Upload 12 files
Browse files- config.json +39 -0
- configuration.json +1 -0
- generation_config.json +7 -0
- got_vision_b.py +468 -0
- model.safetensors +3 -0
- modeling_GOT.py +881 -0
- qwen.tiktoken +0 -0
- render_tools.py +96 -0
- sft_args.json +246 -0
- special_tokens_map.json +4 -0
- tokenization_qwen.py +264 -0
- tokenizer_config.json +15 -0
config.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/home/moataz/.cache/modelscope/hub/stepfun-ai/GOT-OCR2_0",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"GOTQwenForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "modeling_GOT.GOTConfig",
|
| 9 |
+
"AutoModel": "modeling_GOT.GOTQwenForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"bos_token_id": 151643,
|
| 12 |
+
"eos_token_id": 151643,
|
| 13 |
+
"freeze_vision_tower": false,
|
| 14 |
+
"hidden_act": "silu",
|
| 15 |
+
"hidden_size": 1024,
|
| 16 |
+
"im_end_token": 151858,
|
| 17 |
+
"im_patch_token": 151859,
|
| 18 |
+
"im_start_token": 151857,
|
| 19 |
+
"image_token_len": 256,
|
| 20 |
+
"initializer_range": 0.02,
|
| 21 |
+
"intermediate_size": 2816,
|
| 22 |
+
"max_position_embeddings": 32768,
|
| 23 |
+
"max_window_layers": 21,
|
| 24 |
+
"model_type": "GOT",
|
| 25 |
+
"num_attention_heads": 16,
|
| 26 |
+
"num_hidden_layers": 24,
|
| 27 |
+
"num_key_value_heads": 16,
|
| 28 |
+
"rms_norm_eps": 1e-06,
|
| 29 |
+
"rope_scaling": null,
|
| 30 |
+
"rope_theta": 1000000.0,
|
| 31 |
+
"sliding_window": null,
|
| 32 |
+
"tie_word_embeddings": true,
|
| 33 |
+
"torch_dtype": "bfloat16",
|
| 34 |
+
"transformers_version": "4.45.2",
|
| 35 |
+
"use_cache": true,
|
| 36 |
+
"use_im_start_end": true,
|
| 37 |
+
"use_sliding_window": false,
|
| 38 |
+
"vocab_size": 151860
|
| 39 |
+
}
|
configuration.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"eos_token_id": 151645,
|
| 4 |
+
"max_new_tokens": 2048,
|
| 5 |
+
"pad_token_id": 151643,
|
| 6 |
+
"transformers_version": "4.45.2"
|
| 7 |
+
}
|
got_vision_b.py
ADDED
|
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from typing import Optional, Tuple, Type
|
| 4 |
+
from functools import partial
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from typing import Type
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class MLPBlock(nn.Module):
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
embedding_dim: int,
|
| 14 |
+
mlp_dim: int,
|
| 15 |
+
act: Type[nn.Module] = nn.GELU,
|
| 16 |
+
) -> None:
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
| 19 |
+
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
| 20 |
+
self.act = act()
|
| 21 |
+
|
| 22 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 23 |
+
return self.lin2(self.act(self.lin1(x)))
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class LayerNorm2d(nn.Module):
|
| 28 |
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
| 31 |
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
| 32 |
+
self.eps = eps
|
| 33 |
+
|
| 34 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 35 |
+
u = x.mean(1, keepdim=True)
|
| 36 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
| 37 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
| 38 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
| 39 |
+
return x
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class ImageEncoderViT(nn.Module):
|
| 44 |
+
def __init__(
|
| 45 |
+
self,
|
| 46 |
+
img_size: int = 1024,
|
| 47 |
+
patch_size: int = 16,
|
| 48 |
+
in_chans: int = 3,
|
| 49 |
+
embed_dim: int = 768,
|
| 50 |
+
depth: int = 12,
|
| 51 |
+
num_heads: int = 12,
|
| 52 |
+
mlp_ratio: float = 4.0,
|
| 53 |
+
out_chans: int = 256,
|
| 54 |
+
qkv_bias: bool = True,
|
| 55 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
| 56 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
| 57 |
+
use_abs_pos: bool = True,
|
| 58 |
+
use_rel_pos: bool = False,
|
| 59 |
+
rel_pos_zero_init: bool = True,
|
| 60 |
+
window_size: int = 0,
|
| 61 |
+
global_attn_indexes: Tuple[int, ...] = (),
|
| 62 |
+
) -> None:
|
| 63 |
+
"""
|
| 64 |
+
Args:
|
| 65 |
+
img_size (int): Input image size.
|
| 66 |
+
patch_size (int): Patch size.
|
| 67 |
+
in_chans (int): Number of input image channels.
|
| 68 |
+
embed_dim (int): Patch embedding dimension.
|
| 69 |
+
depth (int): Depth of ViT.
|
| 70 |
+
num_heads (int): Number of attention heads in each ViT block.
|
| 71 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 72 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
| 73 |
+
norm_layer (nn.Module): Normalization layer.
|
| 74 |
+
act_layer (nn.Module): Activation layer.
|
| 75 |
+
use_abs_pos (bool): If True, use absolute positional embeddings.
|
| 76 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
| 77 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
| 78 |
+
window_size (int): Window size for window attention blocks.
|
| 79 |
+
global_attn_indexes (list): Indexes for blocks using global attention.
|
| 80 |
+
"""
|
| 81 |
+
super().__init__()
|
| 82 |
+
self.img_size = img_size
|
| 83 |
+
|
| 84 |
+
self.patch_embed = PatchEmbed(
|
| 85 |
+
kernel_size=(patch_size, patch_size),
|
| 86 |
+
stride=(patch_size, patch_size),
|
| 87 |
+
in_chans=in_chans,
|
| 88 |
+
embed_dim=embed_dim,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
self.pos_embed: Optional[nn.Parameter] = None
|
| 92 |
+
if use_abs_pos:
|
| 93 |
+
# Initialize absolute positional embedding with pretrain image size.
|
| 94 |
+
self.pos_embed = nn.Parameter(
|
| 95 |
+
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
self.blocks = nn.ModuleList()
|
| 99 |
+
for i in range(depth):
|
| 100 |
+
block = Block(
|
| 101 |
+
dim=embed_dim,
|
| 102 |
+
num_heads=num_heads,
|
| 103 |
+
mlp_ratio=mlp_ratio,
|
| 104 |
+
qkv_bias=qkv_bias,
|
| 105 |
+
norm_layer=norm_layer,
|
| 106 |
+
act_layer=act_layer,
|
| 107 |
+
use_rel_pos=use_rel_pos,
|
| 108 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
| 109 |
+
window_size=window_size if i not in global_attn_indexes else 0,
|
| 110 |
+
input_size=(img_size // patch_size, img_size // patch_size),
|
| 111 |
+
)
|
| 112 |
+
self.blocks.append(block)
|
| 113 |
+
|
| 114 |
+
self.neck = nn.Sequential(
|
| 115 |
+
nn.Conv2d(
|
| 116 |
+
embed_dim,
|
| 117 |
+
out_chans,
|
| 118 |
+
kernel_size=1,
|
| 119 |
+
bias=False,
|
| 120 |
+
),
|
| 121 |
+
LayerNorm2d(out_chans),
|
| 122 |
+
nn.Conv2d(
|
| 123 |
+
out_chans,
|
| 124 |
+
out_chans,
|
| 125 |
+
kernel_size=3,
|
| 126 |
+
padding=1,
|
| 127 |
+
bias=False,
|
| 128 |
+
),
|
| 129 |
+
LayerNorm2d(out_chans),
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
|
| 134 |
+
self.net_3 = nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, bias=False)
|
| 135 |
+
|
| 136 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 137 |
+
x = self.patch_embed(x)
|
| 138 |
+
if self.pos_embed is not None:
|
| 139 |
+
x = x + self.pos_embed
|
| 140 |
+
|
| 141 |
+
for blk in self.blocks:
|
| 142 |
+
x = blk(x)
|
| 143 |
+
|
| 144 |
+
x = self.neck(x.permute(0, 3, 1, 2))
|
| 145 |
+
x = self.net_2(x)
|
| 146 |
+
x = self.net_3(x)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
return x
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class Block(nn.Module):
|
| 153 |
+
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
| 154 |
+
|
| 155 |
+
def __init__(
|
| 156 |
+
self,
|
| 157 |
+
dim: int,
|
| 158 |
+
num_heads: int,
|
| 159 |
+
mlp_ratio: float = 4.0,
|
| 160 |
+
qkv_bias: bool = True,
|
| 161 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
| 162 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
| 163 |
+
use_rel_pos: bool = False,
|
| 164 |
+
rel_pos_zero_init: bool = True,
|
| 165 |
+
window_size: int = 0,
|
| 166 |
+
input_size: Optional[Tuple[int, int]] = None,
|
| 167 |
+
) -> None:
|
| 168 |
+
"""
|
| 169 |
+
Args:
|
| 170 |
+
dim (int): Number of input channels.
|
| 171 |
+
num_heads (int): Number of attention heads in each ViT block.
|
| 172 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 173 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
| 174 |
+
norm_layer (nn.Module): Normalization layer.
|
| 175 |
+
act_layer (nn.Module): Activation layer.
|
| 176 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
| 177 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
| 178 |
+
window_size (int): Window size for window attention blocks. If it equals 0, then
|
| 179 |
+
use global attention.
|
| 180 |
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
| 181 |
+
positional parameter size.
|
| 182 |
+
"""
|
| 183 |
+
super().__init__()
|
| 184 |
+
self.norm1 = norm_layer(dim)
|
| 185 |
+
self.attn = Attention(
|
| 186 |
+
dim,
|
| 187 |
+
num_heads=num_heads,
|
| 188 |
+
qkv_bias=qkv_bias,
|
| 189 |
+
use_rel_pos=use_rel_pos,
|
| 190 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
| 191 |
+
input_size=input_size if window_size == 0 else (window_size, window_size),
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
self.norm2 = norm_layer(dim)
|
| 195 |
+
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
| 196 |
+
|
| 197 |
+
self.window_size = window_size
|
| 198 |
+
|
| 199 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 200 |
+
shortcut = x
|
| 201 |
+
x = self.norm1(x)
|
| 202 |
+
# Window partition
|
| 203 |
+
if self.window_size > 0:
|
| 204 |
+
H, W = x.shape[1], x.shape[2]
|
| 205 |
+
x, pad_hw = window_partition(x, self.window_size)
|
| 206 |
+
|
| 207 |
+
x = self.attn(x)
|
| 208 |
+
# Reverse window partition
|
| 209 |
+
if self.window_size > 0:
|
| 210 |
+
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
| 211 |
+
|
| 212 |
+
x = shortcut + x
|
| 213 |
+
x = x + self.mlp(self.norm2(x))
|
| 214 |
+
|
| 215 |
+
return x
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
class Attention(nn.Module):
|
| 219 |
+
"""Multi-head Attention block with relative position embeddings."""
|
| 220 |
+
|
| 221 |
+
def __init__(
|
| 222 |
+
self,
|
| 223 |
+
dim: int,
|
| 224 |
+
num_heads: int = 8,
|
| 225 |
+
qkv_bias: bool = True,
|
| 226 |
+
use_rel_pos: bool = False,
|
| 227 |
+
rel_pos_zero_init: bool = True,
|
| 228 |
+
input_size: Optional[Tuple[int, int]] = None,
|
| 229 |
+
) -> None:
|
| 230 |
+
"""
|
| 231 |
+
Args:
|
| 232 |
+
dim (int): Number of input channels.
