Add files using upload-large-folder tool
Browse files- README.md +40 -0
- added_tokens.json +1011 -0
- chat_template.jinja +24 -0
- config.json +37 -0
- configuration_ernie4_5.py +127 -0
- generation_config.json +11 -0
- model.safetensors +3 -0
- model.safetensors.index.json +426 -0
- modeling_ernie4_5.py +1068 -0
- special_tokens_map.json +1020 -0
- tokenization_ernie4_5.py +373 -0
- tokenizer.model +3 -0
- tokenizer_config.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- zh
|
| 6 |
+
pipeline_tag: text-generation
|
| 7 |
+
tags:
|
| 8 |
+
- ERNIE4.5
|
| 9 |
+
- mlx
|
| 10 |
+
library_name: mlx
|
| 11 |
+
base_model: baidu/ERNIE-4.5-0.3B-PT
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# mlx-community/ERNIE-4.5-0.3B-PT-4bit
|
| 15 |
+
|
| 16 |
+
This model [mlx-community/ERNIE-4.5-0.3B-PT-4bit](https://huggingface.co/mlx-community/ERNIE-4.5-0.3B-PT-4bit) was
|
| 17 |
+
converted to MLX format from [baidu/ERNIE-4.5-0.3B-PT](https://huggingface.co/baidu/ERNIE-4.5-0.3B-PT)
|
| 18 |
+
using mlx-lm version **0.25.2**.
|
| 19 |
+
|
| 20 |
+
## Use with mlx
|
| 21 |
+
|
| 22 |
+
```bash
|
| 23 |
+
pip install mlx-lm
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
from mlx_lm import load, generate
|
| 28 |
+
|
| 29 |
+
model, tokenizer = load("mlx-community/ERNIE-4.5-0.3B-PT-4bit")
|
| 30 |
+
|
| 31 |
+
prompt = "hello"
|
| 32 |
+
|
| 33 |
+
if tokenizer.chat_template is not None:
|
| 34 |
+
messages = [{"role": "user", "content": prompt}]
|
| 35 |
+
prompt = tokenizer.apply_chat_template(
|
| 36 |
+
messages, add_generation_prompt=True
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
response = generate(model, tokenizer, prompt=prompt, verbose=True)
|
| 40 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,1011 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<|AUDIO_PLACEHOLDER|>": 100296,
|
| 3 |
+
"<|CROP_COL_SEP|>": 101301,
|
| 4 |
+
"<|CROP_ROW_SEP|>": 101302,
|
| 5 |
+
"<|IMAGE_PLACEHOLDER|>": 100295,
|
| 6 |
+
"<|IMAGE_SEP|>": 101303,
|
| 7 |
+
"<|LOC_0|>": 100297,
|
| 8 |
+
"<|LOC_1000|>": 101297,
|
| 9 |
+
"<|LOC_100|>": 100397,
|
| 10 |
+
"<|LOC_101|>": 100398,
|
| 11 |
+
"<|LOC_102|>": 100399,
|
| 12 |
+
"<|LOC_103|>": 100400,
|
| 13 |
+
"<|LOC_104|>": 100401,
|
| 14 |
+
"<|LOC_105|>": 100402,
|
| 15 |
+
"<|LOC_106|>": 100403,
|
| 16 |
+
"<|LOC_107|>": 100404,
|
| 17 |
+
"<|LOC_108|>": 100405,
|
| 18 |
+
"<|LOC_109|>": 100406,
|
| 19 |
+
"<|LOC_10|>": 100307,
|
| 20 |
+
"<|LOC_110|>": 100407,
|
| 21 |
+
"<|LOC_111|>": 100408,
|
| 22 |
+
"<|LOC_112|>": 100409,
|
| 23 |
+
"<|LOC_113|>": 100410,
|
| 24 |
+
"<|LOC_114|>": 100411,
|
| 25 |
+
"<|LOC_115|>": 100412,
|
| 26 |
+
"<|LOC_116|>": 100413,
|
| 27 |
+
"<|LOC_117|>": 100414,
|
| 28 |
+
"<|LOC_118|>": 100415,
|
| 29 |
+
"<|LOC_119|>": 100416,
|
| 30 |
+
"<|LOC_11|>": 100308,
|
| 31 |
+
"<|LOC_120|>": 100417,
|
| 32 |
+
"<|LOC_121|>": 100418,
|
| 33 |
+
"<|LOC_122|>": 100419,
|
| 34 |
+
"<|LOC_123|>": 100420,
|
| 35 |
+
"<|LOC_124|>": 100421,
|
| 36 |
+
"<|LOC_125|>": 100422,
|
| 37 |
+
"<|LOC_126|>": 100423,
|
| 38 |
+
"<|LOC_127|>": 100424,
|
| 39 |
+
"<|LOC_128|>": 100425,
|
| 40 |
+
"<|LOC_129|>": 100426,
|
| 41 |
+
"<|LOC_12|>": 100309,
|
| 42 |
+
"<|LOC_130|>": 100427,
|
| 43 |
+
"<|LOC_131|>": 100428,
|
| 44 |
+
"<|LOC_132|>": 100429,
|
| 45 |
+
"<|LOC_133|>": 100430,
|
| 46 |
+
"<|LOC_134|>": 100431,
|
| 47 |
+
"<|LOC_135|>": 100432,
|
| 48 |
+
"<|LOC_136|>": 100433,
|
| 49 |
+
"<|LOC_137|>": 100434,
|
| 50 |
+
"<|LOC_138|>": 100435,
|
| 51 |
+
"<|LOC_139|>": 100436,
|
| 52 |
+
"<|LOC_13|>": 100310,
|
| 53 |
+
"<|LOC_140|>": 100437,
|
| 54 |
+
"<|LOC_141|>": 100438,
|
| 55 |
+
"<|LOC_142|>": 100439,
|
| 56 |
+
"<|LOC_143|>": 100440,
|
| 57 |
+
"<|LOC_144|>": 100441,
|
| 58 |
+
"<|LOC_145|>": 100442,
|
| 59 |
+
"<|LOC_146|>": 100443,
|
| 60 |
+
"<|LOC_147|>": 100444,
|
| 61 |
+
"<|LOC_148|>": 100445,
|
| 62 |
+
"<|LOC_149|>": 100446,
|
| 63 |
+
"<|LOC_14|>": 100311,
|
| 64 |
+
"<|LOC_150|>": 100447,
|
| 65 |
+
"<|LOC_151|>": 100448,
|
| 66 |
+
"<|LOC_152|>": 100449,
|
| 67 |
+
"<|LOC_153|>": 100450,
|
| 68 |
+
"<|LOC_154|>": 100451,
|
| 69 |
+
"<|LOC_155|>": 100452,
|
| 70 |
+
"<|LOC_156|>": 100453,
|
| 71 |
+
"<|LOC_157|>": 100454,
|
| 72 |
+
"<|LOC_158|>": 100455,
|
| 73 |
+
"<|LOC_159|>": 100456,
|
| 74 |
+
"<|LOC_15|>": 100312,
|
| 75 |
+
"<|LOC_160|>": 100457,
|
| 76 |
+
"<|LOC_161|>": 100458,
|
| 77 |
+
"<|LOC_162|>": 100459,
|
| 78 |
+
"<|LOC_163|>": 100460,
|
| 79 |
+
"<|LOC_164|>": 100461,
|
| 80 |
+
"<|LOC_165|>": 100462,
|
| 81 |
+
"<|LOC_166|>": 100463,
|
| 82 |
+
"<|LOC_167|>": 100464,
|
| 83 |
+
"<|LOC_168|>": 100465,
|
| 84 |
+
"<|LOC_169|>": 100466,
|
| 85 |
+
"<|LOC_16|>": 100313,
|
| 86 |
+
"<|LOC_170|>": 100467,
|
| 87 |
+
"<|LOC_171|>": 100468,
|
| 88 |
+
"<|LOC_172|>": 100469,
|
| 89 |
+
"<|LOC_173|>": 100470,
|
| 90 |
+
"<|LOC_174|>": 100471,
|
| 91 |
+
"<|LOC_175|>": 100472,
|
| 92 |
+
"<|LOC_176|>": 100473,
|
| 93 |
+
"<|LOC_177|>": 100474,
|
| 94 |
+
"<|LOC_178|>": 100475,
|
| 95 |
+
"<|LOC_179|>": 100476,
|
| 96 |
+
"<|LOC_17|>": 100314,
|
| 97 |
+
"<|LOC_180|>": 100477,
|
| 98 |
+
"<|LOC_181|>": 100478,
|
| 99 |
+
"<|LOC_182|>": 100479,
|
| 100 |
+
"<|LOC_183|>": 100480,
|
| 101 |
+
"<|LOC_184|>": 100481,
|
| 102 |
+
"<|LOC_185|>": 100482,
|
| 103 |
+
"<|LOC_186|>": 100483,
|
| 104 |
+
"<|LOC_187|>": 100484,
|
| 105 |
+
"<|LOC_188|>": 100485,
|
| 106 |
+
"<|LOC_189|>": 100486,
|
| 107 |
+
"<|LOC_18|>": 100315,
|
| 108 |
+
"<|LOC_190|>": 100487,
|
| 109 |
+
"<|LOC_191|>": 100488,
|
| 110 |
+
"<|LOC_192|>": 100489,
|
| 111 |
+
"<|LOC_193|>": 100490,
|
| 112 |
+
"<|LOC_194|>": 100491,
|
| 113 |
+
"<|LOC_195|>": 100492,
|
| 114 |
+
"<|LOC_196|>": 100493,
|
| 115 |
+
"<|LOC_197|>": 100494,
|
| 116 |
+
"<|LOC_198|>": 100495,
|
| 117 |
+
"<|LOC_199|>": 100496,
|
| 118 |
+
"<|LOC_19|>": 100316,
|
| 119 |
+
"<|LOC_1|>": 100298,
|
| 120 |
+
"<|LOC_200|>": 100497,
|
| 121 |
+
"<|LOC_201|>": 100498,
|
| 122 |
+
"<|LOC_202|>": 100499,
|
| 123 |
+
"<|LOC_203|>": 100500,
|
| 124 |
+
"<|LOC_204|>": 100501,
|
| 125 |
+
"<|LOC_205|>": 100502,
|
| 126 |
+
"<|LOC_206|>": 100503,
|
| 127 |
+
"<|LOC_207|>": 100504,
|
| 128 |
+
"<|LOC_208|>": 100505,
|
| 129 |
+
"<|LOC_209|>": 100506,
|
| 130 |
+
"<|LOC_20|>": 100317,
|
| 131 |
+
"<|LOC_210|>": 100507,
|
| 132 |
+
"<|LOC_211|>": 100508,
|
| 133 |
+
"<|LOC_212|>": 100509,
|
| 134 |
+
"<|LOC_213|>": 100510,
|
| 135 |
+
"<|LOC_214|>": 100511,
|
| 136 |
+
"<|LOC_215|>": 100512,
|
| 137 |
+
"<|LOC_216|>": 100513,
|
| 138 |
+
"<|LOC_217|>": 100514,
|
| 139 |
+
"<|LOC_218|>": 100515,
|
| 140 |
+
"<|LOC_219|>": 100516,
|
| 141 |
+
"<|LOC_21|>": 100318,
|
| 142 |
+
"<|LOC_220|>": 100517,
|
| 143 |
+
"<|LOC_221|>": 100518,
|
| 144 |
+
"<|LOC_222|>": 100519,
|
| 145 |
+
"<|LOC_223|>": 100520,
|
| 146 |
+
"<|LOC_224|>": 100521,
|
| 147 |
+
"<|LOC_225|>": 100522,
|
| 148 |
+
"<|LOC_226|>": 100523,
|
| 149 |
+
"<|LOC_227|>": 100524,
|
| 150 |
+
"<|LOC_228|>": 100525,
|
| 151 |
+
"<|LOC_229|>": 100526,
|
| 152 |
+
"<|LOC_22|>": 100319,
|
| 153 |
+
"<|LOC_230|>": 100527,
|
| 154 |
+
"<|LOC_231|>": 100528,
|
| 155 |
+
"<|LOC_232|>": 100529,
|
| 156 |
+
"<|LOC_233|>": 100530,
|
| 157 |
+
"<|LOC_234|>": 100531,
|
| 158 |
+
"<|LOC_235|>": 100532,
|
| 159 |
+
"<|LOC_236|>": 100533,
|
| 160 |
+
"<|LOC_237|>": 100534,
|
| 161 |
+
"<|LOC_238|>": 100535,
|
| 162 |
+
"<|LOC_239|>": 100536,
|
| 163 |
+
"<|LOC_23|>": 100320,
|
| 164 |
+
"<|LOC_240|>": 100537,
|
| 165 |
+
"<|LOC_241|>": 100538,
|
| 166 |
+
"<|LOC_242|>": 100539,
|
| 167 |
+
"<|LOC_243|>": 100540,
|
| 168 |
+
"<|LOC_244|>": 100541,
|
| 169 |
+
"<|LOC_245|>": 100542,
|
| 170 |
+
"<|LOC_246|>": 100543,
|
| 171 |
+
"<|LOC_247|>": 100544,
|
| 172 |
+
"<|LOC_248|>": 100545,
|
| 173 |
+
"<|LOC_249|>": 100546,
|
| 174 |
+
"<|LOC_24|>": 100321,
|
| 175 |
+
"<|LOC_250|>": 100547,
|
| 176 |
+
"<|LOC_251|>": 100548,
|
| 177 |
+
"<|LOC_252|>": 100549,
|
| 178 |
+
"<|LOC_253|>": 100550,
|
| 179 |
+
"<|LOC_254|>": 100551,
|
| 180 |
+
"<|LOC_255|>": 100552,
|
| 181 |
+
"<|LOC_256|>": 100553,
|
| 182 |
+
"<|LOC_257|>": 100554,
|
| 183 |
+
"<|LOC_258|>": 100555,
|
| 184 |
+
"<|LOC_259|>": 100556,
|
| 185 |
+
"<|LOC_25|>": 100322,
|
| 186 |
+
"<|LOC_260|>": 100557,
|
| 187 |
+
"<|LOC_261|>": 100558,
|
| 188 |
+
"<|LOC_262|>": 100559,
|
| 189 |
+
"<|LOC_263|>": 100560,
|
| 190 |
+
"<|LOC_264|>": 100561,
|
| 191 |
+
"<|LOC_265|>": 100562,
|
| 192 |
+
"<|LOC_266|>": 100563,
|
| 193 |
+
"<|LOC_267|>": 100564,
|
| 194 |
+
"<|LOC_268|>": 100565,
|
| 195 |
+
"<|LOC_269|>": 100566,
|
| 196 |
+
"<|LOC_26|>": 100323,
|
| 197 |
+
"<|LOC_270|>": 100567,
|
| 198 |
+
"<|LOC_271|>": 100568,
|
| 199 |
+
"<|LOC_272|>": 100569,
|
| 200 |
+
"<|LOC_273|>": 100570,
|
| 201 |
+
"<|LOC_274|>": 100571,
|
| 202 |
+
"<|LOC_275|>": 100572,
|
| 203 |
+
"<|LOC_276|>": 100573,
|
| 204 |
+
"<|LOC_277|>": 100574,
|
| 205 |
+
"<|LOC_278|>": 100575,
|
| 206 |
+
"<|LOC_279|>": 100576,
|
| 207 |
+
"<|LOC_27|>": 100324,
|
| 208 |
+
"<|LOC_280|>": 100577,
|
| 209 |
+
"<|LOC_281|>": 100578,
|
| 210 |
+
"<|LOC_282|>": 100579,
|
| 211 |
+
"<|LOC_283|>": 100580,
|
| 212 |
+
"<|LOC_284|>": 100581,
|
| 213 |
+
"<|LOC_285|>": 100582,
|
| 214 |
+
"<|LOC_286|>": 100583,
|
| 215 |
+
"<|LOC_287|>": 100584,
|
| 216 |
+
"<|LOC_288|>": 100585,
|
| 217 |
+
"<|LOC_289|>": 100586,
|
| 218 |
+
"<|LOC_28|>": 100325,
|
| 219 |
+
"<|LOC_290|>": 100587,
|
| 220 |
+
"<|LOC_291|>": 100588,
|
| 221 |
+
"<|LOC_292|>": 100589,
|
| 222 |
+
"<|LOC_293|>": 100590,
|
| 223 |
+
"<|LOC_294|>": 100591,
|
| 224 |
+
"<|LOC_295|>": 100592,
|
| 225 |
+
"<|LOC_296|>": 100593,
|
| 226 |
+
"<|LOC_297|>": 100594,
|
| 227 |
+
"<|LOC_298|>": 100595,
|
| 228 |
+
"<|LOC_299|>": 100596,
|
| 229 |
+
"<|LOC_29|>": 100326,
|
| 230 |
+
"<|LOC_2|>": 100299,
|
| 231 |
+
"<|LOC_300|>": 100597,
|
| 232 |
+
"<|LOC_301|>": 100598,
|
| 233 |
+
"<|LOC_302|>": 100599,
|
| 234 |
+
"<|LOC_303|>": 100600,
|
| 235 |
+
"<|LOC_304|>": 100601,
|
| 236 |
+
"<|LOC_305|>": 100602,
|
| 237 |
+
"<|LOC_306|>": 100603,
|
| 238 |
+
"<|LOC_307|>": 100604,
|
| 239 |
+
"<|LOC_308|>": 100605,
|
| 240 |
+
"<|LOC_309|>": 100606,
|
| 241 |
+
"<|LOC_30|>": 100327,
|
| 242 |
+
"<|LOC_310|>": 100607,
|
| 243 |
+
"<|LOC_311|>": 100608,
|
| 244 |
+
"<|LOC_312|>": 100609,
|
| 245 |
+
"<|LOC_313|>": 100610,
|
| 246 |
+
"<|LOC_314|>": 100611,
|
| 247 |
+
"<|LOC_315|>": 100612,
|
| 248 |
+
"<|LOC_316|>": 100613,
