Upload folder using huggingface_hub
Browse files- README.md +75 -3
- model.safetensors +3 -0
README.md
CHANGED
|
@@ -1,3 +1,75 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
library_name: mlx-image
|
| 4 |
+
tags:
|
| 5 |
+
- mlx
|
| 6 |
+
- mlx-image
|
| 7 |
+
- vision
|
| 8 |
+
- image-classification
|
| 9 |
+
datasets:
|
| 10 |
+
- imagenet-1k
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# efficientnet_b2
|
| 14 |
+
|
| 15 |
+
An EfficientNet B2 model architecture, pretrained on ImageNet-1K.
|
| 16 |
+
|
| 17 |
+
Disclaimer: this is a port of the Torchvision model weights to Apple MLX Framework.
|
| 18 |
+
|
| 19 |
+
See [mlx-convert-scripts](https://github.com/lextoumbourou/mlx-convert-scripts) repo for the conversion script used.
|
| 20 |
+
|
| 21 |
+
## How to use
|
| 22 |
+
|
| 23 |
+
```bash
|
| 24 |
+
pip install mlx-image
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
Here is how to use this model for image classification:
|
| 28 |
+
|
| 29 |
+
```python
|
| 30 |
+
import mlx.core as mx
|
| 31 |
+
from mlxim.model import create_model
|
| 32 |
+
from mlxim.io import read_rgb
|
| 33 |
+
from mlxim.transform import ImageNetTransform
|
| 34 |
+
from mlxim.utils.imagenet import IMAGENET2012_CLASSES
|
| 35 |
+
|
| 36 |
+
transform = ImageNetTransform(train=False, img_size=288)
|
| 37 |
+
x = transform(read_rgb("cat.jpg"))
|
| 38 |
+
x = mx.array(x)
|
| 39 |
+
x = mx.expand_dims(x, 0)
|
| 40 |
+
|
| 41 |
+
model = create_model("efficientnet_b2")
|
| 42 |
+
model.eval()
|
| 43 |
+
|
| 44 |
+
logits = model(x)
|
| 45 |
+
predicted_idx = mx.argmax(logits, axis=-1).item()
|
| 46 |
+
predicted_class = list(IMAGENET2012_CLASSES.values())[predicted_idx]
|
| 47 |
+
|
| 48 |
+
print(f"Predicted class: {predicted_class}")
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
You can also use the embeds from layer before head:
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
import mlx.core as mx
|
| 55 |
+
from mlxim.model import create_model
|
| 56 |
+
from mlxim.io import read_rgb
|
| 57 |
+
from mlxim.transform import ImageNetTransform
|
| 58 |
+
|
| 59 |
+
transform = ImageNetTransform(train=False, img_size=288)
|
| 60 |
+
x = transform(read_rgb("cat.jpg"))
|
| 61 |
+
x = mx.array(x)
|
| 62 |
+
x = mx.expand_dims(x, 0)
|
| 63 |
+
|
| 64 |
+
# first option
|
| 65 |
+
model = create_model("efficientnet_b2", num_classes=0)
|
| 66 |
+
model.eval()
|
| 67 |
+
|
| 68 |
+
embeds = model(x)
|
| 69 |
+
|
| 70 |
+
# second option
|
| 71 |
+
model = create_model("efficientnet_b2")
|
| 72 |
+
model.eval()
|
| 73 |
+
|
| 74 |
+
embeds = model.get_features(x)
|
| 75 |
+
```
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:784fe3d24f0e33f1557ffa86907687a0258aaad96a9aaeacec678d7d036ef884
|
| 3 |
+
size 36756614
|