|
| 233 |
+
num_heads (int): Number of attention heads.
|
| 234 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
| 235 |
+
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
| 236 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
| 237 |
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
| 238 |
+
positional parameter size.
|
| 239 |
+
"""
|
| 240 |
+
super().__init__()
|
| 241 |
+
self.num_heads = num_heads
|
| 242 |
+
head_dim = dim // num_heads
|
| 243 |
+
self.scale = head_dim**-0.5
|
| 244 |
+
|
| 245 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 246 |
+
self.proj = nn.Linear(dim, dim)
|
| 247 |
+
|
| 248 |
+
self.use_rel_pos = use_rel_pos
|
| 249 |
+
if self.use_rel_pos:
|
| 250 |
+
assert (
|
| 251 |
+
input_size is not None
|
| 252 |
+
), "Input size must be provided if using relative positional encoding."
|
| 253 |
+
# initialize relative positional embeddings
|
| 254 |
+
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
| 255 |
+
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
| 256 |
+
|
| 257 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 258 |
+
B, H, W, _ = x.shape
|
| 259 |
+
# qkv with shape (3, B, nHead, H * W, C)
|
| 260 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
| 261 |
+
# q, k, v with shape (B * nHead, H * W, C)
|
| 262 |
+
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
| 263 |
+
|
| 264 |
+
attn = (q * self.scale) @ k.transpose(-2, -1)
|
| 265 |
+
|
| 266 |
+
if self.use_rel_pos:
|
| 267 |
+
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
| 268 |
+
|
| 269 |
+
attn = attn.softmax(dim=-1)
|
| 270 |
+
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
| 271 |
+
x = self.proj(x)
|
| 272 |
+
|
| 273 |
+
return x
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
| 277 |
+
"""
|
| 278 |
+
Partition into non-overlapping windows with padding if needed.
|
| 279 |
+
Args:
|
| 280 |
+
x (tensor): input tokens with [B, H, W, C].
|
| 281 |
+
window_size (int): window size.
|
| 282 |
+
|
| 283 |
+
Returns:
|
| 284 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
| 285 |
+
(Hp, Wp): padded height and width before partition
|
| 286 |
+
"""
|
| 287 |
+
B, H, W, C = x.shape
|
| 288 |
+
|
| 289 |
+
pad_h = (window_size - H % window_size) % window_size
|
| 290 |
+
pad_w = (window_size - W % window_size) % window_size
|
| 291 |
+
if pad_h > 0 or pad_w > 0:
|
| 292 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
| 293 |
+
Hp, Wp = H + pad_h, W + pad_w
|
| 294 |
+
|
| 295 |
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
| 296 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 297 |
+
return windows, (Hp, Wp)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def window_unpartition(
|
| 301 |
+
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
| 302 |
+
) -> torch.Tensor:
|
| 303 |
+
"""
|
| 304 |
+
Window unpartition into original sequences and removing padding.
|
| 305 |
+
Args:
|
| 306 |
+
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
| 307 |
+
window_size (int): window size.
|
| 308 |
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
| 309 |
+
hw (Tuple): original height and width (H, W) before padding.
|
| 310 |
+
|
| 311 |
+
Returns:
|
| 312 |
+
x: unpartitioned sequences with [B, H, W, C].
|
| 313 |
+
"""
|
| 314 |
+
Hp, Wp = pad_hw
|
| 315 |
+
H, W = hw
|
| 316 |
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
| 317 |
+
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
| 318 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
| 319 |
+
|
| 320 |
+
if Hp > H or Wp > W:
|
| 321 |
+
x = x[:, :H, :W, :].contiguous()
|
| 322 |
+
return x
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
| 326 |
+
"""
|
| 327 |
+
Get relative positional embeddings according to the relative positions of
|
| 328 |
+
query and key sizes.
|
| 329 |
+
Args:
|
| 330 |
+
q_size (int): size of query q.
|
| 331 |
+
k_size (int): size of key k.
|
| 332 |
+
rel_pos (Tensor): relative position embeddings (L, C).
|
| 333 |
+
|
| 334 |
+
Returns:
|
| 335 |
+
Extracted positional embeddings according to relative positions.
|
| 336 |
+
"""
|
| 337 |
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
| 338 |
+
# Interpolate rel pos if needed.
|
| 339 |
+
if rel_pos.shape[0] != max_rel_dist:
|
| 340 |
+
# Interpolate rel pos.
|
| 341 |
+
rel_pos_resized = F.interpolate(
|
| 342 |
+
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
| 343 |
+
size=max_rel_dist,
|
| 344 |
+
mode="linear",
|
| 345 |
+
)
|
| 346 |
+
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
| 347 |
+
else:
|
| 348 |
+
rel_pos_resized = rel_pos
|
| 349 |
+
|
| 350 |
+
# Scale the coords with short length if shapes for q and k are different.
|
| 351 |
+
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
| 352 |
+
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
| 353 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
| 354 |
+
|
| 355 |
+
return rel_pos_resized[relative_coords.long()]
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def add_decomposed_rel_pos(
|
| 359 |
+
attn: torch.Tensor,
|
| 360 |
+
q: torch.Tensor,
|
| 361 |
+
rel_pos_h: torch.Tensor,
|
| 362 |
+
rel_pos_w: torch.Tensor,
|
| 363 |
+
q_size: Tuple[int, int],
|
| 364 |
+
k_size: Tuple[int, int],
|
| 365 |
+
) -> torch.Tensor:
|
| 366 |
+
"""
|
| 367 |
+
Args:
|
| 368 |
+
attn (Tensor): attention map.
|
| 369 |
+
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
| 370 |
+
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
| 371 |
+
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
| 372 |
+
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
| 373 |
+
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
| 374 |
+
|
| 375 |
+
Returns:
|
| 376 |
+
attn (Tensor): attention map with added relative positional embeddings.
|
| 377 |
+
"""
|
| 378 |
+
q_h, q_w = q_size
|
| 379 |
+
k_h, k_w = k_size
|
| 380 |
+
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
| 381 |
+
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
| 382 |
+
|
| 383 |
+
B, _, dim = q.shape
|
| 384 |
+
r_q = q.reshape(B, q_h, q_w, dim)
|
| 385 |
+
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
| 386 |
+
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
| 387 |
+
|
| 388 |
+
attn = (
|
| 389 |
+
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
| 390 |
+
).view(B, q_h * q_w, k_h * k_w)
|
| 391 |
+
|
| 392 |
+
return attn
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
class PatchEmbed(nn.Module):
|
| 396 |
+
"""
|
| 397 |
+
Image to Patch Embedding.
|
| 398 |
+
"""
|
| 399 |
+
|
| 400 |
+
def __init__(
|
| 401 |
+
self,
|
| 402 |
+
kernel_size: Tuple[int, int] = (16, 16),
|
| 403 |
+
stride: Tuple[int, int] = (16, 16),
|
| 404 |
+
padding: Tuple[int, int] = (0, 0),
|
| 405 |
+
in_chans: int = 3,
|
| 406 |
+
embed_dim: int = 768,
|
| 407 |
+
) -> None:
|
| 408 |
+
"""
|
| 409 |
+
Args:
|
| 410 |
+
kernel_size (Tuple): kernel size of the projection layer.
|
| 411 |
+
stride (Tuple): stride of the projection layer.
|
| 412 |
+
padding (Tuple): padding size of the projection layer.
|
| 413 |
+
in_chans (int): Number of input image channels.
|
| 414 |
+
embed_dim (int): Patch embedding dimension.
|
| 415 |
+
"""
|
| 416 |
+
super().__init__()
|
| 417 |
+
|
| 418 |
+
self.proj = nn.Conv2d(
|
| 419 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 423 |
+
x = self.proj(x)
|
| 424 |
+
# B C H W -> B H W C
|
| 425 |
+
x = x.permute(0, 2, 3, 1)
|
| 426 |
+
return x
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
def build_GOT_vit_b(checkpoint=None):
|
| 431 |
+
return _build_GOT_vision(
|
| 432 |
+
encoder_embed_dim=768,
|
| 433 |
+
encoder_depth=12,
|
| 434 |
+
encoder_num_heads=12,
|
| 435 |
+
encoder_global_attn_indexes=[2, 5, 8, 11],
|
| 436 |
+
checkpoint=checkpoint,
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
def _build_GOT_vision(
|
| 441 |
+
encoder_embed_dim,
|
| 442 |
+
encoder_depth,
|
| 443 |
+
encoder_num_heads,
|
| 444 |
+
encoder_global_attn_indexes,
|
| 445 |
+
checkpoint=None,
|
| 446 |
+
):
|
| 447 |
+
prompt_embed_dim = 256
|
| 448 |
+
image_size = 1024
|
| 449 |
+
vit_patch_size = 16
|
| 450 |
+
image_embedding_size = image_size // vit_patch_size
|
| 451 |
+
image_encoder=ImageEncoderViT(
|
| 452 |
+
depth=encoder_depth,
|
| 453 |
+
embed_dim=encoder_embed_dim,
|
| 454 |
+
img_size=image_size,
|
| 455 |
+
mlp_ratio=4,
|
| 456 |
+
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
| 457 |
+
num_heads=encoder_num_heads,
|
| 458 |
+
patch_size=vit_patch_size,
|
| 459 |
+
qkv_bias=True,
|
| 460 |
+
use_rel_pos=True,
|
| 461 |
+
global_attn_indexes=encoder_global_attn_indexes,
|
| 462 |
+
window_size=14,
|
| 463 |
+
out_chans=prompt_embed_dim,
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
return image_encoder
|
| 468 |
+
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb47fb503e3f710d9fab06c1f6b9370fee03d33ac7128bcf4680e54cced7c0f2
|
| 3 |
+
size 1121111672
|
modeling_GOT.py
ADDED
|
@@ -0,0 +1,881 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, StoppingCriteria, TextStreamer
|
| 2 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 3 |
+
from typing import List, Optional, Tuple, Union
|
| 4 |
+
from transformers.cache_utils import Cache
|
| 5 |
+
import requests
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
from torch.nn import CrossEntropyLoss
|
| 11 |
+
from .got_vision_b import build_GOT_vit_b
|
| 12 |
+
from torchvision import transforms
|
| 13 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 14 |
+
import dataclasses
|
| 15 |
+
###
|
| 16 |
+
|
| 17 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
| 18 |
+
DEFAULT_IMAGE_PATCH_TOKEN = '<imgpad>'
|
| 19 |
+
DEFAULT_IM_START_TOKEN = '<img>'
|
| 20 |
+
DEFAULT_IM_END_TOKEN = '</img>'
|
| 21 |
+
|
| 22 |
+
from enum import auto, Enum
|
| 23 |
+
class SeparatorStyle(Enum):
|
| 24 |
+
"""Different separator style."""
|
| 25 |
+
SINGLE = auto()
|
| 26 |
+
TWO = auto()
|
| 27 |
+
MPT = auto()
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@dataclasses.dataclass
|
| 31 |
+
class Conversation:
|
| 32 |
+
"""A class that keeps all conversation history."""