|
| 249 |
+
"<|LOC_317|>": 100614,
|
| 250 |
+
"<|LOC_318|>": 100615,
|
| 251 |
+
"<|LOC_319|>": 100616,
|
| 252 |
+
"<|LOC_31|>": 100328,
|
| 253 |
+
"<|LOC_320|>": 100617,
|
| 254 |
+
"<|LOC_321|>": 100618,
|
| 255 |
+
"<|LOC_322|>": 100619,
|
| 256 |
+
"<|LOC_323|>": 100620,
|
| 257 |
+
"<|LOC_324|>": 100621,
|
| 258 |
+
"<|LOC_325|>": 100622,
|
| 259 |
+
"<|LOC_326|>": 100623,
|
| 260 |
+
"<|LOC_327|>": 100624,
|
| 261 |
+
"<|LOC_328|>": 100625,
|
| 262 |
+
"<|LOC_329|>": 100626,
|
| 263 |
+
"<|LOC_32|>": 100329,
|
| 264 |
+
"<|LOC_330|>": 100627,
|
| 265 |
+
"<|LOC_331|>": 100628,
|
| 266 |
+
"<|LOC_332|>": 100629,
|
| 267 |
+
"<|LOC_333|>": 100630,
|
| 268 |
+
"<|LOC_334|>": 100631,
|
| 269 |
+
"<|LOC_335|>": 100632,
|
| 270 |
+
"<|LOC_336|>": 100633,
|
| 271 |
+
"<|LOC_337|>": 100634,
|
| 272 |
+
"<|LOC_338|>": 100635,
|
| 273 |
+
"<|LOC_339|>": 100636,
|
| 274 |
+
"<|LOC_33|>": 100330,
|
| 275 |
+
"<|LOC_340|>": 100637,
|
| 276 |
+
"<|LOC_341|>": 100638,
|
| 277 |
+
"<|LOC_342|>": 100639,
|
| 278 |
+
"<|LOC_343|>": 100640,
|
| 279 |
+
"<|LOC_344|>": 100641,
|
| 280 |
+
"<|LOC_345|>": 100642,
|
| 281 |
+
"<|LOC_346|>": 100643,
|
| 282 |
+
"<|LOC_347|>": 100644,
|
| 283 |
+
"<|LOC_348|>": 100645,
|
| 284 |
+
"<|LOC_349|>": 100646,
|
| 285 |
+
"<|LOC_34|>": 100331,
|
| 286 |
+
"<|LOC_350|>": 100647,
|
| 287 |
+
"<|LOC_351|>": 100648,
|
| 288 |
+
"<|LOC_352|>": 100649,
|
| 289 |
+
"<|LOC_353|>": 100650,
|
| 290 |
+
"<|LOC_354|>": 100651,
|
| 291 |
+
"<|LOC_355|>": 100652,
|
| 292 |
+
"<|LOC_356|>": 100653,
|
| 293 |
+
"<|LOC_357|>": 100654,
|
| 294 |
+
"<|LOC_358|>": 100655,
|
| 295 |
+
"<|LOC_359|>": 100656,
|
| 296 |
+
"<|LOC_35|>": 100332,
|
| 297 |
+
"<|LOC_360|>": 100657,
|
| 298 |
+
"<|LOC_361|>": 100658,
|
| 299 |
+
"<|LOC_362|>": 100659,
|
| 300 |
+
"<|LOC_363|>": 100660,
|
| 301 |
+
"<|LOC_364|>": 100661,
|
| 302 |
+
"<|LOC_365|>": 100662,
|
| 303 |
+
"<|LOC_366|>": 100663,
|
| 304 |
+
"<|LOC_367|>": 100664,
|
| 305 |
+
"<|LOC_368|>": 100665,
|
| 306 |
+
"<|LOC_369|>": 100666,
|
| 307 |
+
"<|LOC_36|>": 100333,
|
| 308 |
+
"<|LOC_370|>": 100667,
|
| 309 |
+
"<|LOC_371|>": 100668,
|
| 310 |
+
"<|LOC_372|>": 100669,
|
| 311 |
+
"<|LOC_373|>": 100670,
|
| 312 |
+
"<|LOC_374|>": 100671,
|
| 313 |
+
"<|LOC_375|>": 100672,
|
| 314 |
+
"<|LOC_376|>": 100673,
|
| 315 |
+
"<|LOC_377|>": 100674,
|
| 316 |
+
"<|LOC_378|>": 100675,
|
| 317 |
+
"<|LOC_379|>": 100676,
|
| 318 |
+
"<|LOC_37|>": 100334,
|
| 319 |
+
"<|LOC_380|>": 100677,
|
| 320 |
+
"<|LOC_381|>": 100678,
|
| 321 |
+
"<|LOC_382|>": 100679,
|
| 322 |
+
"<|LOC_383|>": 100680,
|
| 323 |
+
"<|LOC_384|>": 100681,
|
| 324 |
+
"<|LOC_385|>": 100682,
|
| 325 |
+
"<|LOC_386|>": 100683,
|
| 326 |
+
"<|LOC_387|>": 100684,
|
| 327 |
+
"<|LOC_388|>": 100685,
|
| 328 |
+
"<|LOC_389|>": 100686,
|
| 329 |
+
"<|LOC_38|>": 100335,
|
| 330 |
+
"<|LOC_390|>": 100687,
|
| 331 |
+
"<|LOC_391|>": 100688,
|
| 332 |
+
"<|LOC_392|>": 100689,
|
| 333 |
+
"<|LOC_393|>": 100690,
|
| 334 |
+
"<|LOC_394|>": 100691,
|
| 335 |
+
"<|LOC_395|>": 100692,
|
| 336 |
+
"<|LOC_396|>": 100693,
|
| 337 |
+
"<|LOC_397|>": 100694,
|
| 338 |
+
"<|LOC_398|>": 100695,
|
| 339 |
+
"<|LOC_399|>": 100696,
|
| 340 |
+
"<|LOC_39|>": 100336,
|
| 341 |
+
"<|LOC_3|>": 100300,
|
| 342 |
+
"<|LOC_400|>": 100697,
|
| 343 |
+
"<|LOC_401|>": 100698,
|
| 344 |
+
"<|LOC_402|>": 100699,
|
| 345 |
+
"<|LOC_403|>": 100700,
|
| 346 |
+
"<|LOC_404|>": 100701,
|
| 347 |
+
"<|LOC_405|>": 100702,
|
| 348 |
+
"<|LOC_406|>": 100703,
|
| 349 |
+
"<|LOC_407|>": 100704,
|
| 350 |
+
"<|LOC_408|>": 100705,
|
| 351 |
+
"<|LOC_409|>": 100706,
|
| 352 |
+
"<|LOC_40|>": 100337,
|
| 353 |
+
"<|LOC_410|>": 100707,
|
| 354 |
+
"<|LOC_411|>": 100708,
|
| 355 |
+
"<|LOC_412|>": 100709,
|
| 356 |
+
"<|LOC_413|>": 100710,
|
| 357 |
+
"<|LOC_414|>": 100711,
|
| 358 |
+
"<|LOC_415|>": 100712,
|
| 359 |
+
"<|LOC_416|>": 100713,
|
| 360 |
+
"<|LOC_417|>": 100714,
|
| 361 |
+
"<|LOC_418|>": 100715,
|
| 362 |
+
"<|LOC_419|>": 100716,
|
| 363 |
+
"<|LOC_41|>": 100338,
|
| 364 |
+
"<|LOC_420|>": 100717,
|
| 365 |
+
"<|LOC_421|>": 100718,
|
| 366 |
+
"<|LOC_422|>": 100719,
|
| 367 |
+
"<|LOC_423|>": 100720,
|
| 368 |
+
"<|LOC_424|>": 100721,
|
| 369 |
+
"<|LOC_425|>": 100722,
|
| 370 |
+
"<|LOC_426|>": 100723,
|
| 371 |
+
"<|LOC_427|>": 100724,
|
| 372 |
+
"<|LOC_428|>": 100725,
|
| 373 |
+
"<|LOC_429|>": 100726,
|
| 374 |
+
"<|LOC_42|>": 100339,
|
| 375 |
+
"<|LOC_430|>": 100727,
|
| 376 |
+
"<|LOC_431|>": 100728,
|
| 377 |
+
"<|LOC_432|>": 100729,
|
| 378 |
+
"<|LOC_433|>": 100730,
|
| 379 |
+
"<|LOC_434|>": 100731,
|
| 380 |
+
"<|LOC_435|>": 100732,
|
| 381 |
+
"<|LOC_436|>": 100733,
|
| 382 |
+
"<|LOC_437|>": 100734,
|
| 383 |
+
"<|LOC_438|>": 100735,
|
| 384 |
+
"<|LOC_439|>": 100736,
|
| 385 |
+
"<|LOC_43|>": 100340,
|
| 386 |
+
"<|LOC_440|>": 100737,
|
| 387 |
+
"<|LOC_441|>": 100738,
|
| 388 |
+
"<|LOC_442|>": 100739,
|
| 389 |
+
"<|LOC_443|>": 100740,
|
| 390 |
+
"<|LOC_444|>": 100741,
|
| 391 |
+
"<|LOC_445|>": 100742,
|
| 392 |
+
"<|LOC_446|>": 100743,
|
| 393 |
+
"<|LOC_447|>": 100744,
|
| 394 |
+
"<|LOC_448|>": 100745,
|
| 395 |
+
"<|LOC_449|>": 100746,
|
| 396 |
+
"<|LOC_44|>": 100341,
|
| 397 |
+
"<|LOC_450|>": 100747,
|
| 398 |
+
"<|LOC_451|>": 100748,
|
| 399 |
+
"<|LOC_452|>": 100749,
|
| 400 |
+
"<|LOC_453|>": 100750,
|
| 401 |
+
"<|LOC_454|>": 100751,
|
| 402 |
+
"<|LOC_455|>": 100752,
|
| 403 |
+
"<|LOC_456|>": 100753,
|
| 404 |
+
"<|LOC_457|>": 100754,
|
| 405 |
+
"<|LOC_458|>": 100755,
|
| 406 |
+
"<|LOC_459|>": 100756,
|
| 407 |
+
"<|LOC_45|>": 100342,
|
| 408 |
+
"<|LOC_460|>": 100757,
|
| 409 |
+
"<|LOC_461|>": 100758,
|
| 410 |
+
"<|LOC_462|>": 100759,
|
| 411 |
+
"<|LOC_463|>": 100760,
|
| 412 |
+
"<|LOC_464|>": 100761,
|
| 413 |
+
"<|LOC_465|>": 100762,
|
| 414 |
+
"<|LOC_466|>": 100763,
|
| 415 |
+
"<|LOC_467|>": 100764,
|
| 416 |
+
"<|LOC_468|>": 100765,
|
| 417 |
+
"<|LOC_469|>": 100766,
|
| 418 |
+
"<|LOC_46|>": 100343,
|
| 419 |
+
"<|LOC_470|>": 100767,
|
| 420 |
+
"<|LOC_471|>": 100768,
|
| 421 |
+
"<|LOC_472|>": 100769,
|
| 422 |
+
"<|LOC_473|>": 100770,
|
| 423 |
+
"<|LOC_474|>": 100771,
|
| 424 |
+
"<|LOC_475|>": 100772,
|
| 425 |
+
"<|LOC_476|>": 100773,
|
| 426 |
+
"<|LOC_477|>": 100774,
|
| 427 |
+
"<|LOC_478|>": 100775,
|
| 428 |
+
"<|LOC_479|>": 100776,
|
| 429 |
+
"<|LOC_47|>": 100344,
|
| 430 |
+
"<|LOC_480|>": 100777,
|
| 431 |
+
"<|LOC_481|>": 100778,
|
| 432 |
+
"<|LOC_482|>": 100779,
|
| 433 |
+
"<|LOC_483|>": 100780,
|
| 434 |
+
"<|LOC_484|>": 100781,
|
| 435 |
+
"<|LOC_485|>": 100782,
|
| 436 |
+
"<|LOC_486|>": 100783,
|
| 437 |
+
"<|LOC_487|>": 100784,
|
| 438 |
+
"<|LOC_488|>": 100785,
|
| 439 |
+
"<|LOC_489|>": 100786,
|
| 440 |
+
"<|LOC_48|>": 100345,
|
| 441 |
+
"<|LOC_490|>": 100787,
|
| 442 |
+
"<|LOC_491|>": 100788,
|
| 443 |
+
"<|LOC_492|>": 100789,
|
| 444 |
+
"<|LOC_493|>": 100790,
|
| 445 |
+
"<|LOC_494|>": 100791,
|
| 446 |
+
"<|LOC_495|>": 100792,
|
| 447 |
+
"<|LOC_496|>": 100793,
|
| 448 |
+
"<|LOC_497|>": 100794,
|
| 449 |
+
"<|LOC_498|>": 100795,
|
| 450 |
+
"<|LOC_499|>": 100796,
|
| 451 |
+
"<|LOC_49|>": 100346,
|
| 452 |
+
"<|LOC_4|>": 100301,
|
| 453 |
+
"<|LOC_500|>": 100797,
|
| 454 |
+
"<|LOC_501|>": 100798,
|
| 455 |
+
"<|LOC_502|>": 100799,
|
| 456 |
+
"<|LOC_503|>": 100800,
|
| 457 |
+
"<|LOC_504|>": 100801,
|
| 458 |
+
"<|LOC_505|>": 100802,
|
| 459 |
+
"<|LOC_506|>": 100803,
|
| 460 |
+
"<|LOC_507|>": 100804,
|
| 461 |
+
"<|LOC_508|>": 100805,
|
| 462 |
+
"<|LOC_509|>": 100806,
|
| 463 |
+
"<|LOC_50|>": 100347,
|
| 464 |
+
"<|LOC_510|>": 100807,
|
| 465 |
+
"<|LOC_511|>": 100808,
|
| 466 |
+
"<|LOC_512|>": 100809,
|
| 467 |
+
"<|LOC_513|>": 100810,
|
| 468 |
+
"<|LOC_514|>": 100811,
|
| 469 |
+
"<|LOC_515|>": 100812,
|
| 470 |
+
"<|LOC_516|>": 100813,
|
| 471 |
+
"<|LOC_517|>": 100814,
|
| 472 |
+
"<|LOC_518|>": 100815,
|
| 473 |
+
"<|LOC_519|>": 100816,
|
| 474 |
+
"<|LOC_51|>": 100348,
|
| 475 |
+
"<|LOC_520|>": 100817,
|
| 476 |
+
"<|LOC_521|>": 100818,
|
| 477 |
+
"<|LOC_522|>": 100819,
|
| 478 |
+
"<|LOC_523|>": 100820,
|
| 479 |
+
"<|LOC_524|>": 100821,
|
| 480 |
+
"<|LOC_525|>": 100822,
|
| 481 |
+
"<|LOC_526|>": 100823,
|
| 482 |
+
"<|LOC_527|>": 100824,
|
| 483 |
+
"<|LOC_528|>": 100825,
|
| 484 |
+
"<|LOC_529|>": 100826,
|
| 485 |
+
"<|LOC_52|>": 100349,
|
| 486 |
+
"<|LOC_530|>": 100827,
|
| 487 |
+
"<|LOC_531|>": 100828,
|
| 488 |
+
"<|LOC_532|>": 100829,
|
| 489 |
+
"<|LOC_533|>": 100830,
|
| 490 |
+
"<|LOC_534|>": 100831,
|
| 491 |
+
"<|LOC_535|>": 100832,
|
| 492 |
+
"<|LOC_536|>": 100833,
|
| 493 |
+
"<|LOC_537|>": 100834,
|
| 494 |
+
"<|LOC_538|>": 100835,
|
| 495 |
+
"<|LOC_539|>": 100836,
|
| 496 |
+
"<|LOC_53|>": 100350,
|
| 497 |
+
"<|LOC_540|>": 100837,
|
| 498 |
+
"<|LOC_541|>": 100838,
|
| 499 |
+
"<|LOC_542|>": 100839,
|
| 500 |
+
"<|LOC_543|>": 100840,
|
| 501 |
+
"<|LOC_544|>": 100841,
|
| 502 |
+
"<|LOC_545|>": 100842,
|
| 503 |
+
"<|LOC_546|>": 100843,
|
| 504 |
+
"<|LOC_547|>": 100844,
|
| 505 |
+
"<|LOC_548|>": 100845,
|
| 506 |
+
"<|LOC_549|>": 100846,
|
| 507 |
+
"<|LOC_54|>": 100351,
|
| 508 |
+
"<|LOC_550|>": 100847,
|
| 509 |
+
"<|LOC_551|>": 100848,
|
| 510 |
+
"<|LOC_552|>": 100849,
|
| 511 |
+
"<|LOC_553|>": 100850,
|
| 512 |
+
"<|LOC_554|>": 100851,
|
| 513 |
+
"<|LOC_555|>": 100852,
|
| 514 |
+
"<|LOC_556|>": 100853,
|
| 515 |
+
"<|LOC_557|>": 100854,
|
| 516 |
+
"<|LOC_558|>": 100855,
|
| 517 |
+
"<|LOC_559|>": 100856,
|
| 518 |
+
"<|LOC_55|>": 100352,
|
| 519 |
+
"<|LOC_560|>": 100857,
|
| 520 |
+
"<|LOC_561|>": 100858,
|
| 521 |
+
"<|LOC_562|>": 100859,
|
| 522 |
+
"<|LOC_563|>": 100860,
|
| 523 |
+
"<|LOC_564|>": 100861,
|
| 524 |
+
"<|LOC_565|>": 100862,
|
| 525 |
+
"<|LOC_566|>": 100863,
|
| 526 |
+
"<|LOC_567|>": 100864,
|
| 527 |
+
"<|LOC_568|>": 100865,
|
| 528 |
+
"<|LOC_569|>": 100866,
|
| 529 |
+
"<|LOC_56|>": 100353,
|
| 530 |
+
"<|LOC_570|>": 100867,
|
| 531 |
+
"<|LOC_571|>": 100868,
|
| 532 |
+
"<|LOC_572|>": 100869,
|
| 533 |
+
"<|LOC_573|>": 100870,
|
| 534 |
+
"<|LOC_574|>": 100871,
|
| 535 |
+
"<|LOC_575|>": 100872,
|
| 536 |
+
"<|LOC_576|>": 100873,
|
| 537 |
+
"<|LOC_577|>": 100874,
|
| 538 |
+
"<|LOC_578|>": 100875,
|
| 539 |
+
"<|LOC_579|>": 100876,
|
| 540 |
+
"<|LOC_57|>": 100354,
|
| 541 |
+
"<|LOC_580|>": 100877,
|
| 542 |
+
"<|LOC_581|>": 100878,
|
| 543 |
+
"<|LOC_582|>": 100879,
|
| 544 |
+
"<|LOC_583|>": 100880,
|
| 545 |
