
| 145 |
+
elif input_ids is not None:
|
| 146 |
+
batch_size, seq_length = input_ids.shape
|
| 147 |
+
elif inputs_embeds is not None:
|
| 148 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 149 |
+
else:
|
| 150 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
| 151 |
+
|
| 152 |
+
seq_length_with_past = seq_length
|
| 153 |
+
past_key_values_length = 0
|
| 154 |
+
|
| 155 |
+
if past_key_values is not None:
|
| 156 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
| 157 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 158 |
+
|
| 159 |
if attention_mask is not None:
|
| 160 |
attention_mask = attention_mask.bool()
|
| 161 |
+
else:
|
| 162 |
+
attention_mask = torch.ones(
|
| 163 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
if inputs_embeds is None:
|
| 167 |
+
tok_emb = self.wte(input_ids)
|
| 168 |
+
else:
|
| 169 |
+
tok_emb = inputs_embeds
|
| 170 |
+
|
| 171 |
if prefix_mask is not None:
|
| 172 |
prefix_mask = prefix_mask.bool()
|
| 173 |
if not return_dict:
|
| 174 |
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
| 175 |
if output_attentions:
|
| 176 |
raise NotImplementedError('output_attentions is not implemented yet for MPT')
|
| 177 |
+
#if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
|
| 178 |
+
# raise NotImplementedError('MPT does not support training with left padding.')
|
| 179 |
if self.prefix_lm and prefix_mask is None:
|
| 180 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
| 181 |
if self.training:
|
|
|
|
| 183 |
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
| 184 |
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
| 185 |
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
| 186 |
+
S = seq_length
|
| 187 |
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
|
|
|
| 188 |
if self.alibi:
|
| 189 |
x = tok_emb
|
| 190 |
else:
|
|
|
|
| 196 |
if S + past_position > self.config.max_seq_len:
|
| 197 |
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
| 198 |
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
| 199 |
+
if attention_mask is not None and not self.training:
|
| 200 |
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
| 201 |
pos_emb = self.wpe(pos)
|
| 202 |
x = tok_emb + pos_emb
|
|
|
|
| 209 |
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=x.dtype, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
| 210 |
if use_cache and past_key_values is None:
|
| 211 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
| 212 |
+
|
| 213 |
all_hidden_states = () if output_hidden_states else None
|
| 214 |
for (b_idx, block) in enumerate(self.blocks):
|
| 215 |
if output_hidden_states:
|
| 216 |
assert all_hidden_states is not None
|
| 217 |
all_hidden_states = all_hidden_states + (x,)
|
| 218 |
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
| 219 |
+
|
| 220 |
+
if self.gradient_checkpointing and self.training:
|
| 221 |
+
|
| 222 |
+
def create_custom_forward(module):
|
| 223 |
+
def custom_forward(*inputs):
|
| 224 |
+
# None for past_key_value
|
| 225 |
+
return module(*inputs)
|
| 226 |
+
|
| 227 |
+
return custom_forward
|
| 228 |
+
|
| 229 |
+
(x, past_key_value) = torch.utils.checkpoint.checkpoint(
|
| 230 |
+
create_custom_forward(block),
|
| 231 |
+
x,
|
| 232 |
+
past_key_value,
|
| 233 |
+
attn_bias,
|
| 234 |
+
attention_mask,
|
| 235 |
+
self.is_causal,
|
| 236 |
+
)
|
| 237 |
+
else:
|
| 238 |
+
(x, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
|
| 239 |
+
|
| 240 |
if past_key_values is not None:
|
| 241 |
past_key_values[b_idx] = past_key_value
|
| 242 |
x = self.norm_f(x)
|
|
|
|
| 287 |
def get_decoder(self):
|
| 288 |
return self.transformer
|
| 289 |
|
| 290 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
|
| 291 |
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 292 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 293 |
+
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, inputs_embeds=inputs_embeds)
|
| 294 |
logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight)
|
| 295 |
if self.logit_scale is not None:
|
| 296 |
if self.logit_scale == 0:
|