|
| 33 |
+
system: str
|
| 34 |
+
roles: List[str]
|
| 35 |
+
messages: List[List[str]]
|
| 36 |
+
offset: int
|
| 37 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
| 38 |
+
sep: str = "<|im_end|>"
|
| 39 |
+
sep2: str = None
|
| 40 |
+
version: str = "Unknown"
|
| 41 |
+
|
| 42 |
+
skip_next: bool = False
|
| 43 |
+
|
| 44 |
+
def get_prompt(self):
|
| 45 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
| 46 |
+
ret = self.system + self.sep + '\n'
|
| 47 |
+
for role, message in self.messages:
|
| 48 |
+
if message:
|
| 49 |
+
if type(message) is tuple:
|
| 50 |
+
message, _, _ = message
|
| 51 |
+
ret += role + ": " + message + self.sep
|
| 52 |
+
else:
|
| 53 |
+
ret += role + ":"
|
| 54 |
+
return ret
|
| 55 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
| 56 |
+
seps = [self.sep, self.sep2]
|
| 57 |
+
ret = self.system + seps[0]
|
| 58 |
+
for i, (role, message) in enumerate(self.messages):
|
| 59 |
+
if message:
|
| 60 |
+
if type(message) is tuple:
|
| 61 |
+
message, _, _ = message
|
| 62 |
+
ret += role + ": " + message + seps[i % 2]
|
| 63 |
+
else:
|
| 64 |
+
ret += role + ":"
|
| 65 |
+
return ret
|
| 66 |
+
if self.sep_style == SeparatorStyle.MPT:
|
| 67 |
+
if self.system:
|
| 68 |
+
ret = self.system + self.sep
|
| 69 |
+
else:
|
| 70 |
+
ret = ''
|
| 71 |
+
for role, message in self.messages:
|
| 72 |
+
if message:
|
| 73 |
+
if type(message) is tuple:
|
| 74 |
+
message, _, _ = message
|
| 75 |
+
ret += role + message + self.sep
|
| 76 |
+
else:
|
| 77 |
+
ret += role
|
| 78 |
+
return ret
|
| 79 |
+
else:
|
| 80 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def append_message(self, role, message):
|
| 84 |
+
self.messages.append([role, message])
|
| 85 |
+
|
| 86 |
+
def copy(self):
|
| 87 |
+
return Conversation(
|
| 88 |
+
system=self.system,
|
| 89 |
+
roles=self.roles,
|
| 90 |
+
messages=[[x, y] for x, y in self.messages],
|
| 91 |
+
offset=self.offset,
|
| 92 |
+
sep_style=self.sep_style,
|
| 93 |
+
sep=self.sep,
|
| 94 |
+
sep2=self.sep2)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
| 99 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
| 100 |
+
self.keywords = keywords
|
| 101 |
+
self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
|
| 102 |
+
self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1]
|
| 103 |
+
self.tokenizer = tokenizer
|
| 104 |
+
self.start_len = None
|
| 105 |
+
self.input_ids = input_ids
|
| 106 |
+
|
| 107 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 108 |
+
if self.start_len is None:
|
| 109 |
+
self.start_len = self.input_ids.shape[1]
|
| 110 |
+
else:
|
| 111 |
+
for keyword_id in self.keyword_ids:
|
| 112 |
+
if output_ids[0, -1] == keyword_id:
|
| 113 |
+
return True
|
| 114 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
| 115 |
+
for keyword in self.keywords:
|
| 116 |
+
if keyword in outputs:
|
| 117 |
+
return True
|
| 118 |
+
return False
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class GOTImageEvalProcessor:
|
| 122 |
+
def __init__(self, image_size=384, mean=None, std=None):
|
| 123 |
+
if mean is None:
|
| 124 |
+
mean = (0.48145466, 0.4578275, 0.40821073)
|
| 125 |
+
if std is None:
|
| 126 |
+
std = (0.26862954, 0.26130258, 0.27577711)
|
| 127 |
+
|
| 128 |
+
self.normalize = transforms.Normalize(mean, std)
|
| 129 |
+
|
| 130 |
+
self.transform = transforms.Compose(
|
| 131 |
+
[
|
| 132 |
+
transforms.Resize(
|
| 133 |
+
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
|
| 134 |
+
),
|
| 135 |
+
transforms.ToTensor(),
|
| 136 |
+
self.normalize,
|
| 137 |
+
]
|
| 138 |
+
)
|
| 139 |
+
def __call__(self, item):
|
| 140 |
+
return self.transform(item)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
class GOTConfig(Qwen2Config):
|
| 145 |
+
model_type = "GOT"
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
class GOTQwenModel(Qwen2Model):
|
| 149 |
+
config_class = GOTConfig
|
| 150 |
+
|
| 151 |
+
def __init__(self, config: Qwen2Config):
|
| 152 |
+
super(GOTQwenModel, self).__init__(config)
|
| 153 |
+
|
| 154 |
+
self.vision_tower_high = build_GOT_vit_b()
|
| 155 |
+
|
| 156 |
+
self.mm_projector_vary = nn.Linear(1024, 1024)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def initialize_vision_modules(
|
| 160 |
+
self,
|
| 161 |
+
vision_tower,
|
| 162 |
+
pretrained_stage1_model=None,
|
| 163 |
+
freeze_vision_tower=False,
|
| 164 |
+
use_im_start_end=False,
|
| 165 |
+
vision_select_layer=-1,
|
| 166 |
+
dtype=torch.float16,
|
| 167 |
+
device="cuda"
|
| 168 |
+
):
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
| 172 |
+
|
| 173 |
+
self.vision_tower_high = self.vision_tower_high.to(dtype=dtype, device=device)
|
| 174 |
+
|
| 175 |
+
self.mm_projector_vary = self.mm_projector_vary.to(dtype=dtype, device=device)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
image_token_len = 256
|
| 179 |
+
|
| 180 |
+
self.config.vision_tower = vision_tower
|
| 181 |
+
self.config.image_token_len = image_token_len
|
| 182 |
+
|
| 183 |
+
self.config.use_im_start_end = True
|
| 184 |
+
|
| 185 |
+
self.config.vision_select_layer = vision_select_layer
|
| 186 |
+
self.config.freeze_vision_tower = freeze_vision_tower
|
| 187 |
+
|
| 188 |
+
return dict(
|
| 189 |
+
image_processor_high=image_processor_high,
|
| 190 |
+
image_token_len=image_token_len,
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def forward(
|
| 195 |
+
self,
|
| 196 |
+
input_ids: torch.LongTensor = None,
|
| 197 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 198 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 199 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 200 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 201 |
+
use_cache: Optional[bool] = None,
|
| 202 |
+
output_attentions: Optional[bool] = None,
|
| 203 |
+
output_hidden_states: Optional[bool] = None,
|
| 204 |
+
images: Optional[torch.FloatTensor] = None,
|
| 205 |
+
return_dict: Optional[bool] = None,
|
| 206 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 207 |
+
|
| 208 |
+
# HACK: replace back original embeddings for LLaVA pretraining
|
| 209 |
+
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
| 210 |
+
if orig_embeds_params is not None:
|
| 211 |
+
with torch.no_grad():
|
| 212 |
+
self.get_input_embeddings().weight[:-self.num_new_tokens] = orig_embeds_params[:-self.num_new_tokens].data
|
| 213 |
+
|
| 214 |
+
if inputs_embeds is None:
|
| 215 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
vision_tower_high = getattr(self, 'vision_tower_high', None)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
if vision_tower_high is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
| 222 |
+
use_im_start_end = getattr(self.config, "use_im_start_end", -1)
|
| 223 |
+
|
| 224 |
+
vision_select_layer = getattr(self.config, "vision_select_layer", -1)
|
| 225 |
+
im_patch_token = getattr(self.config, "im_patch_token", -1)
|
| 226 |
+
im_start_token = getattr(self.config, "im_start_token", -1)
|
| 227 |
+
im_end_token = getattr(self.config, "im_end_token", -1)
|
| 228 |
+
freeze_vision_tower = getattr(self.config, "freeze_vision_tower", False)
|
| 229 |
+
|
| 230 |
+
im_patch_token = 151859
|
| 231 |
+
|
| 232 |
+
im_start_token = 151857
|
| 233 |
+
|
| 234 |
+
im_end_token = 151858
|
| 235 |
+
|
| 236 |
+
image_features = []
|
| 237 |
+
|
| 238 |
+
for image in images:
|
| 239 |
+
P, C, H, W = image.shape
|
| 240 |
+
if P == 1:
|
| 241 |
+
with torch.set_grad_enabled(False):
|
| 242 |
+
cnn_feature = vision_tower_high(image)
|
| 243 |
+
cnn_feature = cnn_feature.flatten(2).permute(0, 2, 1) # 256*1024
|
| 244 |
+
image_feature = self.mm_projector_vary(cnn_feature)
|
| 245 |
+
image_features.append(image_feature)
|
| 246 |
+
|
| 247 |
+
else:
|
| 248 |
+
image_patches = torch.unbind(image)
|
| 249 |
+
image_patches_features = []
|
| 250 |
+
for image_patch in image_patches:
|
| 251 |
+
image_p = torch.stack([image_patch])
|
| 252 |
+
|
| 253 |
+
with torch.set_grad_enabled(False):
|
| 254 |
+
cnn_feature_p = vision_tower_high(image_p)
|
| 255 |
+
cnn_feature_p = cnn_feature_p.flatten(2).permute(0, 2, 1)
|
| 256 |
+
image_feature_p = self.mm_projector_vary(cnn_feature_p)
|
| 257 |
+
image_patches_features.append(image_feature_p)
|
| 258 |
+
image_feature = torch.cat(image_patches_features, dim=1)
|
| 259 |
+
image_features.append(image_feature)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
dummy_image_features_2 = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
| 263 |
+
dummy_image_features = dummy_image_features_2
|
| 264 |
+
use_im_start_end = True
|
| 265 |
+
new_input_embeds = []
|
| 266 |
+
for cur_input_ids, cur_input_embeds, cur_image_features in zip(input_ids, inputs_embeds, image_features):
|
| 267 |
+
if (cur_input_ids == im_patch_token).sum() == 0:
|
| 268 |
+
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
| 269 |
+
new_input_embeds.append(cur_input_embeds)
|
| 270 |
+
continue
|
| 271 |
+
|
| 272 |
+
if use_im_start_end:
|
| 273 |
+
if (cur_input_ids == im_start_token).sum() != (cur_input_ids == im_end_token).sum():
|
| 274 |
+
raise ValueError("The number of image start tokens and image end tokens should be the same.")
|
| 275 |
+
|
| 276 |
+
image_start_tokens = torch.where(cur_input_ids == im_start_token)[0]
|
| 277 |
+
for image_start_token_pos, per_cur_image_features in zip(image_start_tokens, cur_image_features):
|
| 278 |
+
per_cur_image_features = per_cur_image_features.to(device=cur_input_embeds.device)
|
| 279 |
+
num_patches = per_cur_image_features.shape[0]
|
| 280 |
+
|
| 281 |
+
if cur_input_ids[image_start_token_pos + num_patches + 1] != im_end_token:
|
| 282 |
+
raise ValueError("The image end token should follow the image start token.")