+
"<|LOC_584|>": 100881,
|
| 546 |
+
"<|LOC_585|>": 100882,
|
| 547 |
+
"<|LOC_586|>": 100883,
|
| 548 |
+
"<|LOC_587|>": 100884,
|
| 549 |
+
"<|LOC_588|>": 100885,
|
| 550 |
+
"<|LOC_589|>": 100886,
|
| 551 |
+
"<|LOC_58|>": 100355,
|
| 552 |
+
"<|LOC_590|>": 100887,
|
| 553 |
+
"<|LOC_591|>": 100888,
|
| 554 |
+
"<|LOC_592|>": 100889,
|
| 555 |
+
"<|LOC_593|>": 100890,
|
| 556 |
+
"<|LOC_594|>": 100891,
|
| 557 |
+
"<|LOC_595|>": 100892,
|
| 558 |
+
"<|LOC_596|>": 100893,
|
| 559 |
+
"<|LOC_597|>": 100894,
|
| 560 |
+
"<|LOC_598|>": 100895,
|
| 561 |
+
"<|LOC_599|>": 100896,
|
| 562 |
+
"<|LOC_59|>": 100356,
|
| 563 |
+
"<|LOC_5|>": 100302,
|
| 564 |
+
"<|LOC_600|>": 100897,
|
| 565 |
+
"<|LOC_601|>": 100898,
|
| 566 |
+
"<|LOC_602|>": 100899,
|
| 567 |
+
"<|LOC_603|>": 100900,
|
| 568 |
+
"<|LOC_604|>": 100901,
|
| 569 |
+
"<|LOC_605|>": 100902,
|
| 570 |
+
"<|LOC_606|>": 100903,
|
| 571 |
+
"<|LOC_607|>": 100904,
|
| 572 |
+
"<|LOC_608|>": 100905,
|
| 573 |
+
"<|LOC_609|>": 100906,
|
| 574 |
+
"<|LOC_60|>": 100357,
|
| 575 |
+
"<|LOC_610|>": 100907,
|
| 576 |
+
"<|LOC_611|>": 100908,
|
| 577 |
+
"<|LOC_612|>": 100909,
|
| 578 |
+
"<|LOC_613|>": 100910,
|
| 579 |
+
"<|LOC_614|>": 100911,
|
| 580 |
+
"<|LOC_615|>": 100912,
|
| 581 |
+
"<|LOC_616|>": 100913,
|
| 582 |
+
"<|LOC_617|>": 100914,
|
| 583 |
+
"<|LOC_618|>": 100915,
|
| 584 |
+
"<|LOC_619|>": 100916,
|
| 585 |
+
"<|LOC_61|>": 100358,
|
| 586 |
+
"<|LOC_620|>": 100917,
|
| 587 |
+
"<|LOC_621|>": 100918,
|
| 588 |
+
"<|LOC_622|>": 100919,
|
| 589 |
+
"<|LOC_623|>": 100920,
|
| 590 |
+
"<|LOC_624|>": 100921,
|
| 591 |
+
"<|LOC_625|>": 100922,
|
| 592 |
+
"<|LOC_626|>": 100923,
|
| 593 |
+
"<|LOC_627|>": 100924,
|
| 594 |
+
"<|LOC_628|>": 100925,
|
| 595 |
+
"<|LOC_629|>": 100926,
|
| 596 |
+
"<|LOC_62|>": 100359,
|
| 597 |
+
"<|LOC_630|>": 100927,
|
| 598 |
+
"<|LOC_631|>": 100928,
|
| 599 |
+
"<|LOC_632|>": 100929,
|
| 600 |
+
"<|LOC_633|>": 100930,
|
| 601 |
+
"<|LOC_634|>": 100931,
|
| 602 |
+
"<|LOC_635|>": 100932,
|
| 603 |
+
"<|LOC_636|>": 100933,
|
| 604 |
+
"<|LOC_637|>": 100934,
|
| 605 |
+
"<|LOC_638|>": 100935,
|
| 606 |
+
"<|LOC_639|>": 100936,
|
| 607 |
+
"<|LOC_63|>": 100360,
|
| 608 |
+
"<|LOC_640|>": 100937,
|
| 609 |
+
"<|LOC_641|>": 100938,
|
| 610 |
+
"<|LOC_642|>": 100939,
|
| 611 |
+
"<|LOC_643|>": 100940,
|
| 612 |
+
"<|LOC_644|>": 100941,
|
| 613 |
+
"<|LOC_645|>": 100942,
|
| 614 |
+
"<|LOC_646|>": 100943,
|
| 615 |
+
"<|LOC_647|>": 100944,
|
| 616 |
+
"<|LOC_648|>": 100945,
|
| 617 |
+
"<|LOC_649|>": 100946,
|
| 618 |
+
"<|LOC_64|>": 100361,
|
| 619 |
+
"<|LOC_650|>": 100947,
|
| 620 |
+
"<|LOC_651|>": 100948,
|
| 621 |
+
"<|LOC_652|>": 100949,
|
| 622 |
+
"<|LOC_653|>": 100950,
|
| 623 |
+
"<|LOC_654|>": 100951,
|
| 624 |
+
"<|LOC_655|>": 100952,
|
| 625 |
+
"<|LOC_656|>": 100953,
|
| 626 |
+
"<|LOC_657|>": 100954,
|
| 627 |
+
"<|LOC_658|>": 100955,
|
| 628 |
+
"<|LOC_659|>": 100956,
|
| 629 |
+
"<|LOC_65|>": 100362,
|
| 630 |
+
"<|LOC_660|>": 100957,
|
| 631 |
+
"<|LOC_661|>": 100958,
|
| 632 |
+
"<|LOC_662|>": 100959,
|
| 633 |
+
"<|LOC_663|>": 100960,
|
| 634 |
+
"<|LOC_664|>": 100961,
|
| 635 |
+
"<|LOC_665|>": 100962,
|
| 636 |
+
"<|LOC_666|>": 100963,
|
| 637 |
+
"<|LOC_667|>": 100964,
|
| 638 |
+
"<|LOC_668|>": 100965,
|
| 639 |
+
"<|LOC_669|>": 100966,
|
| 640 |
+
"<|LOC_66|>": 100363,
|
| 641 |
+
"<|LOC_670|>": 100967,
|
| 642 |
+
"<|LOC_671|>": 100968,
|
| 643 |
+
"<|LOC_672|>": 100969,
|
| 644 |
+
"<|LOC_673|>": 100970,
|
| 645 |
+
"<|LOC_674|>": 100971,
|
| 646 |
+
"<|LOC_675|>": 100972,
|
| 647 |
+
"<|LOC_676|>": 100973,
|
| 648 |
+
"<|LOC_677|>": 100974,
|
| 649 |
+
"<|LOC_678|>": 100975,
|
| 650 |
+
"<|LOC_679|>": 100976,
|
| 651 |
+
"<|LOC_67|>": 100364,
|
| 652 |
+
"<|LOC_680|>": 100977,
|
| 653 |
+
"<|LOC_681|>": 100978,
|
| 654 |
+
"<|LOC_682|>": 100979,
|
| 655 |
+
"<|LOC_683|>": 100980,
|
| 656 |
+
"<|LOC_684|>": 100981,
|
| 657 |
+
"<|LOC_685|>": 100982,
|
| 658 |
+
"<|LOC_686|>": 100983,
|
| 659 |
+
"<|LOC_687|>": 100984,
|
| 660 |
+
"<|LOC_688|>": 100985,
|
| 661 |
+
"<|LOC_689|>": 100986,
|
| 662 |
+
"<|LOC_68|>": 100365,
|
| 663 |
+
"<|LOC_690|>": 100987,
|
| 664 |
+
"<|LOC_691|>": 100988,
|
| 665 |
+
"<|LOC_692|>": 100989,
|
| 666 |
+
"<|LOC_693|>": 100990,
|
| 667 |
+
"<|LOC_694|>": 100991,
|
| 668 |
+
"<|LOC_695|>": 100992,
|
| 669 |
+
"<|LOC_696|>": 100993,
|
| 670 |
+
"<|LOC_697|>": 100994,
|
| 671 |
+
"<|LOC_698|>": 100995,
|
| 672 |
+
"<|LOC_699|>": 100996,
|
| 673 |
+
"<|LOC_69|>": 100366,
|
| 674 |
+
"<|LOC_6|>": 100303,
|
| 675 |
+
"<|LOC_700|>": 100997,
|
| 676 |
+
"<|LOC_701|>": 100998,
|
| 677 |
+
"<|LOC_702|>": 100999,
|
| 678 |
+
"<|LOC_703|>": 101000,
|
| 679 |
+
"<|LOC_704|>": 101001,
|
| 680 |
+
"<|LOC_705|>": 101002,
|
| 681 |
+
"<|LOC_706|>": 101003,
|
| 682 |
+
"<|LOC_707|>": 101004,
|
| 683 |
+
"<|LOC_708|>": 101005,
|
| 684 |
+
"<|LOC_709|>": 101006,
|
| 685 |
+
"<|LOC_70|>": 100367,
|
| 686 |
+
"<|LOC_710|>": 101007,
|
| 687 |
+
"<|LOC_711|>": 101008,
|
| 688 |
+
"<|LOC_712|>": 101009,
|
| 689 |
+
"<|LOC_713|>": 101010,
|
| 690 |
+
"<|LOC_714|>": 101011,
|
| 691 |
+
"<|LOC_715|>": 101012,
|
| 692 |
+
"<|LOC_716|>": 101013,
|
| 693 |
+
"<|LOC_717|>": 101014,
|
| 694 |
+
"<|LOC_718|>": 101015,
|
| 695 |
+
"<|LOC_719|>": 101016,
|
| 696 |
+
"<|LOC_71|>": 100368,
|
| 697 |
+
"<|LOC_720|>": 101017,
|
| 698 |
+
"<|LOC_721|>": 101018,
|
| 699 |
+
"<|LOC_722|>": 101019,
|
| 700 |
+
"<|LOC_723|>": 101020,
|
| 701 |
+
"<|LOC_724|>": 101021,
|
| 702 |
+
"<|LOC_725|>": 101022,
|
| 703 |
+
"<|LOC_726|>": 101023,
|
| 704 |
+
"<|LOC_727|>": 101024,
|
| 705 |
+
"<|LOC_728|>": 101025,
|
| 706 |
+
"<|LOC_729|>": 101026,
|
| 707 |
+
"<|LOC_72|>": 100369,
|
| 708 |
+
"<|LOC_730|>": 101027,
|
| 709 |
+
"<|LOC_731|>": 101028,
|
| 710 |
+
"<|LOC_732|>": 101029,
|
| 711 |
+
"<|LOC_733|>": 101030,
|
| 712 |
+
"<|LOC_734|>": 101031,
|
| 713 |
+
"<|LOC_735|>": 101032,
|
| 714 |
+
"<|LOC_736|>": 101033,
|
| 715 |
+
"<|LOC_737|>": 101034,
|
| 716 |
+
"<|LOC_738|>": 101035,
|
| 717 |
+
"<|LOC_739|>": 101036,
|
| 718 |
+
"<|LOC_73|>": 100370,
|
| 719 |
+
"<|LOC_740|>": 101037,
|
| 720 |
+
"<|LOC_741|>": 101038,
|
| 721 |
+
"<|LOC_742|>": 101039,
|
| 722 |
+
"<|LOC_743|>": 101040,
|
| 723 |
+
"<|LOC_744|>": 101041,
|
| 724 |
+
"<|LOC_745|>": 101042,
|
| 725 |
+
"<|LOC_746|>": 101043,
|
| 726 |
+
"<|LOC_747|>": 101044,
|
| 727 |
+
"<|LOC_748|>": 101045,
|
| 728 |
+
"<|LOC_749|>": 101046,
|
| 729 |
+
"<|LOC_74|>": 100371,
|
| 730 |
+
"<|LOC_750|>": 101047,
|
| 731 |
+
"<|LOC_751|>": 101048,
|
| 732 |
+
"<|LOC_752|>": 101049,
|
| 733 |
+
"<|LOC_753|>": 101050,
|
| 734 |
+
"<|LOC_754|>": 101051,
|
| 735 |
+
"<|LOC_755|>": 101052,
|
| 736 |
+
"<|LOC_756|>": 101053,
|
| 737 |
+
"<|LOC_757|>": 101054,
|
| 738 |
+
"<|LOC_758|>": 101055,
|
| 739 |
+
"<|LOC_759|>": 101056,
|
| 740 |
+
"<|LOC_75|>": 100372,
|
| 741 |
+
"<|LOC_760|>": 101057,
|
| 742 |
+
"<|LOC_761|>": 101058,
|
| 743 |
+
"<|LOC_762|>": 101059,
|
| 744 |
+
"<|LOC_763|>": 101060,
|
| 745 |
+
"<|LOC_764|>": 101061,
|
| 746 |
+
"<|LOC_765|>": 101062,
|
| 747 |
+
"<|LOC_766|>": 101063,
|
| 748 |
+
"<|LOC_767|>": 101064,
|
| 749 |
+
"<|LOC_768|>": 101065,
|
| 750 |
+
"<|LOC_769|>": 101066,
|
| 751 |
+
"<|LOC_76|>": 100373,
|
| 752 |
+
"<|LOC_770|>": 101067,
|
| 753 |
+
"<|LOC_771|>": 101068,
|
| 754 |
+
"<|LOC_772|>": 101069,
|
| 755 |
+
"<|LOC_773|>": 101070,
|
| 756 |
+
"<|LOC_774|>": 101071,
|
| 757 |
+
"<|LOC_775|>": 101072,
|
| 758 |
+
"<|LOC_776|>": 101073,
|
| 759 |
+
"<|LOC_777|>": 101074,
|
| 760 |
+
"<|LOC_778|>": 101075,
|
| 761 |
+
"<|LOC_779|>": 101076,
|
| 762 |
+
"<|LOC_77|>": 100374,
|
| 763 |
+
"<|LOC_780|>": 101077,
|
| 764 |
+
"<|LOC_781|>": 101078,
|
| 765 |
+
"<|LOC_782|>": 101079,
|
| 766 |
+
"<|LOC_783|>": 101080,
|
| 767 |
+
"<|LOC_784|>": 101081,
|
| 768 |
+
"<|LOC_785|>": 101082,
|
| 769 |
+
"<|LOC_786|>": 101083,
|
| 770 |
+
"<|LOC_787|>": 101084,
|
| 771 |
+
"<|LOC_788|>": 101085,
|
| 772 |
+
"<|LOC_789|>": 101086,
|
| 773 |
+
"<|LOC_78|>": 100375,
|
| 774 |
+
"<|LOC_790|>": 101087,
|
| 775 |
+
"<|LOC_791|>": 101088,
|
| 776 |
+
"<|LOC_792|>": 101089,
|
| 777 |
+
"<|LOC_793|>": 101090,
|
| 778 |
+
"<|LOC_794|>": 101091,
|
| 779 |
+
"<|LOC_795|>": 101092,
|
| 780 |
+
"<|LOC_796|>": 101093,
|
| 781 |
+
"<|LOC_797|>": 101094,
|
| 782 |
+
"<|LOC_798|>": 101095,
|
| 783 |
+
"<|LOC_799|>": 101096,
|
| 784 |
+
"<|LOC_79|>": 100376,
|
| 785 |
+
"<|LOC_7|>": 100304,
|
| 786 |
+
"<|LOC_800|>": 101097,
|
| 787 |
+
"<|LOC_801|>": 101098,
|
| 788 |
+
"<|LOC_802|>": 101099,
|
| 789 |
+
"<|LOC_803|>": 101100,
|
| 790 |
+
"<|LOC_804|>": 101101,
|
| 791 |
+
"<|LOC_805|>": 101102,
|
| 792 |
+
"<|LOC_806|>": 101103,
|
| 793 |
+
"<|LOC_807|>": 101104,
|
| 794 |
+
"<|LOC_808|>": 101105,
|
| 795 |
+
"<|LOC_809|>": 101106,
|
| 796 |
+
"<|LOC_80|>": 100377,
|
| 797 |
+
"<|LOC_810|>": 101107,
|
| 798 |
+
"<|LOC_811|>": 101108,
|
| 799 |
+
"<|LOC_812|>": 101109,
|
| 800 |
+
"<|LOC_813|>": 101110,
|
| 801 |
+
"<|LOC_814|>": 101111,
|
| 802 |
+
"<|LOC_815|>": 101112,
|
| 803 |
+
"<|LOC_816|>": 101113,
|
| 804 |
+
"<|LOC_817|>": 101114,
|
| 805 |
+
"<|LOC_818|>": 101115,
|
| 806 |
+
"<|LOC_819|>": 101116,
|
| 807 |
+
"<|LOC_81|>": 100378,
|
| 808 |
+
"<|LOC_820|>": 101117,
|
| 809 |
+
"<|LOC_821|>": 101118,
|
| 810 |
+
"<|LOC_822|>": 101119,
|
| 811 |
+
"<|LOC_823|>": 101120,
|
| 812 |
+
"<|LOC_824|>": 101121,
|
| 813 |
+
"<|LOC_825|>": 101122,
|
| 814 |
+
"<|LOC_826|>": 101123,
|
| 815 |
+
"<|LOC_827|>": 101124,
|
| 816 |
+
"<|LOC_828|>": 101125,
|
| 817 |
+
"<|LOC_829|>": 101126,
|
| 818 |
+
"<|LOC_82|>": 100379,
|
| 819 |
+
"<|LOC_830|>": 101127,
|
| 820 |
+
"<|LOC_831|>": 101128,
|
| 821 |
+
"<|LOC_832|>": 101129,
|
| 822 |
+
"<|LOC_833|>": 101130,
|
| 823 |
+
"<|LOC_834|>": 101131,
|
| 824 |
+
"<|LOC_835|>": 101132,
|
| 825 |
+
"<|LOC_836|>": 101133,
|
| 826 |
+
"<|LOC_837|>": 101134,
|
| 827 |
+
"<|LOC_838|>": 101135,
|
| 828 |
+
"<|LOC_839|>": 101136,
|
| 829 |
+
"<|LOC_83|>": 100380,
|
| 830 |
+
"<|LOC_840|>": 101137,
|
| 831 |
+
"<|LOC_841|>": 101138,
|
| 832 |
+
"<|LOC_842|>": 101139,
|
| 833 |
+
"<|LOC_843|>": 101140,
|
| 834 |
+
"<|LOC_844|>": 101141,
|
| 835 |
+
"<|LOC_845|>": 101142,
|
| 836 |
+
"<|LOC_846|>": 101143,
|
| 837 |
+
"<|LOC_847|>": 101144,
|
| 838 |
+
"<|LOC_848|>": 101145,
|
| 839 |
+
"<|LOC_849|>": 101146,
|
| 840 |
+
"<|LOC_84|>": 100381,
|
| 841 |
+
"<|LOC_850|>": 101147,
|
| 842 |
+
"<|LOC_851|>": 101148,
|
| 843 |
+
"<|LOC_852|>": 101149,
|
| 844 |
+
"<|LOC_853|>": 101150,
|
| 845 |
+
"<|LOC_854|>": 101151,
|
| 846 |
+
"<|LOC_855|>": 101152,
|
| 847 |
+
"<|LOC_856|>": 101153,
|
| 848 |
+
"<|LOC_857|>": 101154,
|
| 849 |
+
"<|LOC_858|>": 101155,
|
| 850 |
+
"<|LOC_859|>": 101156,
|
| 851 |
+
"<|LOC_85|>": 100382,
|
| 852 |
+
"<|LOC_860|>": 101157,
|
| 853 |
+
"<|LOC_861|>": 101158,
|
| 854 |
+
"<|LOC_862|>": 101159,
|
| 855 |
+
"<|LOC_863|>": 101160,
|
| 856 |
+
"<|LOC_864|>": 101161,
|
| 857 |
+
"<|LOC_865|>": 101162,
|
| 858 |
+
"<|LOC_866|>": 101163,
|
| 859 |
+
"<|LOC_867|>": 101164,
|
| 860 |
+
"<|LOC_868|>": 101165,
|
| 861 |
+
"<|LOC_869|>": 101166,
|
| 862 |
+
"<|LOC_86|>": 100383,
|
| 863 |
+
"<|LOC_870|>": 101167,
|
| 864 |
+
"<|LOC_871|>": 101168,
|
| 865 |
+
"<|LOC_872|>": 101169,
|
| 866 |
+
"<|LOC_873|>": 101170,
|
| 867 |
+
"<|LOC_874|>": 101171,
|
| 868 |
+
"<|LOC_875|>": 101172,
|
| 869 |
+
"<|LOC_876|>": 101173,
|
| 870 |
+
"<|LOC_877|>": 101174,
|
| 871 |
+
"<|LOC_878|>": 101175,
|
| 872 |
+
"<|LOC_879|>": 101176,
|
| 873 |
+
"<|LOC_87|>": 100384,
|
| 874 |
+
"<|LOC_880|>": 101177,
|
| 875 |
+
"<|LOC_881|>": 101178,
|
| 876 |
+
"<|LOC_882|>": 101179,
|
| 877 |
+
"<|LOC_883|>": 101180,
|
| 878 |
+
"<|LOC_884|>": 101181,
|
| 879 |
+
"<|LOC_885|>": 101182,
|
| 880 |
+
"<|LOC_886|>": 101183,
|
| 881 |
+
"<|LOC_887|>": 101184,
|
| 882 |
+
"<|LOC_888|>": 101185,
|
| 883 |
+
"<|LOC_889|>": 101186,
|
| 884 |
+
"<|LOC_88|>": 100385,
|
| 885 |
+
"<|LOC_890|>": 101187,
|
| 886 |
+
"<|LOC_891|>": 101188,
|
| 887 |
+
"<|LOC_892|>": 101189,
|
| 888 |
+
"<|LOC_893|>": 101190,
|
| 889 |
+
"<|LOC_894|>": 101191,
|
| 890 |
+
"<|LOC_895|>": 101192,
|
| 891 |
+
"<|LOC_896|>": 101193,
|
| 892 |
+
"<|LOC_897|>": 101194,
|
| 893 |
+
"<|LOC_898|>": 101195,
|
| 894 |
+
"<|LOC_899|>": 101196,
|
| 895 |
+
"<|LOC_89|>": 100386,
|
| 896 |
+
"<|LOC_8|>": 100305,
|
| 897 |
+
"<|LOC_900|>": 101197,
|
| 898 |
+
"<|LOC_901|>": 101198,
|
| 899 |
+
"<|LOC_902|>": 101199,
|
| 900 |
+
"<|LOC_903|>": 101200,
|
| 901 |
+
"<|LOC_904|>": 101201,
|
| 902 |
+
"<|LOC_905|>": 101202,
|
| 903 |
+
"<|LOC_906|>": 101203,
|
| 904 |
+
"<|LOC_907|>": 101204,
|
| 905 |
+
"<|LOC_908|>": 101205,
|
| 906 |
+
"<|LOC_909|>": 101206,
|
| 907 |
+
"<|LOC_90|>": 100387,
|
| 908 |
+
"<|LOC_910|>": 101207,
|
| 909 |
+
"<|LOC_911|>": 101208,
|
| 910 |
+
"<|LOC_912|>": 101209,
|
| 911 |
+
"<|LOC_913|>": 101210,
|
| 912 |
+
"<|LOC_914|>": 101211,
|
| 913 |
+
"<|LOC_915|>": 101212,
|
| 914 |
+
"<|LOC_916|>": 101213,
|
| 915 |
+
"<|LOC_917|>": 101214,
|
| 916 |
+
"<|LOC_918|>": 101215,
|
| 917 |
+
"<|LOC_919|>": 101216,
|
| 918 |
+
"<|LOC_91|>": 100388,
|
| 919 |
+
"<|LOC_920|>": 101217,
|
| 920 |
+
"<|LOC_921|>": 101218,
|
| 921 |
+
"<|LOC_922|>": 101219,
|
| 922 |
+
"<|LOC_923|>": 101220,
|
| 923 |
+
"<|LOC_924|>": 101221,
|
| 924 |
+
"<|LOC_925|>": 101222,
|
| 925 |
+
"<|LOC_926|>": 101223,
|
| 926 |
+
"<|LOC_927|>": 101224,
|
| 927 |
+
"<|LOC_928|>": 101225,
|
| 928 |
+
"<|LOC_929|>": 101226,
|
| 929 |
+
"<|LOC_92|>": 100389,
|
| 930 |
+
"<|LOC_930|>": 101227,
|
| 931 |
+
"<|LOC_931|>": 101228,
|
| 932 |
+
"<|LOC_932|>": 101229,
|
| 933 |
+
"<|LOC_933|>": 101230,
|
| 934 |
+
"<|LOC_934|>": 101231,
|
| 935 |
+
"<|LOC_935|>": 101232,
|
| 936 |
+
"<|LOC_936|>": 101233,
|
| 937 |
+
"<|LOC_937|>": 101234,
|
| 938 |
+
"<|LOC_938|>": 101235,
|
| 939 |
+
"<|LOC_939|>": 101236,
|
| 940 |
+
"<|LOC_93|>": 100390,
|
| 941 |
+
"<|LOC_940|>": 101237,
|
| 942 |
+
"<|LOC_941|>": 101238,
|
| 943 |
+
"<|LOC_942|>": 101239,
|
| 944 |
+
"<|LOC_943|>": 101240,
|
| 945 |
+
"<|LOC_944|>": 101241,
|
| 946 |
+
"<|LOC_945|>": 101242,
|
| 947 |
+
"<|LOC_946|>": 101243,
|
| 948 |
+
"<|LOC_947|>": 101244,
|
| 949 |
+
"<|LOC_948|>": 101245,
|
| 950 |
+
"<|LOC_949|>": 101246,
|
| 951 |
+
"<|LOC_94|>": 100391,
|
| 952 |
+
"<|LOC_950|>": 101247,
|
| 953 |
+
"<|LOC_951|>": 101248,
|
| 954 |
+
"<|LOC_952|>": 101249,
|
| 955 |
+
"<|LOC_953|>": 101250,
|
| 956 |
+
"<|LOC_954|>": 101251,
|
| 957 |
+
"<|LOC_955|>": 101252,
|
| 958 |
+
"<|LOC_956|>": 101253,
|
| 959 |
+
"<|LOC_957|>": 101254,
|
| 960 |
+
"<|LOC_958|>": 101255,
|
| 961 |
+
"<|LOC_959|>": 101256,
|
| 962 |
+
"<|LOC_95|>": 100392,
|
| 963 |
+
"<|LOC_960|>": 101257,
|
| 964 |
+
"<|LOC_961|>": 101258,
|
| 965 |
+
"<|LOC_962|>": 101259,
|
| 966 |
+
"<|LOC_963|>": 101260,
|
| 967 |
+
"<|LOC_964|>": 101261,
|
| 968 |
+
"<|LOC_965|>": 101262,
|
| 969 |
+
"<|LOC_966|>": 101263,
|
| 970 |
+
"<|LOC_967|>": 101264,
|
| 971 |
+
"<|LOC_968|>": 101265,
|
| 972 |
+
"<|LOC_969|>": 101266,
|
| 973 |
+
"<|LOC_96|>": 100393,
|
| 974 |
+
"<|LOC_970|>": 101267,
|
| 975 |
+
"<|LOC_971|>": 101268,
|
| 976 |
+
"<|LOC_972|>": 101269,
|
| 977 |
+
"<|LOC_973|>": 101270,
|
| 978 |
+
"<|LOC_974|>": 101271,
|
| 979 |
+
"<|LOC_975|>": 101272,
|
| 980 |
+
"<|LOC_976|>": 101273,
|
| 981 |
+
"<|LOC_977|>": 101274,
|
| 982 |
+
"<|LOC_978|>": 101275,
|
| 983 |
+
"<|LOC_979|>": 101276,
|
| 984 |
+
"<|LOC_97|>": 100394,
|
| 985 |
+
"<|LOC_980|>": 101277,
|
| 986 |
+
"<|LOC_981|>": 101278,
|
| 987 |
+
"<|LOC_982|>": 101279,
|
| 988 |
+
"<|LOC_983|>": 101280,
|
| 989 |
+
"<|LOC_984|>": 101281,
|
| 990 |
+
"<|LOC_985|>": 101282,
|
| 991 |
+
"<|LOC_986|>": 101283,
|
| 992 |
+
"<|LOC_987|>": 101284,
|
| 993 |
+
"<|LOC_988|>": 101285,
|
| 994 |
+
"<|LOC_989|>": 101286,
|
| 995 |
+
"<|LOC_98|>": 100395,
|
| 996 |
+
"<|LOC_990|>": 101287,
|
| 997 |
+
"<|LOC_991|>": 101288,
|
| 998 |
+
"<|LOC_992|>": 101289,
|
| 999 |
+
"<|LOC_993|>": 101290,
|
| 1000 |
+
"<|LOC_994|>": 101291,
|
| 1001 |
+
"<|LOC_995|>": 101292,
|
| 1002 |
+
"<|LOC_996|>": 101293,
|
| 1003 |
+
"<|LOC_997|>": 101294,
|
| 1004 |
+
"<|LOC_998|>": 101295,
|
| 1005 |
+
"<|LOC_999|>": 101296,
|
| 1006 |
+
"<|LOC_99|>": 100396,
|
| 1007 |
+
"<|LOC_9|>": 100306,
|
| 1008 |
+
"<|LOC_BEGIN|>": 101298,
|
| 1009 |
+
"<|LOC_END|>": 101299,
|
| 1010 |
+
"<|LOC_SEP|>": 101300
|
| 1011 |
+
}
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if not add_generation_prompt is defined -%}
|
| 2 |
+
{%- set add_generation_prompt = true -%}
|
| 3 |
+
{%- endif -%}
|
| 4 |
+
{%- if not cls_token is defined -%}
|
| 5 |
+
{%- set cls_token = "<|begin_of_sentence|>" -%}
|
| 6 |
+
{%- endif -%}
|
| 7 |
+
{%- if not sep_token is defined -%}
|
| 8 |
+
{%- set sep_token = "<|end_of_sentence|>" -%}
|
| 9 |
+
{%- endif -%}
|
| 10 |
+
{{- cls_token -}}
|
| 11 |
+
{%- for message in messages -%}
|
| 12 |
+
{%- if message["role"] == "user" -%}
|
| 13 |
+
{{- "User: " + message["content"] + "
|
| 14 |
+
" -}}
|
| 15 |
+
{%- elif message["role"] == "assistant" -%}
|
| 16 |
+
{{- "Assistant: " + message["content"] + sep_token -}}
|
| 17 |
+
{%- elif message["role"] == "system" -%}
|
| 18 |
+
{{- message["content"] + "
|
| 19 |
+
" -}}
|
| 20 |
+
{%- endif -%}
|
| 21 |
+
{%- endfor -%}
|
| 22 |
+
{%- if add_generation_prompt -%}
|
| 23 |
+
{{- "Assistant: " -}}
|
| 24 |
+
{%- endif -%}
|
config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Ernie4_5_ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_ernie4_5.Ernie4_5_Config",
|
| 7 |
+
"AutoModel": "modeling_ernie4_5.Ernie4_5_Model",
|
| 8 |
+
"AutoModelForCausalLM": "modeling_ernie4_5.Ernie4_5_ForCausalLM"
|
| 9 |
+
},
|
| 10 |
+
"bos_token_id": 1,
|
| 11 |
+
"eos_token_id": 2,
|
| 12 |
+
"head_dim": 128,
|
| 13 |
+
"hidden_act": "silu",
|
| 14 |
+
"hidden_size": 1024,
|
| 15 |
+
"intermediate_size": 3072,
|
| 16 |
+
"max_position_embeddings": 131072,
|
| 17 |
+
"model_type": "ernie4_5",
|
| 18 |
+
"num_attention_heads": 16,
|
| 19 |
+
"num_hidden_layers": 18,
|
| 20 |
+
"num_key_value_heads": 2,
|
| 21 |
+
"pad_token_id": 0,
|
| 22 |
+
"quantization": {
|
| 23 |
+
"group_size": 64,
|
| 24 |
+
"bits": 4
|
| 25 |
+
},
|
| 26 |
+
"quantization_config": {
|
| 27 |
+
"group_size": 64,
|
| 28 |
+
"bits": 4
|
| 29 |
+
},
|
| 30 |
+
"rms_norm_eps": 1e-05,
|
| 31 |
+
"rope_theta": 500000,
|
| 32 |
+
"tie_word_embeddings": true,
|
| 33 |
+
"torch_dtype": "bfloat16",
|
| 34 |
+
"use_bias": false,
|
| 35 |
+
"use_cache": false,
|
| 36 |
+
"vocab_size": 103424
|
| 37 |
+
}
|
configuration_ernie4_5.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 Baidu, Inc. All Rights Reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from transformers import PretrainedConfig
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class Ernie4_5_Config(PretrainedConfig):
|
| 19 |
+
"""
|
| 20 |
+
Configuration class.
|
| 21 |
+
|
| 22 |
+
This class stores the configuration of an Ernie model, defining the model architecture.
|
| 23 |
+
It inherits from PretrainedConfig and can be used to control model outputs.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
model_type = "ernie4_5"
|
| 27 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 28 |
+
|
| 29 |
+
# Default tensor parallel plan for base model `Qwen3`
|
| 30 |
+
base_model_tp_plan = {
|
| 31 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 32 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 33 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 34 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 35 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 36 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 37 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 38 |
+
}
|
| 39 |
+
base_model_pp_plan = {
|
| 40 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 41 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 42 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
def __init__(
|
| 46 |
+
self,
|
| 47 |
+
vocab_size=32000,
|
| 48 |
+
hidden_size=768,
|
| 49 |
+
intermediate_size=11008,
|
| 50 |
+
max_position_embeddings=32768,
|
| 51 |
+
num_hidden_layers=2,
|
| 52 |
+
num_attention_heads=2,
|
| 53 |
+
rms_norm_eps=1e-6,
|
| 54 |
+
use_cache=False,
|
| 55 |
+
use_flash_attention=False,
|
| 56 |
+
pad_token_id=0,
|
| 57 |
+
bos_token_id=1,
|
| 58 |
+
eos_token_id=2,
|
| 59 |
+
use_bias=False,
|
| 60 |
+
rope_theta=10000,
|
| 61 |
+
weight_share_add_bias=True,
|
| 62 |
+
ignored_index=-100,
|
| 63 |
+
attention_probs_dropout_prob=0.0,
|
| 64 |
+
hidden_dropout_prob=0.0,
|
| 65 |
+
compression_ratio: float = 1.0,
|
| 66 |
+
num_key_value_heads=None,
|
| 67 |
+
max_sequence_length=None,
|
| 68 |
+
**kwargs,
|
| 69 |
+
):
|
| 70 |
+
"""
|
| 71 |
+
Initialize configuration with default or specified parameters.