|
| 283 |
+
|
| 284 |
+
cur_input_embeds = torch.cat(
|
| 285 |
+
(
|
| 286 |
+
cur_input_embeds[:image_start_token_pos+1],
|
| 287 |
+
per_cur_image_features,
|
| 288 |
+
cur_input_embeds[image_start_token_pos + num_patches + 1:]
|
| 289 |
+
),
|
| 290 |
+
dim=0
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
new_input_embeds.append(cur_input_embeds)
|
| 295 |
+
else:
|
| 296 |
+
raise NotImplementedError
|
| 297 |
+
|
| 298 |
+
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
| 299 |
+
|
| 300 |
+
return super(GOTQwenModel, self).forward(
|
| 301 |
+
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
|
| 302 |
+
inputs_embeds=inputs_embeds, use_cache=use_cache, position_ids = position_ids,
|
| 303 |
+
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
| 304 |
+
return_dict=return_dict
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
class GOTQwenForCausalLM(Qwen2ForCausalLM):
|
| 310 |
+
config_class = GOTConfig
|
| 311 |
+
# supports_gradient_checkpointing = True
|
| 312 |
+
|
| 313 |
+
def __init__(self, config):
|
| 314 |
+
super(Qwen2ForCausalLM, self).__init__(config)
|
| 315 |
+
self.model = GOTQwenModel(config)
|
| 316 |
+
|
| 317 |
+
self.vocab_size = config.vocab_size
|
| 318 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 319 |
+
|
| 320 |
+
# Initialize weights and apply final processing
|
| 321 |
+
self.post_init()
|
| 322 |
+
|
| 323 |
+
def get_model(self):
|
| 324 |
+
return self.model
|
| 325 |
+
|
| 326 |
+
def forward(
|
| 327 |
+
self,
|
| 328 |
+
input_ids: torch.LongTensor = None,
|
| 329 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 330 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 331 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 332 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 333 |
+
labels: Optional[torch.LongTensor] = None,
|
| 334 |
+
use_cache: Optional[bool] = None,
|
| 335 |
+
output_attentions: Optional[bool] = None,
|
| 336 |
+
output_hidden_states: Optional[bool] = None,
|
| 337 |
+
images: Optional[torch.FloatTensor] = None,
|
| 338 |
+
return_dict: Optional[bool] = None,
|
| 339 |
+
|
| 340 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 341 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 342 |
+
output_hidden_states = (
|
| 343 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 344 |
+
)
|
| 345 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 346 |
+
|
| 347 |
+
outputs = self.model(
|
| 348 |
+
input_ids=input_ids,
|
| 349 |
+
past_key_values=past_key_values,
|
| 350 |
+
attention_mask=attention_mask,
|
| 351 |
+
position_ids=position_ids,
|
| 352 |
+
inputs_embeds=inputs_embeds,
|
| 353 |
+
use_cache=use_cache,
|
| 354 |
+
output_attentions=output_attentions,
|
| 355 |
+
output_hidden_states=output_hidden_states,
|
| 356 |
+
images=images,
|
| 357 |
+
return_dict=return_dict
|
| 358 |
+
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
hidden_states = outputs[0]
|
| 362 |
+
logits = self.lm_head(hidden_states)
|
| 363 |
+
logits = logits.float()
|
| 364 |
+
|
| 365 |
+
# logits
|
| 366 |
+
|
| 367 |
+
loss = None
|
| 368 |
+
if labels is not None:
|
| 369 |
+
# Shift so that tokens < n predict n
|
| 370 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 371 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 372 |
+
# Flatten the tokens
|
| 373 |
+
loss_fct = CrossEntropyLoss()
|
| 374 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 375 |
+
shift_labels = shift_labels.view(-1)
|
| 376 |
+
# Enable model parallelism
|
| 377 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 378 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 379 |
+
|
| 380 |
+
if not return_dict:
|
| 381 |
+
output = (logits,) + outputs[1:]
|
| 382 |
+
return (loss,) + output if loss is not None else output
|
| 383 |
+
|
| 384 |
+
return CausalLMOutputWithPast(
|
| 385 |
+
loss=loss,
|
| 386 |
+
logits=logits,
|
| 387 |
+
past_key_values=outputs.past_key_values,
|
| 388 |
+
hidden_states=outputs.hidden_states,
|
| 389 |
+
attentions=outputs.attentions,
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def prepare_inputs_for_generation(
|
| 394 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 395 |
+
):
|
| 396 |
+
# Omit tokens covered by past_key_values
|
| 397 |
+
if past_key_values is not None:
|
| 398 |
+
if isinstance(past_key_values, Cache):
|
| 399 |
+
cache_length = past_key_values.get_seq_length()
|
| 400 |
+
past_length = past_key_values.seen_tokens
|
| 401 |
+
max_cache_length = past_key_values.get_max_length()
|
| 402 |
+
else:
|
| 403 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 404 |
+
max_cache_length = None
|
| 405 |
+
|
| 406 |
+
# Keep only the unprocessed tokens:
|
| 407 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 408 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 409 |
+
# input)
|
| 410 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 411 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 412 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 413 |
+
# input_ids based on the past_length.
|
| 414 |
+
elif past_length < input_ids.shape[1]:
|
| 415 |
+
input_ids = input_ids[:, past_length:]
|
| 416 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 417 |
+
|
| 418 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 419 |
+
if (
|
| 420 |
+
max_cache_length is not None
|
| 421 |
+
and attention_mask is not None
|
| 422 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 423 |
+
):
|
| 424 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
| 425 |
+
|
| 426 |
+
position_ids = kwargs.get("position_ids", None)
|
| 427 |
+
if attention_mask is not None and position_ids is None:
|
| 428 |
+
# create position_ids on the fly for batch generation
|
| 429 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 430 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 431 |
+
if past_key_values:
|
| 432 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 433 |
+
|
| 434 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 435 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 436 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 437 |
+
else:
|
| 438 |
+
model_inputs = {"input_ids": input_ids}
|
| 439 |
+
|
| 440 |
+
model_inputs.update(
|
| 441 |
+
{
|
| 442 |
+
"position_ids": position_ids,
|
| 443 |
+
"past_key_values": past_key_values,
|
| 444 |
+
"use_cache": kwargs.get("use_cache"),
|
| 445 |
+
"attention_mask": attention_mask,
|
| 446 |
+
"images": kwargs.get("images", None),
|
| 447 |
+
}
|
| 448 |
+
)
|
| 449 |
+
return model_inputs
|
| 450 |
+
|
| 451 |
+
def initialize_vision_tokenizer(
|
| 452 |
+
self,
|
| 453 |
+
tokenizer,
|
| 454 |
+
freeze_lm_model=False,
|
| 455 |
+
pretrained_stage1_model=None,
|
| 456 |
+
device="cuda"
|
| 457 |
+
):
|
| 458 |
+
config = self.get_model().config
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
self.resize_token_embeddings(len(tokenizer))
|
| 462 |
+
|
| 463 |
+
config.im_patch_token = 151859
|
| 464 |
+
|
| 465 |
+
config.use_im_start_end = True
|
| 466 |
+
|
| 467 |
+
if config.use_im_start_end:
|
| 468 |
+
self.resize_token_embeddings(len(tokenizer))
|
| 469 |
+
config.im_start_token, config.im_end_token = 151857, 151858
|
| 470 |
+
|
| 471 |
+
def load_image(self, image_file):
|
| 472 |
+
if image_file.startswith('http') or image_file.startswith('https'):
|
| 473 |
+
response = requests.get(image_file)
|
| 474 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 475 |
+
else:
|
| 476 |
+
image = Image.open(image_file).convert('RGB')
|
| 477 |
+
return image
|
| 478 |
+
|
| 479 |
+
def disable_torch_init(self):
|
| 480 |
+
"""
|
| 481 |
+
Disable the redundant torch default initialization to accelerate model creation.
|
| 482 |
+
"""
|
| 483 |
+
import torch
|
| 484 |
+
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
| 485 |
+
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
| 486 |
+
|
| 487 |
+
def chat(self, tokenizer, image_file, ocr_type, ocr_box='', ocr_color='', render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):
|
| 488 |
+
|
| 489 |
+
self.disable_torch_init()
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
| 493 |
+
|
| 494 |
+
use_im_start_end = True
|
| 495 |
+
|
| 496 |
+
image_token_len = 256
|
| 497 |
+
|
| 498 |
+
if gradio_input:
|
| 499 |
+
image = image_file.copy()
|
| 500 |
+
else:
|
| 501 |
+
image = self.load_image(image_file)
|
| 502 |
+
|
| 503 |
+
w, h = image.size
|
| 504 |
+
|
| 505 |
+
if ocr_type == 'format':
|
| 506 |
+
qs = 'OCR with format: '
|
| 507 |
+
else:
|
| 508 |
+
qs = 'OCR: '
|
| 509 |
+
|
| 510 |
+
if ocr_box:
|
| 511 |
+
bbox = eval(ocr_box)
|
| 512 |
+
if len(bbox) == 2:
|
| 513 |
+
bbox[0] = int(bbox[0]/w*1000)
|
| 514 |
+
bbox[1] = int(bbox[1]/h*1000)
|
| 515 |
+
if len(bbox) == 4:
|
| 516 |
+
bbox[0] = int(bbox[0]/w*1000)
|
| 517 |
+
bbox[1] = int(bbox[1]/h*1000)
|
| 518 |
+
bbox[2] = int(bbox[2]/w*1000)
|
| 519 |
+
bbox[3] = int(bbox[3]/h*1000)
|
| 520 |
+
if ocr_type == 'format':
|
| 521 |
+
qs = str(bbox) + ' ' + 'OCR with format: '
|
| 522 |
+
else:
|
| 523 |
+
qs = str(bbox) + ' ' + 'OCR: '
|
| 524 |
+
|
| 525 |
+
if ocr_color:
|
| 526 |
+
if ocr_type == 'format':
|
| 527 |
+
qs = '[' + ocr_color + ']' + ' ' + 'OCR with format: '
|
| 528 |
+
else:
|
| 529 |
+
qs = '[' + ocr_color + ']' + ' ' + 'OCR: '
|
| 530 |
+
|
| 531 |
+
if use_im_start_end:
|
| 532 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len + DEFAULT_IM_END_TOKEN + '\n' + qs
|
| 533 |
+
else:
|
| 534 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
conv_mpt = Conversation(
|
| 538 |
+
system="""<|im_start|>system
|
| 539 |
+
You should follow the instructions carefully and explain your answers in detail.""",
|
| 540 |
+
# system = None,
|
| 541 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
| 542 |
+
version="mpt",
|
| 543 |
+
messages=(),
|
| 544 |
+
offset=0,
|
| 545 |
+
sep_style=SeparatorStyle.MPT,
|
| 546 |
+
sep="<|im_end|>",
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
conv = conv_mpt.copy()
|
| 550 |
+
conv.append_message(conv.roles[0], qs)
|
| 551 |
+
conv.append_message(conv.roles[1], None)
|
| 552 |
+
prompt = conv.get_prompt()
|
| 553 |
+
|
| 554 |
+
if print_prompt:
|
| 555 |
+
print(prompt)
|
| 556 |
+
|
| 557 |
+
inputs = tokenizer([prompt])
|
| 558 |
+
|
| 559 |
+
image_tensor_1 = image_processor_high(image)
|
| 560 |
+
|
| 561 |
+
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
| 562 |
+
|
| 563 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 564 |
+
keywords = [stop_str]
|
| 565 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 566 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 567 |
+
|
| 568 |
+
if stream_flag:
|
| 569 |
+
with torch.autocast("cuda", dtype=torch.bfloat16):
|
| 570 |
+
output_ids = self.generate(
|
| 571 |
+
input_ids,
|
| 572 |
+
images=[image_tensor_1.unsqueeze(0).half().cuda()],
|
| 573 |
+