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
vocab_size (int): Size of the vocabulary (number of unique tokens)
|
| 75 |
+
hidden_size (int): Dimensionality of the encoder layers and the pooler layer
|
| 76 |
+
intermediate_size (int): Dimensionality of the "intermediate" (feed-forward) layer
|
| 77 |
+
max_position_embeddings (int): Maximum sequence length the model can handle
|
| 78 |
+
num_hidden_layers (int): Number of hidden layers in the Transformer encoder
|
| 79 |
+
num_attention_heads (int): Number of attention heads for each attention layer
|
| 80 |
+
rms_norm_eps (float): The epsilon used by the RMS normalization layers
|
| 81 |
+
use_cache (bool): Whether to use caching for faster generation (decoding)
|
| 82 |
+
use_flash_attention (bool): Whether to use FlashAttention for optimized attention computation
|
| 83 |
+
pad_token_id (int): Token ID used for padding sequences
|
| 84 |
+
bos_token_id (int): Token ID used for beginning-of-sequence
|
| 85 |
+
eos_token_id (int): Token ID used for end-of-sequence
|
| 86 |
+
use_bias (bool): Whether to use bias terms in linear layers
|
| 87 |
+
rope_theta (float): The base period of the RoPE embeddings
|
| 88 |
+
weight_share_add_bias (bool): Whether to share bias weights in certain layers
|
| 89 |
+
ignored_index (int): Target value that is ignored during loss computation
|
| 90 |
+
attention_probs_dropout_prob (float): Dropout probability for attention weights
|
| 91 |
+
hidden_dropout_prob (float): Dropout probability for hidden layers
|
| 92 |
+
compression_ratio (float): Ratio for KV cache compression (1.0 = no compression)
|
| 93 |
+
num_key_value_heads (int): Number of key/value heads (for Grouped Query Attention)
|
| 94 |
+
max_sequence_length (int): Maximum sequence length for positional embeddings
|
| 95 |
+
**kwargs: Additional keyword arguments passed to parent class
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
# Set default for tied embeddings if not specified.
|
| 99 |
+
if "tie_word_embeddings" not in kwargs:
|
| 100 |
+
kwargs["tie_word_embeddings"] = False
|
| 101 |
+
super().__init__(
|
| 102 |
+
pad_token_id=pad_token_id,
|
| 103 |
+
bos_token_id=bos_token_id,
|
| 104 |
+
eos_token_id=eos_token_id,
|
| 105 |
+
**kwargs,
|
| 106 |
+
)
|
| 107 |
+
self.vocab_size = vocab_size
|
| 108 |
+
self.hidden_size = hidden_size
|
| 109 |
+
self.intermediate_size = intermediate_size
|
| 110 |
+
self.max_position_embeddings = max_position_embeddings
|
| 111 |
+
self.num_hidden_layers = num_hidden_layers
|
| 112 |
+
self.num_attention_heads = num_attention_heads
|
| 113 |
+
self.rms_norm_eps = rms_norm_eps
|
| 114 |
+
self.use_cache = use_cache
|
| 115 |
+
self.use_flash_attention = use_flash_attention
|
| 116 |
+
self.pad_token_id = pad_token_id
|
| 117 |
+
self.bos_token_id = bos_token_id
|
| 118 |
+
self.eos_token_id = eos_token_id
|
| 119 |
+
self.use_bias = use_bias
|
| 120 |
+
self.weight_share_add_bias = weight_share_add_bias
|
| 121 |
+
self.rope_theta = rope_theta
|
| 122 |
+
self.ignored_index = ignored_index
|
| 123 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 124 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 125 |
+
self.compression_ratio = compression_ratio
|
| 126 |
+
self.num_key_value_heads = num_key_value_heads
|
| 127 |
+
self.max_sequence_length = max_sequence_length
|
generation_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_sample": true,
|
| 3 |
+
"top_p": 0.8,
|
| 4 |
+
"temperature": 0.8,
|
| 5 |
+
"bos_token_id": 1,
|
| 6 |
+
"eos_token_id": 2,
|
| 7 |
+
"pad_token_id": 0,
|
| 8 |
+
"repetition_penalty": 1.0,
|
| 9 |
+
"frequency_penalty": 0.0,
|
| 10 |
+
"presence_penalty": 0.0
|
| 11 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a02d70a7b1135b2307a7129f75488489406f4233960adac59ba7b0eae2dc8106
|
| 3 |
+
size 203021300
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 202975232,
|
| 4 |
+
"total_parameters": 360748032
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"model.embed_tokens.biases": "model.safetensors",
|
| 8 |
+
"model.embed_tokens.scales": "model.safetensors",
|
| 9 |
+
"model.embed_tokens.weight": "model.safetensors",
|
| 10 |
+
"model.layers.0.input_layernorm.weight": "model.safetensors",
|
| 11 |
+
"model.layers.0.mlp.down_proj.biases": "model.safetensors",
|
| 12 |
+
"model.layers.0.mlp.down_proj.scales": "model.safetensors",
|
| 13 |
+
"model.layers.0.mlp.down_proj.weight": "model.safetensors",
|
| 14 |
+
"model.layers.0.mlp.gate_proj.biases": "model.safetensors",
|
| 15 |
+
"model.layers.0.mlp.gate_proj.scales": "model.safetensors",
|
| 16 |
+
"model.layers.0.mlp.gate_proj.weight": "model.safetensors",
|
| 17 |
+
"model.layers.0.mlp.up_proj.biases": "model.safetensors",
|
| 18 |
+
"model.layers.0.mlp.up_proj.scales": "model.safetensors",
|
| 19 |
+
"model.layers.0.mlp.up_proj.weight": "model.safetensors",
|
| 20 |
+
"model.layers.0.post_attention_layernorm.weight": "model.safetensors",
|
| 21 |
+
"model.layers.0.self_attn.k_proj.biases": "model.safetensors",
|
| 22 |
+
"model.layers.0.self_attn.k_proj.scales": "model.safetensors",
|
| 23 |
+
"model.layers.0.self_attn.k_proj.weight": "model.safetensors",
|
| 24 |
+
"model.layers.0.self_attn.o_proj.biases": "model.safetensors",
|
| 25 |
+
"model.layers.0.self_attn.o_proj.scales": "model.safetensors",
|
| 26 |
+
"model.layers.0.self_attn.o_proj.weight": "model.safetensors",
|
| 27 |
+
"model.layers.0.self_attn.q_proj.biases": "model.safetensors",
|
| 28 |
+
"model.layers.0.self_attn.q_proj.scales": "model.safetensors",
|
| 29 |
+
"model.layers.0.self_attn.q_proj.weight": "model.safetensors",
|
| 30 |
+
"model.layers.0.self_attn.v_proj.biases": "model.safetensors",
|
| 31 |
+
"model.layers.0.self_attn.v_proj.scales": "model.safetensors",
|
| 32 |
+
"model.layers.0.self_attn.v_proj.weight": "model.safetensors",
|
| 33 |
+
"model.layers.1.input_layernorm.weight": "model.safetensors",
|
| 34 |
+
"model.layers.1.mlp.down_proj.biases": "model.safetensors",
|
| 35 |
+
"model.layers.1.mlp.down_proj.scales": "model.safetensors",
|
| 36 |
+
"model.layers.1.mlp.down_proj.weight": "model.safetensors",
|
| 37 |
+
"model.layers.1.mlp.gate_proj.biases": "model.safetensors",
|
| 38 |
+
"model.layers.1.mlp.gate_proj.scales": "model.safetensors",
|
| 39 |
+
"model.layers.1.mlp.gate_proj.weight": "model.safetensors",
|
| 40 |
+
"model.layers.1.mlp.up_proj.biases": "model.safetensors",
|
| 41 |
+
"model.layers.1.mlp.up_proj.scales": "model.safetensors",
|
| 42 |
+
"model.layers.1.mlp.up_proj.weight": "model.safetensors",
|
| 43 |
+
"model.layers.1.post_attention_layernorm.weight": "model.safetensors",
|
| 44 |
+
"model.layers.1.self_attn.k_proj.biases": "model.safetensors",
|
| 45 |
+
"model.layers.1.self_attn.k_proj.scales": "model.safetensors",
|
| 46 |
+
"model.layers.1.self_attn.k_proj.weight": "model.safetensors",
|
| 47 |
+
"model.layers.1.self_attn.o_proj.biases": "model.safetensors",
|
| 48 |
+
"model.layers.1.self_attn.o_proj.scales": "model.safetensors",
|
| 49 |
+
"model.layers.1.self_attn.o_proj.weight": "model.safetensors",
|
| 50 |
+
"model.layers.1.self_attn.q_proj.biases": "model.safetensors",
|
| 51 |
+
"model.layers.1.self_attn.q_proj.scales": "model.safetensors",
|
| 52 |
+
"model.layers.1.self_attn.q_proj.weight": "model.safetensors",
|
| 53 |
+
"model.layers.1.self_attn.v_proj.biases": "model.safetensors",
|
| 54 |
+
"model.layers.1.self_attn.v_proj.scales": "model.safetensors",
|
| 55 |
+
"model.layers.1.self_attn.v_proj.weight": "model.safetensors",
|
| 56 |
+
"model.layers.10.input_layernorm.weight": "model.safetensors",
|
| 57 |
+
"model.layers.10.mlp.down_proj.biases": "model.safetensors",
|
| 58 |
+
"model.layers.10.mlp.down_proj.scales": "model.safetensors",
|
| 59 |
+
"model.layers.10.mlp.down_proj.weight": "model.safetensors",
|
| 60 |
+
"model.layers.10.mlp.gate_proj.biases": "model.safetensors",
|
| 61 |
+
"model.layers.10.mlp.gate_proj.scales": "model.safetensors",
|
| 62 |
+
"model.layers.10.mlp.gate_proj.weight": "model.safetensors",
|
| 63 |
+
"model.layers.10.mlp.up_proj.biases": "model.safetensors",
|
| 64 |
+
"model.layers.10.mlp.up_proj.scales": "model.safetensors",
|
| 65 |
+
"model.layers.10.mlp.up_proj.weight": "model.safetensors",
|
| 66 |
+
"model.layers.10.post_attention_layernorm.weight": "model.safetensors",
|
| 67 |
+
"model.layers.10.self_attn.k_proj.biases": "model.safetensors",
|
| 68 |
+
"model.layers.10.self_attn.k_proj.scales": "model.safetensors",
|
| 69 |
+
"model.layers.10.self_attn.k_proj.weight": "model.safetensors",
|
| 70 |
+
"model.layers.10.self_attn.o_proj.biases": "model.safetensors",
|
| 71 |
+
"model.layers.10.self_attn.o_proj.scales": "model.safetensors",
|
| 72 |
+
"model.layers.10.self_attn.o_proj.weight": "model.safetensors",
|
| 73 |
+
"model.layers.10.self_attn.q_proj.biases": "model.safetensors",
|
| 74 |
+
"model.layers.10.self_attn.q_proj.scales": "model.safetensors",
|
| 75 |
+
"model.layers.10.self_attn.q_proj.weight": "model.safetensors",
|
| 76 |
+
"model.layers.10.self_attn.v_proj.biases": "model.safetensors",
|
| 77 |
+
"model.layers.10.self_attn.v_proj.scales": "model.safetensors",
|
| 78 |
+
"model.layers.10.self_attn.v_proj.weight": "model.safetensors",
|
| 79 |
+
"model.layers.11.input_layernorm.weight": "model.safetensors",
|
| 80 |
+
"model.layers.11.mlp.down_proj.biases": "model.safetensors",
|
| 81 |
+
"model.layers.11.mlp.down_proj.scales": "model.safetensors",
|
| 82 |
+
"model.layers.11.mlp.down_proj.weight": "model.safetensors",
|
| 83 |
+
"model.layers.11.mlp.gate_proj.biases": "model.safetensors",
|
| 84 |
+
"model.layers.11.mlp.gate_proj.scales": "model.safetensors",
|
| 85 |
+
"model.layers.11.mlp.gate_proj.weight": "model.safetensors",
|
| 86 |
+
"model.layers.11.mlp.up_proj.biases": "model.safetensors",
|
| 87 |
+
"model.layers.11.mlp.up_proj.scales": "model.safetensors",
|
| 88 |
+
"model.layers.11.mlp.up_proj.weight": "model.safetensors",
|
| 89 |
+
"model.layers.11.post_attention_layernorm.weight": "model.safetensors",
|
| 90 |
+
"model.layers.11.self_attn.k_proj.biases": "model.safetensors",
|
| 91 |
+
"model.layers.11.self_attn.k_proj.scales": "model.safetensors",
|
| 92 |
+
"model.layers.11.self_attn.k_proj.weight": "model.safetensors",
|
| 93 |
+
"model.layers.11.self_attn.o_proj.biases": "model.safetensors",
|
| 94 |
+
"model.layers.11.self_attn.o_proj.scales": "model.safetensors",
|
| 95 |
+
"model.layers.11.self_attn.o_proj.weight": "model.safetensors",
|
| 96 |
+
"model.layers.11.self_attn.q_proj.biases": "model.safetensors",
|
| 97 |
+
"model.layers.11.self_attn.q_proj.scales": "model.safetensors",
|
| 98 |
+
"model.layers.11.self_attn.q_proj.weight": "model.safetensors",
|
| 99 |
+
"model.layers.11.self_attn.v_proj.biases": "model.safetensors",
|
| 100 |
+
"model.layers.11.self_attn.v_proj.scales": "model.safetensors",
|
| 101 |
+
"model.layers.11.self_attn.v_proj.weight": "model.safetensors",
|
| 102 |
+
"model.layers.12.input_layernorm.weight": "model.safetensors",
|
| 103 |
+
"model.layers.12.mlp.down_proj.biases": "model.safetensors",
|
| 104 |
+
"model.layers.12.mlp.down_proj.scales": "model.safetensors",
|
| 105 |
+
"model.layers.12.mlp.down_proj.weight": "model.safetensors",
|
| 106 |
+
"model.layers.12.mlp.gate_proj.biases": "model.safetensors",
|
| 107 |
+
"model.layers.12.mlp.gate_proj.scales": "model.safetensors",
|
| 108 |
+
"model.layers.12.mlp.gate_proj.weight": "model.safetensors",
|
| 109 |
+
"model.layers.12.mlp.up_proj.biases": "model.safetensors",
|
| 110 |
+
"model.layers.12.mlp.up_proj.scales": "model.safetensors",
|
| 111 |
+
"model.layers.12.mlp.up_proj.weight": "model.safetensors",
|
| 112 |
+
"model.layers.12.post_attention_layernorm.weight": "model.safetensors",
|
| 113 |
+
"model.layers.12.self_attn.k_proj.biases": "model.safetensors",
|
| 114 |
+
"model.layers.12.self_attn.k_proj.scales": "model.safetensors",
|
| 115 |
+
"model.layers.12.self_attn.k_proj.weight": "model.safetensors",
|
| 116 |
+
"model.layers.12.self_attn.o_proj.biases": "model.safetensors",
|
| 117 |
+
"model.layers.12.self_attn.o_proj.scales": "model.safetensors",
|
| 118 |
+
"model.layers.12.self_attn.o_proj.weight": "model.safetensors",
|
| 119 |
+
"model.layers.12.self_attn.q_proj.biases": "model.safetensors",
|
| 120 |
+
"model.layers.12.self_attn.q_proj.scales": "model.safetensors",
|
| 121 |
+
"model.layers.12.self_attn.q_proj.weight": "model.safetensors",
|
| 122 |
+
"model.layers.12.self_attn.v_proj.biases": "model.safetensors",
|
| 123 |
+
"model.layers.12.self_attn.v_proj.scales": "model.safetensors",
|
| 124 |
+
"model.layers.12.self_attn.v_proj.weight": "model.safetensors",
|
| 125 |
+
"model.layers.13.input_layernorm.weight": "model.safetensors",
|
| 126 |
+
"model.layers.13.mlp.down_proj.biases": "model.safetensors",
|
| 127 |
+
"model.layers.13.mlp.down_proj.scales": "model.safetensors",
|
| 128 |
+
"model.layers.13.mlp.down_proj.weight": "model.safetensors",
|
| 129 |
+
"model.layers.13.mlp.gate_proj.biases": "model.safetensors",
|
| 130 |
+
"model.layers.13.mlp.gate_proj.scales": "model.safetensors",
|
| 131 |
+
"model.layers.13.mlp.gate_proj.weight": "model.safetensors",
|
| 132 |
+
"model.layers.13.mlp.up_proj.biases": "model.safetensors",
|
| 133 |
+
"model.layers.13.mlp.up_proj.scales": "model.safetensors",
|
| 134 |
+
"model.layers.13.mlp.up_proj.weight": "model.safetensors",
|
| 135 |
+
"model.layers.13.post_attention_layernorm.weight": "model.safetensors",
|
| 136 |
+
"model.layers.13.self_attn.k_proj.biases": "model.safetensors",
|
| 137 |
+
"model.layers.13.self_attn.k_proj.scales": "model.safetensors",
|
| 138 |
+
"model.layers.13.self_attn.k_proj.weight": "model.safetensors",
|
| 139 |
+
"model.layers.13.self_attn.o_proj.biases": "model.safetensors",
|
| 140 |
+
"model.layers.13.self_attn.o_proj.scales": "model.safetensors",
|
| 141 |
+
"model.layers.13.self_attn.o_proj.weight": "model.safetensors",
|
| 142 |
+
"model.layers.13.self_attn.q_proj.biases": "model.safetensors",
|
| 143 |
+
"model.layers.13.self_attn.q_proj.scales": "model.safetensors",
|
| 144 |
+
"model.layers.13.self_attn.q_proj.weight": "model.safetensors",
|
| 145 |
+
"model.layers.13.self_attn.v_proj.biases": "model.safetensors",
|
| 146 |
+
"model.layers.13.self_attn.v_proj.scales": "model.safetensors",
|
| 147 |
+
"model.layers.13.self_attn.v_proj.weight": "model.safetensors",
|
| 148 |
+
"model.layers.14.input_layernorm.weight": "model.safetensors",
|
| 149 |
+
"model.layers.14.mlp.down_proj.biases": "model.safetensors",
|
| 150 |
+
"model.layers.14.mlp.down_proj.scales": "model.safetensors",
|
| 151 |
+
"model.layers.14.mlp.down_proj.weight": "model.safetensors",
|
| 152 |
+
"model.layers.14.mlp.gate_proj.biases": "model.safetensors",
|
| 153 |
+
"model.layers.14.mlp.gate_proj.scales": "model.safetensors",
|
| 154 |
+
"model.layers.14.mlp.gate_proj.weight": "model.safetensors",
|
| 155 |
+
"model.layers.14.mlp.up_proj.biases": "model.safetensors",
|
| 156 |
+
"model.layers.14.mlp.up_proj.scales": "model.safetensors",
|
| 157 |
+
"model.layers.14.mlp.up_proj.weight": "model.safetensors",
|
| 158 |
+
"model.layers.14.post_attention_layernorm.weight": "model.safetensors",
|
| 159 |
+
"model.layers.14.self_attn.k_proj.biases": "model.safetensors",
|
| 160 |
+
"model.layers.14.self_attn.k_proj.scales": "model.safetensors",
|
| 161 |
+
"model.layers.14.self_attn.k_proj.weight": "model.safetensors",
|
| 162 |
+
"model.layers.14.self_attn.o_proj.biases": "model.safetensors",
|
| 163 |
+
"model.layers.14.self_attn.o_proj.scales": "model.safetensors",
|
| 164 |
+
"model.layers.14.self_attn.o_proj.weight": "model.safetensors",
|
| 165 |
+
"model.layers.14.self_attn.q_proj.biases": "model.safetensors",
|
| 166 |
+
"model.layers.14.self_attn.q_proj.scales": "model.safetensors",
|
| 167 |
+
"model.layers.14.self_attn.q_proj.weight": "model.safetensors",
|
| 168 |
+
"model.layers.14.self_attn.v_proj.biases": "model.safetensors",
|
| 169 |
+
"model.layers.14.self_attn.v_proj.scales": "model.safetensors",
|
| 170 |
+
"model.layers.14.self_attn.v_proj.weight": "model.safetensors",
|
| 171 |
+
"model.layers.15.input_layernorm.weight": "model.safetensors",
|
| 172 |
+
"model.layers.15.mlp.down_proj.biases": "model.safetensors",
|
| 173 |
+
"model.layers.15.mlp.down_proj.scales": "model.safetensors",
|
| 174 |
+
"model.layers.15.mlp.down_proj.weight": "model.safetensors",
|
| 175 |
+
"model.layers.15.mlp.gate_proj.biases": "model.safetensors",
|
| 176 |
+
"model.layers.15.mlp.gate_proj.scales": "model.safetensors",
|
| 177 |
+
"model.layers.15.mlp.gate_proj.weight": "model.safetensors",
|
| 178 |
+
"model.layers.15.mlp.up_proj.biases": "model.safetensors",
|
| 179 |
+
"model.layers.15.mlp.up_proj.scales": "model.safetensors",
|
| 180 |
+
"model.layers.15.mlp.up_proj.weight": "model.safetensors",
|
| 181 |
+
"model.layers.15.post_attention_layernorm.weight": "model.safetensors",
|
| 182 |
+
"model.layers.15.self_attn.k_proj.biases": "model.safetensors",
|
| 183 |
+
"model.layers.15.self_attn.k_proj.scales": "model.safetensors",
|
| 184 |
+
"model.layers.15.self_attn.k_proj.weight": "model.safetensors",
|
| 185 |
+
"model.layers.15.self_attn.o_proj.biases": "model.safetensors",
|
| 186 |
+
"model.layers.15.self_attn.o_proj.scales": "model.safetensors",
|
| 187 |
+
"model.layers.15.self_attn.o_proj.weight": "model.safetensors",
|
| 188 |
+
"model.layers.15.self_attn.q_proj.biases": "model.safetensors",
|
| 189 |
+
"model.layers.15.self_attn.q_proj.scales": "model.safetensors",
|
| 190 |
+
"model.layers.15.self_attn.q_proj.weight": "model.safetensors",
|
| 191 |
+
"model.layers.15.self_attn.v_proj.biases": "model.safetensors",
|
| 192 |
+
"model.layers.15.self_attn.v_proj.scales": "model.safetensors",
|
| 193 |
+
"model.layers.15.self_attn.v_proj.weight": "model.safetensors",
|
| 194 |
+
"model.layers.16.input_layernorm.weight": "model.safetensors",
|
| 195 |
+
"model.layers.16.mlp.down_proj.biases": "model.safetensors",
|
| 196 |
+
"model.layers.16.mlp.down_proj.scales": "model.safetensors",
|
| 197 |
+
"model.layers.16.mlp.down_proj.weight": "model.safetensors",
|
| 198 |
+
"model.layers.16.mlp.gate_proj.biases": "model.safetensors",
|
| 199 |
+
"model.layers.16.mlp.gate_proj.scales": "model.safetensors",
|
| 200 |
+
"model.layers.16.mlp.gate_proj.weight": "model.safetensors",
|
| 201 |
+
"model.layers.16.mlp.up_proj.biases": "model.safetensors",
|
| 202 |
+
"model.layers.16.mlp.up_proj.scales": "model.safetensors",
|
| 203 |
+
"model.layers.16.mlp.up_proj.weight": "model.safetensors",
|
| 204 |
+
"model.layers.16.post_attention_layernorm.weight": "model.safetensors",
|
| 205 |
+
"model.layers.16.self_attn.k_proj.biases": "model.safetensors",
|
| 206 |
+
"model.layers.16.self_attn.k_proj.scales": "model.safetensors",
|
| 207 |
+
"model.layers.16.self_attn.k_proj.weight": "model.safetensors",
|
| 208 |
+
"model.layers.16.self_attn.o_proj.biases": "model.safetensors",
|
| 209 |
+
"model.layers.16.self_attn.o_proj.scales": "model.safetensors",
|
| 210 |
+
"model.layers.16.self_attn.o_proj.weight": "model.safetensors",
|
| 211 |
+
"model.layers.16.self_attn.q_proj.biases": "model.safetensors",
|
| 212 |
+
"model.layers.16.self_attn.q_proj.scales": "model.safetensors",
|
| 213 |
+
"model.layers.16.self_attn.q_proj.weight": "model.safetensors",
|
| 214 |
+
"model.layers.16.self_attn.v_proj.biases": "model.safetensors",
|
| 215 |
+
"model.layers.16.self_attn.v_proj.scales": "model.safetensors",
|
| 216 |
+
"model.layers.16.self_attn.v_proj.weight": "model.safetensors",
|
| 217 |
+
"model.layers.17.input_layernorm.weight": "model.safetensors",
|
| 218 |
+
"model.layers.17.mlp.down_proj.biases": "model.safetensors",
|
| 219 |
+
"model.layers.17.mlp.down_proj.scales": "model.safetensors",
|
| 220 |
+
"model.layers.17.mlp.down_proj.weight": "model.safetensors",
|
| 221 |
+
"model.layers.17.mlp.gate_proj.biases": "model.safetensors",
|
| 222 |
+
"model.layers.17.mlp.gate_proj.scales": "model.safetensors",
|
| 223 |
+
"model.layers.17.mlp.gate_proj.weight": "model.safetensors",
|
| 224 |
+
"model.layers.17.mlp.up_proj.biases": "model.safetensors",
|
| 225 |
+
"model.layers.17.mlp.up_proj.scales": "model.safetensors",
|
| 226 |
+
"model.layers.17.mlp.up_proj.weight": "model.safetensors",
|
| 227 |
+
"model.layers.17.post_attention_layernorm.weight": "model.safetensors",
|
| 228 |
+
"model.layers.17.self_attn.k_proj.biases": "model.safetensors",
|
| 229 |
+
"model.layers.17.self_attn.k_proj.scales": "model.safetensors",
|
| 230 |
+
"model.layers.17.self_attn.k_proj.weight": "model.safetensors",
|
| 231 |
+
"model.layers.17.self_attn.o_proj.biases": "model.safetensors",
|
| 232 |
+
"model.layers.17.self_attn.o_proj.scales": "model.safetensors",
|
| 233 |
+
"model.layers.17.self_attn.o_proj.weight": "model.safetensors",
|
| 234 |
+
"model.layers.17.self_attn.q_proj.biases": "model.safetensors",
|
| 235 |
+
"model.layers.17.self_attn.q_proj.scales": "model.safetensors",
|
| 236 |
+
"model.layers.17.self_attn.q_proj.weight": "model.safetensors",
|
| 237 |
+
"model.layers.17.self_attn.v_proj.biases": "model.safetensors",
|
| 238 |
+
"model.layers.17.self_attn.v_proj.scales": "model.safetensors",
|
| 239 |
+
"model.layers.17.self_attn.v_proj.weight": "model.safetensors",
|
| 240 |
+
"model.layers.2.input_layernorm.weight": "model.safetensors",
|
| 241 |
+
"model.layers.2.mlp.down_proj.biases": "model.safetensors",
|
| 242 |
+
"model.layers.2.mlp.down_proj.scales": "model.safetensors",
|
| 243 |
+
"model.layers.2.mlp.down_proj.weight": "model.safetensors",
|
| 244 |
+
"model.layers.2.mlp.gate_proj.biases": "model.safetensors",
|
| 245 |
+
"model.layers.2.mlp.gate_proj.scales": "model.safetensors",
|
| 246 |
+
"model.layers.2.mlp.gate_proj.weight": "model.safetensors",
|
| 247 |
+
"model.layers.2.mlp.up_proj.biases": "model.safetensors",
|
| 248 |
+
"model.layers.2.mlp.up_proj.scales": "model.safetensors",
|
| 249 |
+
"model.layers.2.mlp.up_proj.weight": "model.safetensors",
|
| 250 |
+
"model.layers.2.post_attention_layernorm.weight": "model.safetensors",
|
| 251 |
+
"model.layers.2.self_attn.k_proj.biases": "model.safetensors",
|
| 252 |
+
"model.layers.2.self_attn.k_proj.scales": "model.safetensors",
|
| 253 |
+
"model.layers.2.self_attn.k_proj.weight": "model.safetensors",
|
| 254 |
+
"model.layers.2.self_attn.o_proj.biases": "model.safetensors",
|
| 255 |
+
"model.layers.2.self_attn.o_proj.scales": "model.safetensors",
|
| 256 |
+
"model.layers.2.self_attn.o_proj.weight": "model.safetensors",
|
| 257 |
+
"model.layers.2.self_attn.q_proj.biases": "model.safetensors",
|
| 258 |
+
"model.layers.2.self_attn.q_proj.scales": "model.safetensors",
|
| 259 |
+
"model.layers.2.self_attn.q_proj.weight": "model.safetensors",
|
| 260 |
+
"model.layers.2.self_attn.v_proj.biases": "model.safetensors",
|
| 261 |
+
"model.layers.2.self_attn.v_proj.scales": "model.safetensors",
|
| 262 |
+
"model.layers.2.self_attn.v_proj.weight": "model.safetensors",
|
| 263 |
+
"model.layers.3.input_layernorm.weight": "model.safetensors",
|
| 264 |
+
"model.layers.3.mlp.down_proj.biases": "model.safetensors",
|
| 265 |
+
"model.layers.3.mlp.down_proj.scales": "model.safetensors",
|
| 266 |
+
"model.layers.3.mlp.down_proj.weight": "model.safetensors",
|
| 267 |
+
"model.layers.3.mlp.gate_proj.biases": "model.safetensors",
|
| 268 |
+
"model.layers.3.mlp.gate_proj.scales": "model.safetensors",
|
| 269 |
+
"model.layers.3.mlp.gate_proj.weight": "model.safetensors",
|
| 270 |
+
"model.layers.3.mlp.up_proj.biases": "model.safetensors",
|
| 271 |
+
"model.layers.3.mlp.up_proj.scales": "model.safetensors",
|
| 272 |
+
"model.layers.3.mlp.up_proj.weight": "model.safetensors",
|
| 273 |
+
"model.layers.3.post_attention_layernorm.weight": "model.safetensors",
|
| 274 |
+
"model.layers.3.self_attn.k_proj.biases": "model.safetensors",
|
| 275 |
+
"model.layers.3.self_attn.k_proj.scales": "model.safetensors",
|
| 276 |
+
"model.layers.3.self_attn.k_proj.weight": "model.safetensors",
|
| 277 |
+
"model.layers.3.self_attn.o_proj.biases": "model.safetensors",
|
| 278 |
+
"model.layers.3.self_attn.o_proj.scales": "model.safetensors",
|
| 279 |
+
"model.layers.3.self_attn.o_proj.weight": "model.safetensors",
|
| 280 |
+
"model.layers.3.self_attn.q_proj.biases": "model.safetensors",
|
| 281 |
+
"model.layers.3.self_attn.q_proj.scales": "model.safetensors",
|
| 282 |
+
"model.layers.3.self_attn.q_proj.weight": "model.safetensors",
|
| 283 |
+
"model.layers.3.self_attn.v_proj.biases": "model.safetensors",
|
| 284 |
+
"model.layers.3.self_attn.v_proj.scales": "model.safetensors",
|
| 285 |
+
"model.layers.3.self_attn.v_proj.weight": "model.safetensors",
|
| 286 |
+
"model.layers.4.input_layernorm.weight": "model.safetensors",
|
| 287 |
+
"model.layers.4.mlp.down_proj.biases": "model.safetensors",
|
| 288 |
+
"model.layers.4.mlp.down_proj.scales": "model.safetensors",
|
| 289 |
+
"model.layers.4.mlp.down_proj.weight": "model.safetensors",
|
| 290 |
+
"model.layers.4.mlp.gate_proj.biases": "model.safetensors",
|
| 291 |
+
"model.layers.4.mlp.gate_proj.scales": "model.safetensors",
|
| 292 |
+
"model.layers.4.mlp.gate_proj.weight": "model.safetensors",
|
| 293 |
+
"model.layers.4.mlp.up_proj.biases": "model.safetensors",
|
| 294 |
+
"model.layers.4.mlp.up_proj.scales": "model.safetensors",
|
| 295 |
+
"model.layers.4.mlp.up_proj.weight": "model.safetensors",
|
| 296 |
+
"model.layers.4.post_attention_layernorm.weight": "model.safetensors",
|
| 297 |
+
"model.layers.4.self_attn.k_proj.biases": "model.safetensors",
|
| 298 |
+
"model.layers.4.self_attn.k_proj.scales": "model.safetensors",
|
| 299 |
+
"model.layers.4.self_attn.k_proj.weight": "model.safetensors",
|
| 300 |
+
"model.layers.4.self_attn.o_proj.biases": "model.safetensors",
|
| 301 |
+
"model.layers.4.self_attn.o_proj.scales": "model.safetensors",
|
| 302 |
+
"model.layers.4.self_attn.o_proj.weight": "model.safetensors",
|
| 303 |
+
"model.layers.4.self_attn.q_proj.biases": "model.safetensors",
|
| 304 |
+
"model.layers.4.self_attn.q_proj.scales": "model.safetensors",
|
| 305 |
+
"model.layers.4.self_attn.q_proj.weight": "model.safetensors",
|
| 306 |
+
"model.layers.4.self_attn.v_proj.biases": "model.safetensors",
|
| 307 |
+
"model.layers.4.self_attn.v_proj.scales": "model.safetensors",
|
| 308 |
+
"model.layers.4.self_attn.v_proj.weight": "model.safetensors",
|
| 309 |
+
"model.layers.5.input_layernorm.weight": "model.safetensors",
|
| 310 |
+
"model.layers.5.mlp.down_proj.biases": "model.safetensors",
|
| 311 |
+
"model.layers.5.mlp.down_proj.scales": "model.safetensors",
|
| 312 |
+
"model.layers.5.mlp.down_proj.weight": "model.safetensors",
|
| 313 |
+
"model.layers.5.mlp.gate_proj.biases": "model.safetensors",
|
| 314 |
+
"model.layers.5.mlp.gate_proj.scales": "model.safetensors",
|
| 315 |
+
"model.layers.5.mlp.gate_proj.weight": "model.safetensors",
|
| 316 |
+
"model.layers.5.mlp.up_proj.biases": "model.safetensors",
|
| 317 |
+
"model.layers.5.mlp.up_proj.scales": "model.safetensors",
|
| 318 |