do_sample=False,
|
| 574 |
+
num_beams = 1,
|
| 575 |
+
no_repeat_ngram_size = 20,
|
| 576 |
+
streamer=streamer,
|
| 577 |
+
max_new_tokens=4096,
|
| 578 |
+
stopping_criteria=[stopping_criteria]
|
| 579 |
+
)
|
| 580 |
+
else:
|
| 581 |
+
with torch.autocast("cuda", dtype=torch.bfloat16):
|
| 582 |
+
output_ids = self.generate(
|
| 583 |
+
input_ids,
|
| 584 |
+
images=[image_tensor_1.unsqueeze(0).half().cuda()],
|
| 585 |
+
do_sample=False,
|
| 586 |
+
num_beams = 1,
|
| 587 |
+
no_repeat_ngram_size = 20,
|
| 588 |
+
# streamer=streamer,
|
| 589 |
+
max_new_tokens=4096,
|
| 590 |
+
stopping_criteria=[stopping_criteria]
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
| 594 |
+
|
| 595 |
+
if outputs.endswith(stop_str):
|
| 596 |
+
outputs = outputs[:-len(stop_str)]
|
| 597 |
+
outputs = outputs.strip()
|
| 598 |
+
response_str = outputs
|
| 599 |
+
|
| 600 |
+
if render:
|
| 601 |
+
print('==============rendering===============')
|
| 602 |
+
from .render_tools import svg_to_html, content_mmd_to_html, tik_html, translation_table
|
| 603 |
+
|
| 604 |
+
if '**kern' in outputs:
|
| 605 |
+
import verovio
|
| 606 |
+
tk = verovio.toolkit()
|
| 607 |
+
tk.loadData(outputs)
|
| 608 |
+
tk.setOptions({"pageWidth": 2100, "footer": 'none',
|
| 609 |
+
'barLineWidth': 0.5, 'beamMaxSlope': 15,
|
| 610 |
+
'staffLineWidth': 0.2, 'spacingStaff': 6})
|
| 611 |
+
tk.getPageCount()
|
| 612 |
+
svg = tk.renderToSVG()
|
| 613 |
+
svg = svg.replace("overflow=\"inherit\"", "overflow=\"visible\"")
|
| 614 |
+
|
| 615 |
+
svg_to_html(svg, save_render_file)
|
| 616 |
+
|
| 617 |
+
if ocr_type == 'format' and '**kern' not in outputs:
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
if '\\begin{tikzpicture}' not in outputs:
|
| 621 |
+
html_path_2 = save_render_file
|
| 622 |
+
right_num = outputs.count('\\right')
|
| 623 |
+
left_num = outputs.count('\left')
|
| 624 |
+
|
| 625 |
+
if right_num != left_num:
|
| 626 |
+
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
| 627 |
+
|
| 628 |
+
|
| 629 |
+
outputs = outputs.replace('"', '``').replace('$', '')
|
| 630 |
+
|
| 631 |
+
outputs_list = outputs.split('\n')
|
| 632 |
+
gt= ''
|
| 633 |
+
for out in outputs_list:
|
| 634 |
+
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
| 635 |
+
|
| 636 |
+
gt = gt[:-2]
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
lines = content_mmd_to_html
|
| 640 |
+
lines = lines.split("const text =")
|
| 641 |
+
new_web = lines[0] + 'const text =' + gt + lines[1]
|
| 642 |
+
|
| 643 |
+
else:
|
| 644 |
+
html_path_2 = save_render_file
|
| 645 |
+
outputs = outputs.translate(translation_table)
|
| 646 |
+
outputs_list = outputs.split('\n')
|
| 647 |
+
gt= ''
|
| 648 |
+
for out in outputs_list:
|
| 649 |
+
if out:
|
| 650 |
+
if '\\begin{tikzpicture}' not in out and '\\end{tikzpicture}' not in out:
|
| 651 |
+
while out[-1] == ' ':
|
| 652 |
+
out = out[:-1]
|
| 653 |
+
if out is None:
|
| 654 |
+
break
|
| 655 |
+
|
| 656 |
+
if out:
|
| 657 |
+
if out[-1] != ';':
|
| 658 |
+
gt += out[:-1] + ';\n'
|
| 659 |
+
else:
|
| 660 |
+
gt += out + '\n'
|
| 661 |
+
else:
|
| 662 |
+
gt += out + '\n'
|
| 663 |
+
|
| 664 |
+
|
| 665 |
+
lines = tik_html
|
| 666 |
+
lines = lines.split("const text =")
|
| 667 |
+
new_web = lines[0] + gt + lines[1]
|
| 668 |
+
|
| 669 |
+
with open(html_path_2, 'w') as web_f_new:
|
| 670 |
+
web_f_new.write(new_web)
|
| 671 |
+
return response_str
|
| 672 |
+
|
| 673 |
+
def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=1024, use_thumbnail=True):
|
| 674 |
+
|
| 675 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
| 676 |
+
best_ratio_diff = float('inf')
|
| 677 |
+
best_ratio = (1, 1)
|
| 678 |
+
area = width * height
|
| 679 |
+
for ratio in target_ratios:
|
| 680 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
| 681 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 682 |
+
if ratio_diff < best_ratio_diff:
|
| 683 |
+
best_ratio_diff = ratio_diff
|
| 684 |
+
best_ratio = ratio
|
| 685 |
+
elif ratio_diff == best_ratio_diff:
|
| 686 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 687 |
+
best_ratio = ratio
|
| 688 |
+
# print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
|
| 689 |
+
return best_ratio
|
| 690 |
+
|
| 691 |
+
orig_width, orig_height = image.size
|
| 692 |
+
aspect_ratio = orig_width / orig_height
|
| 693 |
+
|
| 694 |
+
# calculate the existing image aspect ratio
|
| 695 |
+
target_ratios = set(
|
| 696 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
| 697 |
+
i * j <= max_num and i * j >= min_num)
|
| 698 |
+
# print(target_ratios)
|
| 699 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 700 |
+
|
| 701 |
+
# find the closest aspect ratio to the target
|
| 702 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
| 703 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 704 |
+
|
| 705 |
+
# print(target_aspect_ratio)
|
| 706 |
+
# calculate the target width and height
|
| 707 |
+
target_width = image_size * target_aspect_ratio[0]
|
| 708 |
+
target_height = image_size * target_aspect_ratio[1]
|
| 709 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 710 |
+
|
| 711 |
+
# resize the image
|
| 712 |
+
resized_img = image.resize((target_width, target_height))
|
| 713 |
+
processed_images = []
|
| 714 |
+
for i in range(blocks):
|
| 715 |
+
box = (
|
| 716 |
+
(i % (target_width // image_size)) * image_size,
|
| 717 |
+
(i // (target_width // image_size)) * image_size,
|
| 718 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
| 719 |
+
((i // (target_width // image_size)) + 1) * image_size
|
| 720 |
+
)
|
| 721 |
+
# split the image
|
| 722 |
+
split_img = resized_img.crop(box)
|
| 723 |
+
processed_images.append(split_img)
|
| 724 |
+
assert len(processed_images) == blocks
|
| 725 |
+
if use_thumbnail and len(processed_images) != 1:
|
| 726 |
+
thumbnail_img = image.resize((image_size, image_size))
|
| 727 |
+
processed_images.append(thumbnail_img)
|
| 728 |
+
return processed_images
|
| 729 |
+
|
| 730 |
+
|
| 731 |
+
def chat_crop(self, tokenizer, image_file, ocr_type, render=False, save_render_file=None, print_prompt=False, gradio_input=False, stream_flag = False):
|
| 732 |
+
# Model
|
| 733 |
+
self.disable_torch_init()
|
| 734 |
+
multi_page=False
|
| 735 |
+
|
| 736 |
+
|
| 737 |
+
image_processor_high = GOTImageEvalProcessor(image_size=1024)
|
| 738 |
+
|
| 739 |
+
use_im_start_end = True
|
| 740 |
+
|
| 741 |
+
|
| 742 |
+
image_token_len = 256
|
| 743 |
+
|
| 744 |
+
image_list = []
|
| 745 |
+
|
| 746 |
+
# if len(image_file_list)>1:
|
| 747 |
+
# multi_page = True
|
| 748 |
+
|
| 749 |
+
if multi_page:
|
| 750 |
+
qs = 'OCR with format across multi pages: '
|
| 751 |
+
# only for png files
|
| 752 |
+
# import glob
|
| 753 |
+
# from natsort import natsorted
|
| 754 |
+
# patches = glob.glob(image_file + '/*png')
|
| 755 |
+
patches = image_file
|
| 756 |
+
# patches = natsorted(patches)
|
| 757 |
+
sub_images = []
|
| 758 |
+
for sub_image in patches:
|
| 759 |
+
sub_images.append(self.load_image(sub_image))
|
| 760 |
+
|
| 761 |
+
ll = len(patches)
|
| 762 |
+
# print(patches)
|
| 763 |
+
# print("len ll: ", ll)
|
| 764 |
+
|
| 765 |
+
else:
|
| 766 |
+
if ocr_type == 'format':
|
| 767 |
+
qs = 'OCR with format upon the patch reference: '
|
| 768 |
+
else:
|
| 769 |
+
qs = 'OCR upon the patch reference: '
|
| 770 |
+
if gradio_input:
|
| 771 |
+
img = image_file.copy()
|
| 772 |
+
else:
|
| 773 |
+
img = self.load_image(image_file)
|
| 774 |
+
sub_images = self.dynamic_preprocess(img)
|
| 775 |
+
ll = len(sub_images)
|
| 776 |
+
|
| 777 |
+
for image in sub_images:
|
| 778 |
+
image_tensor_1 = image_processor_high(image)
|
| 779 |
+
image_list.append(image_tensor_1)
|
| 780 |
+
|
| 781 |
+
|
| 782 |
+
image_list = torch.stack(image_list)
|
| 783 |
+
|
| 784 |
+
print('====new images batch size======: \n',image_list.shape)
|
| 785 |
+
|
| 786 |
+
|
| 787 |
+
if use_im_start_end:
|
| 788 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len*ll + DEFAULT_IM_END_TOKEN + '\n' + qs
|
| 789 |
+
else:
|
| 790 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
| 791 |
+
|
| 792 |
+
|
| 793 |
+
conv_mpt = Conversation(
|
| 794 |
+
system="""<|im_start|>system
|
| 795 |
+
You should follow the instructions carefully and explain your answers in detail.""",
|
| 796 |
+
# system = None,
|
| 797 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
| 798 |
+
version="mpt",
|
| 799 |
+
messages=(),
|
| 800 |
+
offset=0,
|
| 801 |
+
sep_style=SeparatorStyle.MPT,
|
| 802 |
+
sep="<|im_end|>",
|
| 803 |
+
)
|
| 804 |
+
|
| 805 |
+
conv = conv_mpt.copy()
|
| 806 |
+
conv.append_message(conv.roles[0], qs)
|
| 807 |
+
conv.append_message(conv.roles[1], None)
|
| 808 |
+
prompt = conv.get_prompt()
|
| 809 |
+
|
| 810 |
+
if print_prompt:
|
| 811 |
+
print(prompt)
|
| 812 |
+
|
| 813 |
+
inputs = tokenizer([prompt])
|
| 814 |
+
|
| 815 |
+
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
| 816 |
+
|
| 817 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 818 |
+
keywords = [stop_str]
|
| 819 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 820 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 821 |
+
|
| 822 |
+
if stream_flag:
|
| 823 |
+
with torch.autocast("cuda", dtype=torch.bfloat16):
|
| 824 |
+
output_ids = self.generate(
|
| 825 |
+
input_ids,
|
| 826 |
+
images=[image_list.half().cuda()],
|
| 827 |
+
do_sample=False,
|
| 828 |
+
num_beams = 1,
|
| 829 |
+
# no_repeat_ngram_size = 20,
|
| 830 |
+
streamer=streamer,
|
| 831 |
+
max_new_tokens=4096,
|
| 832 |
+
stopping_criteria=[stopping_criteria]
|
| 833 |
+
)
|
| 834 |
+
else:
|
| 835 |
+
with torch.autocast("cuda", dtype=torch.bfloat16):
|
| 836 |
+
output_ids = self.generate(
|
| 837 |
+
input_ids,
|
| 838 |
+
images=[image_list.half().cuda()],
|
| 839 |
+
do_sample=False,
|
| 840 |
+
num_beams = 1,
|
| 841 |
+
# no_repeat_ngram_size = 20,
|
| 842 |
+
# streamer=streamer,
|
| 843 |
+
max_new_tokens=4096,
|
| 844 |
+
stopping_criteria=[stopping_criteria]
|
| 845 |
+
)
|
| 846 |
+
|
| 847 |
+
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
|
| 848 |
+
|
| 849 |
+
if outputs.endswith(stop_str):
|
| 850 |
+
outputs = outputs[:-len(stop_str)]
|
| 851 |
+
outputs = outputs.strip()
|
| 852 |
+
response_str = outputs
|
| 853 |
+
|
| 854 |
+
if render:
|
| 855 |
+
print('==============rendering===============')
|
| 856 |
+
from .render_tools import content_mmd_to_html
|
| 857 |
+
html_path_2 = save_render_file
|
| 858 |
+
right_num = outputs.count('\\right')
|
| 859 |
+
left_num = outputs.count('\left')
|
| 860 |
+
|
| 861 |
+
if right_num != left_num:
|
| 862 |
+
outputs = outputs.replace('\left(', '(').replace('\\right)', ')').replace('\left[', '[').replace('\\right]', ']').replace('\left{', '{').replace('\\right}', '}').replace('\left|', '|').replace('\\right|', '|').replace('\left.', '.').replace('\\right.', '.')
|
| 863 |
+
|
| 864 |
+
|
| 865 |
+
outputs = outputs.replace('"', '``').replace('$', '')
|
| 866 |
+
|
| 867 |
+
outputs_list = outputs.split('\n')
|
| 868 |
+
gt= ''
|
| 869 |
+
for out in outputs_list:
|
| 870 |
+
gt += '"' + out.replace('\\', '\\\\') + r'\n' + '"' + '+' + '\n'
|
| 871 |
+
|
| 872 |
+
gt = gt[:-2]
|
| 873 |
+
|
| 874 |
+
lines = content_mmd_to_html
|
| 875 |
+
lines = lines.split("const text =")
|
| 876 |
+
new_web = lines[0] + 'const text =' + gt + lines[1]
|
| 877 |
+
|
| 878 |
+
with open(html_path_2, 'w') as web_f_new:
|
| 879 |
+
web_f_new.write(new_web)
|
| 880 |
+
|
| 881 |
+
return response_str
|
qwen.tiktoken
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
render_tools.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
punctuation_dict = {
|
| 3 |
+
",": ",",
|
| 4 |
+
"。": ".",
|
| 5 |
+
|
| 6 |
+
}
|
| 7 |
+
translation_table = str.maketrans(punctuation_dict)
|
| 8 |
+
|
| 9 |
+
def svg_to_html(svg_content, output_filename):
|
| 10 |
+
|
| 11 |
+
html_content = f"""
|
| 12 |
+
<!DOCTYPE html>
|
| 13 |
+
<html lang="en">
|
| 14 |
+
<head>
|
| 15 |
+
<meta charset="UTF-8">
|
| 16 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 17 |
+
<title>SVG Embedded in HTML</title>
|
| 18 |
+
</head>
|
| 19 |
+
<body>
|
| 20 |
+
<svg width="2100" height="15000" xmlns="http://www.w3.org/2000/svg">
|
| 21 |
+
{svg_content}
|
| 22 |
+
</svg>
|
| 23 |
+
</body>
|
| 24 |
+
</html>
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
with open(output_filename, 'w') as file:
|
| 28 |
+
file.write(html_content)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
content_mmd_to_html = """<!DOCTYPE html>
|
| 33 |
+
<html lang="en" data-lt-installed="true"><head>
|
| 34 |
+
<meta charset="UTF-8">
|
| 35 |
+
<title>Title</title>
|
| 36 |
+
<script>
|
| 37 |
+
const text =
|
| 38 |
+
</script>
|
| 39 |
+
<style>
|
| 40 |
+
#content {
|
| 41 |
+
max-width: 800px;
|
| 42 |
+
margin: auto;
|
| 43 |
+
}
|
| 44 |
+
</style>
|
| 45 |
+
<script>
|
| 46 |
+
let script = document.createElement('script');
|
| 47 |
+
script.src = "https://cdn.jsdelivr.net/npm/[email protected]/es5/bundle.js";
|
| 48 |
+
document.head.append(script);
|
| 49 |
+
|
| 50 |
+
script.onload = function() {
|
| 51 |
+
const isLoaded = window.loadMathJax();
|
| 52 |
+
if (isLoaded) {
|
| 53 |
+
console.log('Styles loaded!')
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
const el = window.document.getElementById('content-text');
|
| 57 |
+
if (el) {
|
| 58 |
+
const options = {
|
| 59 |
+
htmlTags: true
|
| 60 |
+
};
|
| 61 |
+
const html = window.render(text, options);
|
| 62 |
+
el.outerHTML = html;
|
| 63 |
+
}
|
| 64 |
+
};
|
| 65 |
+
</script>
|
| 66 |
+
</head>
|
| 67 |
+
<body>
|
| 68 |
+
<div id="content"><div id="content-text"></div></div>
|
| 69 |
+
</body>
|
| 70 |
+
</html>
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
tik_html = """
|
| 76 |
+
<!DOCTYPE html>
|
| 77 |
+
|
| 78 |
+
<html>
|
| 79 |
+
|
| 80 |
+
<head>
|
| 81 |
+
<meta charset="UTF-8">
|
| 82 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 83 |
+
<title>Document</title>
|
| 84 |
+
<link rel="stylesheet" type="text/css" href="https://tikzjax.com/v1/fonts.css">
|
| 85 |
+
<script src="https://tikzjax.com/v1/tikzjax.js"></script>
|
| 86 |
+
</head>
|
| 87 |
+
<body>
|
| 88 |
+
<script type="text/tikz">
|
| 89 |
+
const text =
|
| 90 |
+
</script>
|
| 91 |
+
</body>
|
| 92 |
+
</html>"""
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# print(tik_html)
|
sft_args.json
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "got-ocr2",
|
| 3 |
+
"model_id_or_path": "stepfun-ai/GOT-OCR2_0",
|
| 4 |
+
"model_revision": "master",
|
| 5 |
+
"full_determinism": false,
|
| 6 |
+
"sft_type": "full",
|
| 7 |
+
"freeze_parameters": [],
|
| 8 |
+
"freeze_vit": false,
|
| 9 |
+
"freeze_parameters_ratio": 0.0,
|
| 10 |
+
"additional_trainable_parameters": [],
|
| 11 |
+
"tuner_backend": "peft",
|
| 12 |
+
"template_type": "got_ocr2",
|
| 13 |
+
"output_dir": "/home/moataz/Desktop/GOT-OCR/test_ocr_fine_tuning/ms-swift/output/got-ocr2/v2-20250102-125236",
|
| 14 |
+
"add_output_dir_suffix": true,
|
| 15 |
+
"ddp_backend": null,
|
| 16 |
+
"ddp_find_unused_parameters": null,
|
| 17 |
+
"ddp_broadcast_buffers": null,
|
| 18 |
+
"ddp_timeout": 1800,
|
| 19 |
+
"seed": 42,
|
| 20 |
+
"resume_from_checkpoint": null,
|
| 21 |
+
"resume_only_model": false,
|
| 22 |
+
"ignore_data_skip": false,
|
| 23 |
+
"dtype": "bf16",
|
| 24 |
+
"packing": false,
|
| 25 |
+
"train_backend": "transformers",
|
| 26 |
+
"tp": 1,
|
| 27 |
+
"pp": 1,
|
| 28 |
+
"min_lr": null,
|
| 29 |
+
"sequence_parallel": false,
|
| 30 |
+
"model_kwargs": {},
|
| 31 |
+
"loss_name": null,
|
| 32 |
+
"dataset": [
|
| 33 |
+
"/home/moataz/Desktop/GOT-OCR/benchmark_data/data_train.json"
|
| 34 |
+
],
|
| 35 |
+
"val_dataset": [
|
| 36 |
+
"/home/moataz/Desktop/GOT-OCR/benchmark_data/data_val.json"
|
| 37 |
+
],
|
| 38 |
+
"dataset_seed": 42,
|
| 39 |
+
"dataset_test_ratio": 0.0,
|
| 40 |
+
"use_loss_scale": false,
|
| 41 |
+
"loss_scale_config_path": "/home/moataz/anaconda3/envs/got_env/lib/python3.10/site-packages/swift/llm/agent/default_loss_scale_config.json",
|
| 42 |
+
"system": null,
|
| 43 |
+
"tools_prompt": "react_en",
|
| 44 |
+
"max_length": 2048,
|
| 45 |
+
"truncation_strategy": "delete",
|
| 46 |
+
"check_dataset_strategy": "none",
|
| 47 |
+
"streaming": false,
|
| 48 |
+
"streaming_val_size": 0,
|
| 49 |
+
"streaming_buffer_size": 16384,
|
| 50 |
+
"model_name": [
|
| 51 |
+
"arabic"
|
| 52 |
+
],
|
| 53 |
+
"model_author": [
|
| 54 |
+
"moataz"
|
| 55 |
+
],
|
| 56 |
+
"quant_method": null,
|
| 57 |
+
"quantization_bit": 0,
|
| 58 |
+
"hqq_axis": 0,
|
| 59 |
+
"hqq_dynamic_config_path": null,
|
| 60 |
+
"bnb_4bit_comp_dtype": "bf16",
|
| 61 |
+
"bnb_4bit_quant_type": "nf4",
|
| 62 |
+
"bnb_4bit_use_double_quant": true,
|
| 63 |
+
"bnb_4bit_quant_storage": null,
|
| 64 |
+
"rescale_image": -1,
|
| 65 |
+
"target_modules": "^(model.layers|model.mm_projector_vary)(?!.*(lm_head|output|emb|wte|shared)).*",
|
| 66 |
+
"target_regex": null,
|
| 67 |
+
"modules_to_save": [],
|
| 68 |
+
"lora_rank": 8,
|
| 69 |
+
"lora_alpha": 32,
|
| 70 |
+
"lora_dropout": 0.05,
|
| 71 |
+
"lora_bias_trainable": "none",
|
| 72 |
+
"lora_dtype": null,
|
| 73 |
+
"lora_lr_ratio": null,
|
| 74 |
+
"use_rslora": false,
|
| 75 |
+
"use_dora": false,
|
| 76 |
+
"init_lora_weights": true,
|
| 77 |
+
"fourier_n_frequency": 2000,
|
| 78 |
+
"fourier_scaling": 300.0,
|
| 79 |
+
"rope_scaling": null,
|
| 80 |
+
"boft_block_size": 4,
|
| 81 |
+
"boft_block_num": 0,
|
| 82 |
+
"boft_n_butterfly_factor": 1,
|
| 83 |
+
"boft_dropout": 0.0,
|
| 84 |
+
"vera_rank": 256,
|
| 85 |
+
"vera_projection_prng_key": 0,
|
| 86 |
+
"vera_dropout": 0.0,
|
| 87 |
+
"vera_d_initial": 0.1,
|
| 88 |
+
"adapter_act": "gelu",
|
| 89 |
+
"adapter_length": 128,
|
| 90 |
+
"use_galore": false,
|
| 91 |
+
"galore_target_modules": null,
|
| 92 |
+
"galore_rank": 128,
|
| 93 |
+
"galore_update_proj_gap": 50,
|
| 94 |
+
"galore_scale": 1.0,
|
| 95 |
+
"galore_proj_type": "std",
|
| 96 |
+
"galore_optim_per_parameter": false,
|
| 97 |
+
"galore_with_embedding": false,
|
| 98 |
+
"galore_quantization": false,
|
| 99 |
+
"galore_proj_quant": false,
|
| 100 |
+
"galore_proj_bits": 4,
|
| 101 |
+
"galore_proj_group_size": 256,
|
| 102 |
+
"galore_cos_threshold": 0.4,
|
| 103 |
+
"galore_gamma_proj": 2,
|