+
"model.layers.5.mlp.up_proj.weight": "model.safetensors",
|
| 319 |
+
"model.layers.5.post_attention_layernorm.weight": "model.safetensors",
|
| 320 |
+
"model.layers.5.self_attn.k_proj.biases": "model.safetensors",
|
| 321 |
+
"model.layers.5.self_attn.k_proj.scales": "model.safetensors",
|
| 322 |
+
"model.layers.5.self_attn.k_proj.weight": "model.safetensors",
|
| 323 |
+
"model.layers.5.self_attn.o_proj.biases": "model.safetensors",
|
| 324 |
+
"model.layers.5.self_attn.o_proj.scales": "model.safetensors",
|
| 325 |
+
"model.layers.5.self_attn.o_proj.weight": "model.safetensors",
|
| 326 |
+
"model.layers.5.self_attn.q_proj.biases": "model.safetensors",
|
| 327 |
+
"model.layers.5.self_attn.q_proj.scales": "model.safetensors",
|
| 328 |
+
"model.layers.5.self_attn.q_proj.weight": "model.safetensors",
|
| 329 |
+
"model.layers.5.self_attn.v_proj.biases": "model.safetensors",
|
| 330 |
+
"model.layers.5.self_attn.v_proj.scales": "model.safetensors",
|
| 331 |
+
"model.layers.5.self_attn.v_proj.weight": "model.safetensors",
|
| 332 |
+
"model.layers.6.input_layernorm.weight": "model.safetensors",
|
| 333 |
+
"model.layers.6.mlp.down_proj.biases": "model.safetensors",
|
| 334 |
+
"model.layers.6.mlp.down_proj.scales": "model.safetensors",
|
| 335 |
+
"model.layers.6.mlp.down_proj.weight": "model.safetensors",
|
| 336 |
+
"model.layers.6.mlp.gate_proj.biases": "model.safetensors",
|
| 337 |
+
"model.layers.6.mlp.gate_proj.scales": "model.safetensors",
|
| 338 |
+
"model.layers.6.mlp.gate_proj.weight": "model.safetensors",
|
| 339 |
+
"model.layers.6.mlp.up_proj.biases": "model.safetensors",
|
| 340 |
+
"model.layers.6.mlp.up_proj.scales": "model.safetensors",
|
| 341 |
+
"model.layers.6.mlp.up_proj.weight": "model.safetensors",
|
| 342 |
+
"model.layers.6.post_attention_layernorm.weight": "model.safetensors",
|
| 343 |
+
"model.layers.6.self_attn.k_proj.biases": "model.safetensors",
|
| 344 |
+
"model.layers.6.self_attn.k_proj.scales": "model.safetensors",
|
| 345 |
+
"model.layers.6.self_attn.k_proj.weight": "model.safetensors",
|
| 346 |
+
"model.layers.6.self_attn.o_proj.biases": "model.safetensors",
|
| 347 |
+
"model.layers.6.self_attn.o_proj.scales": "model.safetensors",
|
| 348 |
+
"model.layers.6.self_attn.o_proj.weight": "model.safetensors",
|
| 349 |
+
"model.layers.6.self_attn.q_proj.biases": "model.safetensors",
|
| 350 |
+
"model.layers.6.self_attn.q_proj.scales": "model.safetensors",
|
| 351 |
+
"model.layers.6.self_attn.q_proj.weight": "model.safetensors",
|
| 352 |
+
"model.layers.6.self_attn.v_proj.biases": "model.safetensors",
|
| 353 |
+
"model.layers.6.self_attn.v_proj.scales": "model.safetensors",
|
| 354 |
+
"model.layers.6.self_attn.v_proj.weight": "model.safetensors",
|
| 355 |
+
"model.layers.7.input_layernorm.weight": "model.safetensors",
|
| 356 |
+
"model.layers.7.mlp.down_proj.biases": "model.safetensors",
|
| 357 |
+
"model.layers.7.mlp.down_proj.scales": "model.safetensors",
|
| 358 |
+
"model.layers.7.mlp.down_proj.weight": "model.safetensors",
|
| 359 |
+
"model.layers.7.mlp.gate_proj.biases": "model.safetensors",
|
| 360 |
+
"model.layers.7.mlp.gate_proj.scales": "model.safetensors",
|
| 361 |
+
"model.layers.7.mlp.gate_proj.weight": "model.safetensors",
|
| 362 |
+
"model.layers.7.mlp.up_proj.biases": "model.safetensors",
|
| 363 |
+
"model.layers.7.mlp.up_proj.scales": "model.safetensors",
|
| 364 |
+
"model.layers.7.mlp.up_proj.weight": "model.safetensors",
|
| 365 |
+
"model.layers.7.post_attention_layernorm.weight": "model.safetensors",
|
| 366 |
+
"model.layers.7.self_attn.k_proj.biases": "model.safetensors",
|
| 367 |
+
"model.layers.7.self_attn.k_proj.scales": "model.safetensors",
|
| 368 |
+
"model.layers.7.self_attn.k_proj.weight": "model.safetensors",
|
| 369 |
+
"model.layers.7.self_attn.o_proj.biases": "model.safetensors",
|
| 370 |
+
"model.layers.7.self_attn.o_proj.scales": "model.safetensors",
|
| 371 |
+
"model.layers.7.self_attn.o_proj.weight": "model.safetensors",
|
| 372 |
+
"model.layers.7.self_attn.q_proj.biases": "model.safetensors",
|
| 373 |
+
"model.layers.7.self_attn.q_proj.scales": "model.safetensors",
|
| 374 |
+
"model.layers.7.self_attn.q_proj.weight": "model.safetensors",
|
| 375 |
+
"model.layers.7.self_attn.v_proj.biases": "model.safetensors",
|
| 376 |
+
"model.layers.7.self_attn.v_proj.scales": "model.safetensors",
|
| 377 |
+
"model.layers.7.self_attn.v_proj.weight": "model.safetensors",
|
| 378 |
+
"model.layers.8.input_layernorm.weight": "model.safetensors",
|
| 379 |
+
"model.layers.8.mlp.down_proj.biases": "model.safetensors",
|
| 380 |
+
"model.layers.8.mlp.down_proj.scales": "model.safetensors",
|
| 381 |
+
"model.layers.8.mlp.down_proj.weight": "model.safetensors",
|
| 382 |
+
"model.layers.8.mlp.gate_proj.biases": "model.safetensors",
|
| 383 |
+
"model.layers.8.mlp.gate_proj.scales": "model.safetensors",
|
| 384 |
+
"model.layers.8.mlp.gate_proj.weight": "model.safetensors",
|
| 385 |
+
"model.layers.8.mlp.up_proj.biases": "model.safetensors",
|
| 386 |
+
"model.layers.8.mlp.up_proj.scales": "model.safetensors",
|
| 387 |
+
"model.layers.8.mlp.up_proj.weight": "model.safetensors",
|
| 388 |
+
"model.layers.8.post_attention_layernorm.weight": "model.safetensors",
|
| 389 |
+
"model.layers.8.self_attn.k_proj.biases": "model.safetensors",
|
| 390 |
+
"model.layers.8.self_attn.k_proj.scales": "model.safetensors",
|
| 391 |
+
"model.layers.8.self_attn.k_proj.weight": "model.safetensors",
|
| 392 |
+
"model.layers.8.self_attn.o_proj.biases": "model.safetensors",
|
| 393 |
+
"model.layers.8.self_attn.o_proj.scales": "model.safetensors",
|
| 394 |
+
"model.layers.8.self_attn.o_proj.weight": "model.safetensors",
|
| 395 |
+
"model.layers.8.self_attn.q_proj.biases": "model.safetensors",
|
| 396 |
+
"model.layers.8.self_attn.q_proj.scales": "model.safetensors",
|
| 397 |
+
"model.layers.8.self_attn.q_proj.weight": "model.safetensors",
|
| 398 |
+
"model.layers.8.self_attn.v_proj.biases": "model.safetensors",
|
| 399 |
+
"model.layers.8.self_attn.v_proj.scales": "model.safetensors",
|
| 400 |
+
"model.layers.8.self_attn.v_proj.weight": "model.safetensors",
|
| 401 |
+
"model.layers.9.input_layernorm.weight": "model.safetensors",
|
| 402 |
+
"model.layers.9.mlp.down_proj.biases": "model.safetensors",
|
| 403 |
+
"model.layers.9.mlp.down_proj.scales": "model.safetensors",
|
| 404 |
+
"model.layers.9.mlp.down_proj.weight": "model.safetensors",
|
| 405 |
+
"model.layers.9.mlp.gate_proj.biases": "model.safetensors",
|
| 406 |
+
"model.layers.9.mlp.gate_proj.scales": "model.safetensors",
|
| 407 |
+
"model.layers.9.mlp.gate_proj.weight": "model.safetensors",
|
| 408 |
+
"model.layers.9.mlp.up_proj.biases": "model.safetensors",
|
| 409 |
+
"model.layers.9.mlp.up_proj.scales": "model.safetensors",
|
| 410 |
+
"model.layers.9.mlp.up_proj.weight": "model.safetensors",
|
| 411 |
+
"model.layers.9.post_attention_layernorm.weight": "model.safetensors",
|
| 412 |
+
"model.layers.9.self_attn.k_proj.biases": "model.safetensors",
|
| 413 |
+
"model.layers.9.self_attn.k_proj.scales": "model.safetensors",
|
| 414 |
+
"model.layers.9.self_attn.k_proj.weight": "model.safetensors",
|
| 415 |
+
"model.layers.9.self_attn.o_proj.biases": "model.safetensors",
|
| 416 |
+
"model.layers.9.self_attn.o_proj.scales": "model.safetensors",
|
| 417 |
+
"model.layers.9.self_attn.o_proj.weight": "model.safetensors",
|
| 418 |
+
"model.layers.9.self_attn.q_proj.biases": "model.safetensors",
|
| 419 |
+
"model.layers.9.self_attn.q_proj.scales": "model.safetensors",
|
| 420 |
+
"model.layers.9.self_attn.q_proj.weight": "model.safetensors",
|
| 421 |
+
"model.layers.9.self_attn.v_proj.biases": "model.safetensors",
|
| 422 |
+
"model.layers.9.self_attn.v_proj.scales": "model.safetensors",
|
| 423 |
+
"model.layers.9.self_attn.v_proj.weight": "model.safetensors",
|
| 424 |
+
"model.norm.weight": "model.safetensors"
|
| 425 |
+
}
|
| 426 |
+
}
|
modeling_ernie4_5.py
ADDED
|
@@ -0,0 +1,1068 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 Baidu, Inc. All Rights Reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
import torch.nn.functional as F
|
| 20 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
| 21 |
+
|
| 22 |
+
from transformers.activations import ACT2FN
|
| 23 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 24 |
+
from transformers.generation import GenerationMixin
|
| 25 |
+
from transformers.modeling_outputs import (
|
| 26 |
+
BaseModelOutputWithPast,
|
| 27 |
+
CausalLMOutputWithPast,
|
| 28 |
+
)
|
| 29 |
+
from transformers.utils import logging
|
| 30 |
+
|
| 31 |
+
from .configuration_ernie4_5 import Ernie4_5_Config
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
logger = logging.get_logger(__name__)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class Ernie4_5_RMSNorm(nn.Module):
|
| 38 |
+
"""
|
| 39 |
+
Root Mean Square Layer Normalization (Ernie4_5_RMSNorm) implementation.
|
| 40 |
+
|
| 41 |
+
Ernie4_5_RMSNorm is a simplified version of LayerNorm that focuses on the root mean square of inputs,
|
| 42 |
+
omitting the mean-centering operation. This provides computational efficiency while maintaining
|
| 43 |
+
good performance.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
def __init__(self, config):
|
| 47 |
+
"""
|
| 48 |
+
Initialize Ernie4_5_RMSNorm layer.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
config: Model configuration.
|
| 52 |
+
"""
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.hidden_size = config.hidden_size
|
| 55 |
+
self.weight = nn.Parameter(
|
| 56 |
+
torch.ones(self.hidden_size, dtype=torch.get_default_dtype())
|
| 57 |
+
)
|
| 58 |
+
self.variance_epsilon = config.rms_norm_eps
|
| 59 |
+
|
| 60 |
+
def forward(self, hidden_states):
|
| 61 |
+
"""
|
| 62 |
+
Apply RMS normalization to input hidden states.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
hidden_states (Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
Tensor: Normalized output tensor of same shape as input
|
| 69 |
+
|
| 70 |
+
Note:
|
| 71 |
+
- computes Ernie4_5_RMSNorm manually:
|
| 72 |
+
1. Compute variance of features
|
| 73 |
+
2. Apply reciprocal square root normalization
|
| 74 |
+
3. Scale by learned weight parameter
|
| 75 |
+
- Maintains original dtype for numerical stability during computation
|
| 76 |
+
"""
|
| 77 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
| 78 |
+
hidden_states = torch.rsqrt(variance + self.variance_epsilon) * hidden_states
|
| 79 |
+
return hidden_states.to(self.weight.dtype) * self.weight
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class Ernie4_5_RopeEmbedding(nn.Module):
|
| 83 |
+
"""
|
| 84 |
+
Rotary Position Embedding (RoPE) implementation for transformer models.
|
| 85 |
+
|
| 86 |
+
RoPE encodes absolute positional information with rotation matrices and
|
| 87 |
+
naturally incorporates relative position information in self-attention.
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
head_dim (int): Dimension size of each attention head
|
| 91 |
+
compression_ratio (float, optional): Sequence length compression ratio. Defaults to 1.0.
|
| 92 |
+
base (int, optional): Base value for frequency calculation. Defaults to 10000.
|
| 93 |
+
|
| 94 |
+
Attributes:
|
| 95 |
+
head_dim (int): Dimension size of each attention head
|
| 96 |
+
compression_ratio (float): Sequence length compression factor
|
| 97 |
+
base (int): Base value for frequency calculation
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
def __init__(self, head_dim, compression_ratio=1.0, base=10000):
|
| 101 |
+
"""
|
| 102 |
+
Initialize RoPE embedding layer.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
head_dim: Dimension of each attention head
|
| 106 |
+
compression_ratio: Scaling factor for position indices
|
| 107 |
+
base: Base value for frequency calculation
|
| 108 |
+
"""
|
| 109 |
+
super().__init__()
|
| 110 |
+
self.head_dim = head_dim
|
| 111 |
+
self.compression_ratio = compression_ratio
|
| 112 |
+
self.base = base
|
| 113 |
+
|
| 114 |
+
def forward(self, seq_length, position_ids=None):
|
| 115 |
+
"""
|
| 116 |
+
Compute rotary position embeddings for given sequence length.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
seq_length (int): Maximum sequence length
|
| 120 |
+
position_ids (Tensor, optional): Custom position indices. Defaults to None.
|
| 121 |
+
|
| 122 |
+
Returns:
|
| 123 |
+
Tensor: Rotary position embeddings of shape [1, 1, seq_length, head_dim]
|
| 124 |
+
"""
|
| 125 |
+
indices = torch.arange(0, self.head_dim, 2, dtype=torch.float32)
|
| 126 |
+
indices = 1 / self.base ** (indices / self.head_dim)
|
| 127 |
+
if position_ids is None:
|
| 128 |
+
position_ids = torch.arange(
|
| 129 |
+
0, seq_length, 1, dtype=torch.float32
|
| 130 |
+
).unsqueeze(1)
|
| 131 |
+
position_ids = position_ids / self.compression_ratio
|
| 132 |
+
sinusoid_inp = position_ids * indices.unsqueeze(0)
|
| 133 |
+
else:
|
| 134 |
+
position_ids = position_ids / self.compression_ratio
|
| 135 |
+
seq_length = position_ids.shape[-1]
|
| 136 |
+
sinusoid_inp = position_ids.unsqueeze(-1).to(
|
| 137 |
+
torch.float32
|
| 138 |
+
) * indices.unsqueeze(0)
|
| 139 |
+
pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
|
| 140 |
+
pos_emb = pos_emb.view(-1, 1, seq_length, self.head_dim)
|
| 141 |
+
pos_emb = pos_emb.detach()
|
| 142 |
+
return pos_emb
|
| 143 |
+
|
| 144 |
+
def apply_rotary(self, rp, q, k):
|
| 145 |
+
"""
|
| 146 |
+
Apply rotary position embeddings to queries and keys.