| 104 |
+
"galore_queue_size": 5,
|
| 105 |
+
"adalora_target_r": 8,
|
| 106 |
+
"adalora_init_r": 12,
|
| 107 |
+
"adalora_tinit": 0,
|
| 108 |
+
"adalora_tfinal": 0,
|
| 109 |
+
"adalora_deltaT": 1,
|
| 110 |
+
"adalora_beta1": 0.85,
|
| 111 |
+
"adalora_beta2": 0.85,
|
| 112 |
+
"adalora_orth_reg_weight": 0.5,
|
| 113 |
+
"ia3_feedforward_modules": [],
|
| 114 |
+
"llamapro_num_new_blocks": 4,
|
| 115 |
+
"llamapro_num_groups": null,
|
| 116 |
+
"neftune_noise_alpha": null,
|
| 117 |
+
"neftune_backend": "transformers",
|
| 118 |
+
"lisa_activated_layers": 0,
|
| 119 |
+
"lisa_step_interval": 20,
|
| 120 |
+
"reft_layer_key": null,
|
| 121 |
+
"reft_layers": null,
|
| 122 |
+
"reft_rank": 4,
|
| 123 |
+
"reft_intervention_type": "LoreftIntervention",
|
| 124 |
+
"reft_args": null,
|
| 125 |
+
"use_liger": false,
|
| 126 |
+
"gradient_checkpointing": true,
|
| 127 |
+
"vit_use_gc": true,
|
| 128 |
+
"deepspeed": null,
|
| 129 |
+
"batch_size": 2,
|
| 130 |
+
"eval_batch_size": 2,
|
| 131 |
+
"auto_find_batch_size": false,
|
| 132 |
+
"num_train_epochs": 16,
|
| 133 |
+
"max_steps": -1,
|
| 134 |
+
"optim": "adamw_torch",
|
| 135 |
+
"adam_beta1": 0.9,
|
| 136 |
+
"adam_beta2": 0.95,
|
| 137 |
+
"adam_epsilon": 1e-08,
|
| 138 |
+
"learning_rate": 0.0001,
|
| 139 |
+
"weight_decay": 0.1,
|
| 140 |
+
"gradient_accumulation_steps": 8,
|
| 141 |
+
"max_grad_norm": 1,
|
| 142 |
+
"predict_with_generate": false,
|
| 143 |
+
"lr_scheduler_type": "cosine",
|
| 144 |
+
"lr_scheduler_kwargs": {},
|
| 145 |
+
"warmup_ratio": 0.05,
|
| 146 |
+
"warmup_steps": 0,
|
| 147 |
+
"eval_steps": 50,
|
| 148 |
+
"save_steps": 50,
|
| 149 |
+
"save_only_model": false,
|
| 150 |
+
"save_total_limit": 2,
|
| 151 |
+
"logging_steps": 5,
|
| 152 |
+
"acc_steps": 1,
|
| 153 |
+
"dataloader_num_workers": 1,
|
| 154 |
+
"dataloader_pin_memory": true,
|
| 155 |
+
"dataloader_drop_last": false,
|
| 156 |
+
"push_to_hub": false,
|
| 157 |
+
"hub_model_id": null,
|
| 158 |
+
"hub_token": null,
|
| 159 |
+
"hub_private_repo": false,
|
| 160 |
+
"hub_strategy": "every_save",
|
| 161 |
+
"test_oom_error": false,
|
| 162 |
+
"disable_tqdm": false,
|
| 163 |
+
"lazy_tokenize": true,
|
| 164 |
+
"preprocess_num_proc": 1,
|
| 165 |
+
"use_flash_attn": null,
|
| 166 |
+
"ignore_args_error": false,
|
| 167 |
+
"check_model_is_latest": true,
|
| 168 |
+
"logging_dir": "/home/moataz/Desktop/GOT-OCR/test_ocr_fine_tuning/ms-swift/output/got-ocr2/v2-20250102-125236/runs",
|
| 169 |
+
"report_to": [
|
| 170 |
+
"tensorboard"
|
| 171 |
+
],
|
| 172 |
+
"acc_strategy": "token",
|
| 173 |
+
"save_on_each_node": false,
|
| 174 |
+
"evaluation_strategy": "steps",
|
| 175 |
+
"save_strategy": "steps",
|
| 176 |
+
"save_safetensors": true,
|
| 177 |
+
"gpu_memory_fraction": null,
|
| 178 |
+
"include_num_input_tokens_seen": false,
|
| 179 |
+
"local_repo_path": null,
|
| 180 |
+
"custom_register_path": null,
|
| 181 |
+
"custom_dataset_info": null,
|
| 182 |
+
"device_map_config": null,
|
| 183 |
+
"device_max_memory": [],
|
| 184 |
+
"max_new_tokens": 2048,
|
| 185 |
+
"do_sample": null,
|
| 186 |
+
"temperature": null,
|
| 187 |
+
"top_k": null,
|
| 188 |
+
"top_p": null,
|
| 189 |
+
"repetition_penalty": null,
|
| 190 |
+
"num_beams": 1,
|
| 191 |
+
"fsdp": "",
|
| 192 |
+
"fsdp_config": null,
|
| 193 |
+
"sequence_parallel_size": 1,
|
| 194 |
+
"model_layer_cls_name": null,
|
| 195 |
+
"metric_warmup_step": 0,
|
| 196 |
+
"fsdp_num": 1,
|
| 197 |
+
"per_device_train_batch_size": 2,
|
| 198 |
+
"per_device_eval_batch_size": null,
|
| 199 |
+
"eval_strategy": null,
|
| 200 |
+
"self_cognition_sample": 0,
|
| 201 |
+
"train_dataset_mix_ratio": 0.0,
|
| 202 |
+
"train_dataset_mix_ds": [
|
| 203 |
+
"ms-bench"
|
| 204 |
+
],
|
| 205 |
+
"train_dataset_sample": -1,
|
| 206 |
+
"val_dataset_sample": null,
|
| 207 |
+
"safe_serialization": null,
|
| 208 |
+
"only_save_model": null,
|
| 209 |
+
"neftune_alpha": null,
|
| 210 |
+
"deepspeed_config_path": null,
|
| 211 |
+
"model_cache_dir": null,
|
| 212 |
+
"lora_dropout_p": null,
|
| 213 |
+
"lora_target_modules": [],
|
| 214 |
+
"lora_target_regex": null,
|
| 215 |
+
"lora_modules_to_save": [],
|
| 216 |
+
"boft_target_modules": [],
|
| 217 |
+
"boft_modules_to_save": [],
|
| 218 |
+
"vera_target_modules": [],
|
| 219 |
+
"vera_modules_to_save": [],
|
| 220 |
+
"ia3_target_modules": [],
|
| 221 |
+
"ia3_modules_to_save": [],
|
| 222 |
+
"custom_train_dataset_path": [],
|
| 223 |
+
"custom_val_dataset_path": [],
|
| 224 |
+
"device_map_config_path": null,
|
| 225 |
+
"push_hub_strategy": null,
|
| 226 |
+
"use_self_cognition": false,
|
| 227 |
+
"is_multimodal": true,
|
| 228 |
+
"is_vision": false,
|
| 229 |
+
"lora_use_embedding": false,
|
| 230 |
+
"lora_use_all": false,
|
| 231 |
+
"lora_m2s_use_embedding": false,
|
| 232 |
+
"lora_m2s_use_ln": false,
|
| 233 |
+
"torch_dtype": "torch.bfloat16",
|
| 234 |
+
"fp16": false,
|
| 235 |
+
"bf16": true,
|
| 236 |
+
"rank": -1,
|
| 237 |
+
"local_rank": -1,
|
| 238 |
+
"world_size": 1,
|
| 239 |
+
"local_world_size": 1,
|
| 240 |
+
"bnb_4bit_compute_dtype": "torch.bfloat16",
|
| 241 |
+
"load_in_4bit": false,
|
| 242 |
+
"load_in_8bit": false,
|
| 243 |
+
"train_sampler_random": true,
|
| 244 |
+
"train_type": "sft",
|
| 245 |
+
"training_args": "Seq2SeqTrainingArguments(output_dir='/home/moataz/Desktop/GOT-OCR/test_ocr_fine_tuning/ms-swift/output/got-ocr2/v2-20250102-125236', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=2, per_device_eval_batch_size=2, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=8, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=0.0001, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1, num_train_epochs=16, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs={}, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/home/moataz/Desktop/GOT-OCR/test_ocr_fine_tuning/ms-swift/output/got-ocr2/v2-20250102-125236/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<IntervalStrategy.STEPS: 'steps'>, save_steps=50, save_total_limit=2, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=50, dataloader_num_workers=1, dataloader_prefetch_factor=None, past_index=-1, run_name='/home/moataz/Desktop/GOT-OCR/test_ocr_fine_tuning/ms-swift/output/got-ocr2/v2-20250102-125236', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed=None, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=False, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, eval_do_concat_batches=True, fp16_backend='auto', evaluation_strategy=None, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, dispatch_batches=None, split_batches=None, include_tokens_per_second=False, include_num_input_tokens_seen=False, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=GenerationConfig {\n \"bos_token_id\": 151643,\n \"eos_token_id\": 151645,\n \"max_new_tokens\": 2048,\n \"pad_token_id\": 151643\n}\n, acc_strategy='token', loss_name=None, additional_saved_files=[], train_sampler_random=True, metric_warmup_step=0, train_dataset_sample=-1)"
|
| 246 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token": "<|im_end|>",
|
| 3 |
+
"pad_token": "<|endoftext|>"
|
| 4 |
+
}
|
tokenization_qwen.py
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Alibaba Cloud.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the license found in the
|
| 4 |
+
# LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
"""Tokenization classes for QWen."""
|
| 7 |
+
|
| 8 |
+
import base64
|
| 9 |
+
import logging
|
| 10 |
+
import os
|
| 11 |
+
import unicodedata
|
| 12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
| 13 |
+
|
| 14 |
+
import tiktoken
|
| 15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
| 21 |
+
|
| 22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
| 23 |
+
ENDOFTEXT = "<|endoftext|>"
|
| 24 |
+
IMSTART = "<|im_start|>"
|
| 25 |
+
IMEND = "<|im_end|>"
|
| 26 |
+
# as the default behavior is changed to allow special tokens in
|
| 27 |
+
# regular texts, the surface forms of special tokens need to be
|
| 28 |
+
# as different as possible to minimize the impact
|
| 29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
| 30 |
+
SPECIAL_TOKENS = (
|
| 31 |
+
ENDOFTEXT,
|
| 32 |
+
IMSTART,
|
| 33 |
+
IMEND,
|
| 34 |
+
) + EXTRAS
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
| 38 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
| 39 |
+
contents = f.read()
|
| 40 |
+
return {
|
| 41 |
+
base64.b64decode(token): int(rank)
|
| 42 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
| 46 |
+
"""QWen tokenizer."""
|
| 47 |
+
|
| 48 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 49 |
+
|
| 50 |
+
def __init__(
|
| 51 |
+
self,
|
| 52 |
+
vocab_file,
|
| 53 |
+
errors="replace",
|
| 54 |
+
image_start_tag='<img>',
|
| 55 |
+
image_end_tag='</img>',
|
| 56 |
+
image_pad_tag='<imgpad>',
|
| 57 |
+
ref_start_tag='<ref>',
|
| 58 |
+
ref_end_tag='</ref>',
|
| 59 |
+
box_start_tag='<box>',
|
| 60 |
+
box_end_tag='</box>',
|
| 61 |
+
quad_start_tag='<quad>',
|
| 62 |
+
quad_end_tag='</quad>',
|
| 63 |
+
**kwargs,
|
| 64 |
+
):
|
| 65 |
+
super().__init__(**kwargs)
|
| 66 |
+
|
| 67 |
+
self.image_start_tag = image_start_tag
|
| 68 |
+
self.image_end_tag = image_end_tag
|
| 69 |
+
self.image_pad_tag = image_pad_tag
|
| 70 |
+
self.ref_start_tag = ref_start_tag
|
| 71 |
+
self.ref_end_tag = ref_end_tag
|
| 72 |
+
self.box_start_tag = box_start_tag
|
| 73 |
+
self.box_end_tag = box_end_tag
|
| 74 |
+
self.quad_start_tag = quad_start_tag
|
| 75 |
+
self.quad_end_tag = quad_end_tag
|
| 76 |
+
self.IMAGE_ST = (
|
| 77 |
+
ref_start_tag, ref_end_tag,
|
| 78 |
+
box_start_tag, box_end_tag,
|
| 79 |
+
quad_start_tag, quad_end_tag,
|
| 80 |
+
image_start_tag, image_end_tag,
|
| 81 |
+
image_pad_tag
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
self.errors = errors # how to handle errors in decoding
|
| 85 |
+
|
| 86 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
|
| 87 |
+
self.special_tokens = {
|
| 88 |
+
token: index
|
| 89 |
+
for index, token in enumerate(
|
| 90 |
+
SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
|
| 91 |
+
)
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
self.img_start_id = self.special_tokens[self.image_start_tag]
|
| 95 |
+
self.img_end_id = self.special_tokens[self.image_end_tag]
|
| 96 |
+
self.img_pad_id = self.special_tokens[self.image_pad_tag]
|
| 97 |
+
self.ref_start_id = self.special_tokens[self.ref_start_tag]
|
| 98 |
+
self.ref_end_id = self.special_tokens[self.ref_end_tag]
|
| 99 |
+
self.box_start_id = self.special_tokens[self.box_start_tag]
|
| 100 |
+
self.box_end_id = self.special_tokens[self.box_end_tag]
|
| 101 |
+
self.quad_start_id = self.special_tokens[self.quad_start_tag]
|
| 102 |
+
self.quad_end_id = self.special_tokens[self.quad_end_tag]
|
| 103 |
+
|
| 104 |
+
enc = tiktoken.Encoding(
|
| 105 |
+
"Qwen",
|
| 106 |
+
pat_str=PAT_STR,
|
| 107 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 108 |
+
special_tokens=self.special_tokens,
|
| 109 |
+
)
|
| 110 |
+
assert (
|
| 111 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
| 112 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
| 113 |
+
|
| 114 |
+
self.decoder = {
|
| 115 |
+
v: k for k, v in self.mergeable_ranks.items()
|
| 116 |
+
} # type: dict[int, bytes|str]
|
| 117 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
| 118 |
+
|
| 119 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
| 120 |
+
|
| 121 |
+
self.eod_id = self.tokenizer.eot_token
|
| 122 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
| 123 |
+
self.im_end_id = self.special_tokens[IMEND]
|
| 124 |
+
|
| 125 |
+
def __len__(self) -> int:
|
| 126 |
+
return self.tokenizer.n_vocab
|
| 127 |
+
|
| 128 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
| 129 |
+
return self.mergeable_ranks
|
| 130 |
+
|
| 131 |
+
def convert_tokens_to_ids(
|
| 132 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
| 133 |
+
) -> List[int]:
|
| 134 |
+
ids = []
|
| 135 |
+
if isinstance(tokens, (str, bytes)):
|
| 136 |
+
if tokens in self.special_tokens:
|
| 137 |
+
return self.special_tokens[tokens]
|
| 138 |
+
else:
|
| 139 |
+
return self.mergeable_ranks.get(tokens)
|
| 140 |
+
for token in tokens:
|
| 141 |
+
if token in self.special_tokens:
|
| 142 |
+
ids.append(self.special_tokens[token])
|
| 143 |
+
else:
|
| 144 |
+
ids.append(self.mergeable_ranks.get(token))
|
| 145 |
+
return ids
|
| 146 |
+
|
| 147 |
+
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
|
| 148 |
+
if not special_tokens and new_tokens:
|
| 149 |
+
raise ValueError('Adding regular tokens is not supported')
|
| 150 |
+
for token in new_tokens:
|
| 151 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
| 152 |
+
if surface_form not in SPECIAL_TOKENS:
|
| 153 |
+
raise ValueError('Adding unknown special tokens is not supported')
|
| 154 |
+
return 0
|
| 155 |
+
|
| 156 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
| 157 |
+
"""
|
| 158 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
| 159 |
+
|
| 160 |
+
Returns:
|
| 161 |
+
`Tuple(str)`: Paths to the files saved.
|
| 162 |
+
"""
|
| 163 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
| 164 |
+
with open(file_path, "w", encoding="utf8") as w:
|
| 165 |
+
for k, v in self.mergeable_ranks.items():
|
| 166 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
| 167 |
+
w.write(line)
|
| 168 |
+
return (file_path,)
|
| 169 |
+
|
| 170 |
+
def tokenize(
|
| 171 |
+
self,
|
| 172 |
+
text: str,
|
| 173 |
+
allowed_special: Union[Set, str] = "all",
|
| 174 |
+
disallowed_special: Union[Collection, str] = (),
|
| 175 |
+
**kwargs,
|
| 176 |
+
) -> List[Union[bytes, str]]:
|
| 177 |
+
"""
|
| 178 |
+
Converts a string in a sequence of tokens.
|
| 179 |
+
|
| 180 |
+
Args:
|
| 181 |
+
text (`str`):
|
| 182 |
+
The sequence to be encoded.
|
| 183 |
+
allowed_special (`Literal["all"]` or `set`):
|
| 184 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
| 185 |
+
Default to "all".
|
| 186 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
| 187 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
| 188 |
+
Default to an empty tuple.
|
| 189 |
+
|
| 190 |
+
kwargs (additional keyword arguments, *optional*):
|
| 191 |
+
Will be passed to the underlying model specific encode method.
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
`List[bytes|str]`: The list of tokens.
|
| 195 |
+
"""
|
| 196 |
+
tokens = []
|
| 197 |
+
text = unicodedata.normalize("NFC", text)
|
| 198 |
+
|
| 199 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
| 200 |
+
for t in self.tokenizer.encode(
|
| 201 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
| 202 |
+
):
|
| 203 |
+
tokens.append(self.decoder[t])
|
| 204 |
+
return tokens
|
| 205 |
+
|
| 206 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
| 207 |
+
"""
|
| 208 |
+
Converts a sequence of tokens in a single string.
|
| 209 |
+
"""
|
| 210 |
+
text = ""
|
| 211 |
+
temp = b""
|
| 212 |
+
for t in tokens:
|
| 213 |
+
if isinstance(t, str):
|
| 214 |
+
if temp:
|
| 215 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 216 |
+
temp = b""
|
| 217 |
+
text += t
|
| 218 |
+
elif isinstance(t, bytes):
|
| 219 |
+
temp += t
|
| 220 |
+
else:
|
| 221 |
+
raise TypeError("token should only be of type types or str")
|
| 222 |
+
if temp:
|
| 223 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 224 |
+
return text
|
| 225 |
+
|
| 226 |
+
@property
|
| 227 |
+
def vocab_size(self):
|
| 228 |
+
return self.tokenizer.n_vocab
|
| 229 |
+
|
| 230 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
| 231 |
+
"""Converts an id to a token, special tokens included"""
|
| 232 |
+
if index in self.decoder:
|
| 233 |
+
return self.decoder[index]
|
| 234 |
+
raise ValueError("unknown ids")
|
| 235 |
+
|
| 236 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
| 237 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
| 238 |
+
if token in self.special_tokens:
|
| 239 |
+
return self.special_tokens[token]
|
| 240 |
+
if token in self.mergeable_ranks:
|
| 241 |
+
return self.mergeable_ranks[token]
|
| 242 |
+
raise ValueError("unknown token")
|
| 243 |
+
|
| 244 |
+
def _tokenize(self, text: str, **kwargs):
|
| 245 |
+
"""
|
| 246 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
| 247 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
| 248 |
+
|
| 249 |
+
Do NOT take care of added tokens.
|
| 250 |
+
"""
|
| 251 |
+
raise NotImplementedError
|
| 252 |
+
|
| 253 |
+
def _decode(
|
| 254 |
+
self,
|
| 255 |
+
token_ids: Union[int, List[int]],
|
| 256 |
+
skip_special_tokens: bool = False,
|
| 257 |
+
errors: str = None,
|
| 258 |
+
**kwargs,
|
| 259 |
+
) -> str:
|
| 260 |
+
if isinstance(token_ids, int):
|
| 261 |
+
token_ids = [token_ids]
|
| 262 |
+
if skip_special_tokens:
|
| 263 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
| 264 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {},
|
| 3 |
+
"auto_map": {
|
| 4 |
+
"AutoTokenizer": [
|
| 5 |
+
"tokenization_qwen.QWenTokenizer",
|
| 6 |
+
null
|
| 7 |
+
]
|
| 8 |
+
},
|
| 9 |
+
"clean_up_tokenization_spaces": true,
|
| 10 |
+
"eos_token": "<|im_end|>",
|
| 11 |
+
"model_max_length": 8000,
|
| 12 |
+
"pad_token": "<|endoftext|>",
|
| 13 |
+
"padding_side": "right",
|
| 14 |
+
"tokenizer_class": "QWenTokenizer"
|
| 15 |
+
}
|