|
| 147 |
+
|
| 148 |
+
Args:
|
| 149 |
+
rp (Tensor): Rotary position embeddings
|
| 150 |
+
q (Tensor): Query tensor [batch, heads, seq_len, dim]
|
| 151 |
+
k (Tensor): Key tensor [batch, heads, seq_len, dim]
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
Tuple[Tensor, Tensor]: Rotated queries and keys
|
| 155 |
+
"""
|
| 156 |
+
sin, cos = torch.chunk(rp.to(q.device), 2, dim=-1)
|
| 157 |
+
# sin [θ0,θ1,θ2......θd/2-1] -> sin_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1]
|
| 158 |
+
sin_pos = torch.stack([sin, sin], dim=-1).reshape(rp.shape)
|
| 159 |
+
# cos [θ0,θ1,θ2......θd/2-1] -> cos_pos [θ0,θ0,θ1,θ1,θ2,θ2......θd/2-1,θd/2-1]
|
| 160 |
+
cos_pos = torch.stack([cos, cos], dim=-1).reshape(rp.shape)
|
| 161 |
+
# rotate_half_query_layer [-q1,q0,-q3,q2......,-qd-1,qd-2]
|
| 162 |
+
rotate_half_q = torch.stack(
|
| 163 |
+
[-q[:, :, :, 1::2], q[:, :, :, 0::2]], dim=-1
|
| 164 |
+
).reshape(q.shape)
|
| 165 |
+
query = (q.to(torch.float32) * cos_pos) + (
|
| 166 |
+
rotate_half_q.to(torch.float32) * sin_pos
|
| 167 |
+
)
|
| 168 |
+
# rotate_half_key_layer [-k1,k0,-k3,k2......,-kd-1,kd-2]
|
| 169 |
+
rotate_half_k = torch.stack(
|
| 170 |
+
[-k[:, :, :, 1::2], k[:, :, :, 0::2]], dim=-1
|
| 171 |
+
).reshape(k.shape)
|
| 172 |
+
key = (k.to(torch.float32) * cos_pos) + (
|
| 173 |
+
rotate_half_k.to(torch.float32) * sin_pos
|
| 174 |
+
)
|
| 175 |
+
return query, key
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
class Ernie4_5_FusedDropoutImpl(nn.Module):
|
| 179 |
+
"""
|
| 180 |
+
Fused dropout implementation with residual connection support.
|
| 181 |
+
|
| 182 |
+
This layer combines dropout and residual addition in a single operation for better performance,
|
| 183 |
+
particularly on GPU devices. The dropout is conditionally applied based on the probability.
|
| 184 |
+
|
| 185 |
+
Args:
|
| 186 |
+
prob (float): Dropout probability (between 0 and 1)
|
| 187 |
+
|
| 188 |
+
Attributes:
|
| 189 |
+
prob (float): Stores the dropout probability
|
| 190 |
+
dropout (nn.Dropout): The actual dropout layer instance
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
def __init__(self, prob):
|
| 194 |
+
"""
|
| 195 |
+
Initialize the fused dropout layer.
|
| 196 |
+
|
| 197 |
+
Args:
|
| 198 |
+
prob (float): Dropout probability (0 means no dropout)
|
| 199 |
+
"""
|
| 200 |
+
super().__init__()
|
| 201 |
+
self.prob = prob
|
| 202 |
+
self.dropout = nn.Dropout(p=prob)
|
| 203 |
+
|
| 204 |
+
def forward(self, x, y):
|
| 205 |
+
"""
|
| 206 |
+
Forward pass of the fused dropout layer.
|
| 207 |
+
|
| 208 |
+
Args:
|
| 209 |
+
x (Tensor): Input tensor to potentially apply dropout
|
| 210 |
+
y (Tensor): Residual tensor to add to the (possibly dropped out) x
|
| 211 |
+
|
| 212 |
+
Returns:
|
| 213 |
+
Tensor: Result of x (with optional dropout) + y
|
| 214 |
+
"""
|
| 215 |
+
if self.prob > 0:
|
| 216 |
+
x = self.dropout(x)
|
| 217 |
+
output = x + y
|
| 218 |
+
|
| 219 |
+
return output
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
class Ernie4_5_MLP(nn.Module):
|
| 223 |
+
"""
|
| 224 |
+
Ernie4_5_MLP - Gated Multi-Layer Perceptron module used in Ernie model.
|
| 225 |
+
"""
|
| 226 |
+
|
| 227 |
+
def __init__(self, config, layer_idx=0):
|
| 228 |
+
"""
|
| 229 |
+
Initialize the MLP module with configuration options.
|
| 230 |
+
|
| 231 |
+
Args:
|
| 232 |
+
config: Model configurations.
|
| 233 |
+
layer_idx (int): Index of current layer (default: 0)
|
| 234 |
+
"""
|
| 235 |
+
super().__init__()
|
| 236 |
+
self.config = config
|
| 237 |
+
self.layer_idx = layer_idx
|
| 238 |
+
self.hidden_size = config.hidden_size
|
| 239 |
+
self.intermediate_size = config.intermediate_size
|
| 240 |
+
|
| 241 |
+
self.gate_proj = nn.Linear(
|
| 242 |
+
self.hidden_size, self.intermediate_size, bias=config.use_bias
|
| 243 |
+
)
|
| 244 |
+
self.up_proj = nn.Linear(
|
| 245 |
+
self.hidden_size, self.intermediate_size, bias=config.use_bias
|
| 246 |
+
)
|
| 247 |
+
self.down_proj = nn.Linear(
|
| 248 |
+
self.intermediate_size, self.hidden_size, bias=config.use_bias
|
| 249 |
+
)
|
| 250 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 251 |
+
|
| 252 |
+
def forward(self, x):
|
| 253 |
+
"""
|
| 254 |
+
Args:
|
| 255 |
+
x (Tensor): shape [batch_size, seq_len, hidden_size]
|
| 256 |
+
|
| 257 |
+
Returns:
|
| 258 |
+
Tensor: shape [batch_size, seq_len, hidden_size]
|
| 259 |
+
"""
|
| 260 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 261 |
+
return down_proj
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
class Ernie4_5_Attention(nn.Module):
|
| 265 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 266 |
+
|
| 267 |
+
def __init__(self, config, layer_idx=0):
|
| 268 |
+
"""Initialize the attention layer.
|
| 269 |
+
|
| 270 |
+
Args:
|
| 271 |
+
config: Model configuration.
|
| 272 |
+
layer_idx (int, optional): Index in transformer stack. Defaults to 0.
|
| 273 |
+
"""
|
| 274 |
+
super().__init__()
|
| 275 |
+
self.layer_idx = layer_idx
|
| 276 |
+
self.hidden_size = config.hidden_size
|
| 277 |
+
self.num_heads = config.num_attention_heads
|
| 278 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 279 |
+
|
| 280 |
+
if config.head_dim is None:
|
| 281 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 282 |
+
else:
|
| 283 |
+
self.head_dim = config.head_dim
|
| 284 |
+
|
| 285 |
+
self.is_gqa = (
|
| 286 |
+
self.num_key_value_heads is not None
|
| 287 |
+
and self.num_key_value_heads != self.num_heads
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
if self.is_gqa:
|
| 291 |
+
logger.info(
|
| 292 |
+
f"use GQA - num_heads: {self.num_heads}- num_key_value_heads: {self.num_key_value_heads}"
|
| 293 |
+
)
|
| 294 |
+
assert (
|
| 295 |
+
self.num_heads % self.num_key_value_heads == 0
|
| 296 |
+
), f"num_heads: {self.num_heads}, num_key_value_heads: {self.num_key_value_heads}"
|
| 297 |
+
kv_hidden_size = self.head_dim * self.num_key_value_heads
|
| 298 |
+
q_hidden_size = self.head_dim * self.num_heads
|
| 299 |
+
else:
|
| 300 |
+
q_hidden_size = kv_hidden_size = self.head_dim * self.num_heads
|
| 301 |
+
|
| 302 |
+
self.q_proj = nn.Linear(self.hidden_size, q_hidden_size, bias=config.use_bias)
|
| 303 |
+
self.k_proj = nn.Linear(self.hidden_size, kv_hidden_size, bias=config.use_bias)
|
| 304 |
+
self.v_proj = nn.Linear(self.hidden_size, kv_hidden_size, bias=config.use_bias)
|
| 305 |
+
self.o_proj = nn.Linear(q_hidden_size, self.hidden_size, bias=config.use_bias)
|
| 306 |
+
|
| 307 |
+
self.rotary_emb = Ernie4_5_RopeEmbedding(
|
| 308 |
+
self.head_dim,
|
| 309 |
+
compression_ratio=config.compression_ratio,
|
| 310 |
+
base=config.rope_theta,
|
| 311 |
+
)
|
| 312 |
+
self.config = config
|
| 313 |
+
|
| 314 |
+
self.set_attn_func()
|
| 315 |
+
|
| 316 |
+
def set_attn_func(self):
|
| 317 |
+
"""Configure attention function based on settings.
|
| 318 |
+
|
| 319 |
+
Selects between flash/core attention.
|
| 320 |
+
"""
|
| 321 |
+
config = self.config
|
| 322 |
+
if config.use_flash_attention:
|
| 323 |
+
self.attn_func = self._flash_attention_wrapper
|
| 324 |
+
else:
|
| 325 |
+
self.attn_func = self.core_attn
|
| 326 |
+
|
| 327 |
+
def forward(
|
| 328 |
+
self,
|
| 329 |
+
hidden_states,
|
| 330 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 331 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 332 |
+
attn_mask_start_row_indices: Optional[torch.Tensor] = None,
|
| 333 |
+
position_ids: Optional[Tuple[torch.Tensor]] = None,
|
| 334 |
+
output_attentions: bool = False,
|
| 335 |
+
use_cache: bool = False,
|
| 336 |
+
token_type_ids: Optional[Tuple[torch.Tensor]] = None,
|
| 337 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 338 |
+
"""Compute attention outputs.
|
| 339 |
+
|
| 340 |
+
Args:
|
| 341 |
+
hidden_states (torch.Tensor): Input tensor [bsz, seq_len, hidden_size]
|
| 342 |
+
past_key_value (Optional[Tuple[torch.Tensor, torch.Tensor]]): Cached key/value states
|
| 343 |
+
attention_mask (Optional[torch.Tensor]): Attention mask tensor
|
| 344 |
+
attn_mask_start_row_indices (Optional[torch.Tensor]): Variable length attention indices
|
| 345 |
+
position_ids (Optional[torch.Tensor]): Position indices for RoPE
|
| 346 |
+
output_attentions (bool): Return attention weights if True
|
| 347 |
+
use_cache (bool): Cache key/value states if True
|
| 348 |
+
|
| 349 |
+
Returns:
|
| 350 |
+
Tuple containing:
|
| 351 |
+
- attention_output: [bsz, seq_len, hidden_size]
|
| 352 |
+
- attention_weights: Optional attention probabilities
|
| 353 |
+
- updated_key_value_cache: Optional updated cache
|
| 354 |
+
"""
|
| 355 |
+
if token_type_ids is not None:
|
| 356 |
+
token_type_ids = token_type_ids[:, :-1]
|
| 357 |
+
|
| 358 |
+
bsz, q_len, _ = hidden_states.shape
|
| 359 |
+
|
| 360 |
+
query_states = self.q_proj(hidden_states).reshape(
|
| 361 |
+
[bsz, q_len, -1, self.head_dim]
|
| 362 |
+
)
|
| 363 |
+
key_states = self.k_proj(hidden_states).reshape([bsz, q_len, -1, self.head_dim])
|
| 364 |
+
value_states = self.v_proj(hidden_states).reshape(
|
| 365 |
+
[bsz, q_len, -1, self.head_dim]
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
attn_output, attn_weights, past_key_value = self.rope_attn(
|
| 369 |
+
query_states=query_states,
|
| 370 |
+
key_states=key_states,
|
| 371 |
+
value_states=value_states,
|
| 372 |
+
attention_mask=attention_mask,
|
| 373 |
+
position_ids=position_ids,
|
| 374 |
+
output_attentions=output_attentions,
|
| 375 |
+
past_key_value=past_key_value,
|
| 376 |
+
use_cache=use_cache,
|
| 377 |
+
attn_mask_start_row_indices=attn_mask_start_row_indices,
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
attn_output = self.o_proj(attn_output)
|
| 381 |
+
|
| 382 |
+
if not output_attentions:
|
| 383 |
+
attn_weights = None
|
| 384 |
+
|
| 385 |
+
return attn_output, attn_weights, past_key_value
|
| 386 |
+
|
| 387 |
+
def repeat_kv(self, hidden_states, n_rep):
|
| 388 |
+
"""
|
| 389 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 390 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 391 |
+
"""
|
| 392 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 393 |
+
if n_rep == 1:
|
| 394 |
+
return hidden_states
|
| 395 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
| 396 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
| 397 |
+
)
|
| 398 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 399 |
+
|
| 400 |
+
def _flash_attention_wrapper(
|
| 401 |
+
self,
|
| 402 |
+
q,
|
| 403 |
+
k,
|
| 404 |
+
v,
|
| 405 |
+
attention_mask=None,
|
| 406 |
+
attn_mask_start_row_indices=None,
|
| 407 |
+
seq_length=None,
|
| 408 |
+
):
|
| 409 |
+
"""Wrapper for flash attention implementation.
|
| 410 |
+
|
| 411 |
+
Args:
|
| 412 |
+
q (torch.Tensor): Query tensor
|
| 413 |
+
k (torch.Tensor): Key tensor
|
| 414 |
+
v (torch.Tensor): Value tensor
|
| 415 |
+
attention_mask (Optional[torch.Tensor]): Attention mask
|
| 416 |
+
attn_mask_start_row_indices (Optional[torch.Tensor]): Variable length indices
|
| 417 |
+
seq_length (Optional[int]): Sequence length
|
| 418 |
+
|
| 419 |
+
Returns:
|
| 420 |
+
Tuple[torch.Tensor, torch.Tensor]: Attention output and weights
|
| 421 |
+
"""
|
| 422 |
+
q = q.transpose(1, 2)
|
| 423 |
+
k = k.transpose(1, 2)
|
| 424 |
+
v = v.transpose(1, 2)
|
| 425 |
+
|
| 426 |
+
with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
|
| 427 |
+
out = F.scaled_dot_product_attention(
|
| 428 |
+
q,
|
| 429 |
+
k,
|
| 430 |
+
v,
|
| 431 |
+
attn_mask=attention_mask,
|
| 432 |
+
dropout_p=self.config.attention_probs_dropout_prob,
|
| 433 |
+
is_causal=attention_mask is None and q.shape[1] != 1,
|
| 434 |
+
scale=1
|
| 435 |
+
/ (getattr(self.config, "scale_qk_coeff", 1.0) * self.head_dim**0.5),
|
| 436 |
+
enable_gqa=self.is_gqa,
|
| 437 |
+
)
|
| 438 |
+
out = out.transpose(1, 2)
|
| 439 |
+
out = out.contiguous().view(out.size(0), out.size(1), -1)
|
| 440 |
+
|
| 441 |
+
return out, None
|
| 442 |
+
|
| 443 |
+
def core_attn(
|
| 444 |
+
self,
|
| 445 |
+
q,
|
| 446 |
+
k,
|
| 447 |
+
v,
|
| 448 |
+
attention_mask=None,
|
| 449 |
+
attn_mask_start_row_indices=None,
|
| 450 |
+
seq_length=None,
|
| 451 |
+
):
|
| 452 |
+
"""Standard self-attention implementation.
|
| 453 |
+
|
| 454 |
+
Args:
|
| 455 |
+
q (torch.Tensor): Query tensor
|
| 456 |
+
k (torch.Tensor): Key tensor
|
| 457 |
+
v (torch.Tensor): Value tensor
|
| 458 |
+
attention_mask (Optional[torch.Tensor]): Attention mask
|
| 459 |
+
attn_mask_start_row_indices (Optional[torch.Tensor]): Variable length indices
|
| 460 |
+
seq_length (Optional[int]): Sequence length
|
| 461 |
+
|
| 462 |
+
Returns:
|
| 463 |
+
Tuple[torch.Tensor, torch.Tensor]: Attention output and weights
|
| 464 |
+
"""
|
| 465 |
+
origin_dtype = q.dtype
|
| 466 |
+
|
| 467 |
+
q = q.permute(0, 2, 1, 3)
|
| 468 |
+
k = k.permute(0, 2, 1, 3)
|
| 469 |
+
v = v.permute(0, 2, 1, 3)
|
| 470 |
+
|
| 471 |
+
scale_qk_coeff = (
|
| 472 |
+
getattr(self.config, "scale_qk_coeff", 1.0) * self.head_dim**0.5
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
q = q / scale_qk_coeff
|
| 476 |
+
|
| 477 |
+
# Handle GQA case - repeat k and v heads to match q heads
|
| 478 |
+
if self.is_gqa:
|
| 479 |
+
# [batch, num_key_value_heads, seq_len, head_dim] -> [batch, num_heads, seq_len, head_dim]
|
| 480 |
+
repeat_factor = self.num_heads // self.num_key_value_heads
|
| 481 |
+
k = self.repeat_kv(k, repeat_factor)
|
| 482 |
+
v = self.repeat_kv(v, repeat_factor)
|
| 483 |
+
|
| 484 |
+
attn_scores = torch.matmul(q, k.transpose(-2, -1))
|
| 485 |
+
|
| 486 |
+
if getattr(self.config, "scale_qk_coeff", 1.0) != 1.0:
|
| 487 |
+
attn_scores = attn_scores * getattr(self.config, "scale_qk_coeff", 1.0)
|
| 488 |
+
|
| 489 |
+
# Causal mask
|
| 490 |
+
seq_len = attn_scores.size(-1)
|
| 491 |
+
mask = torch.triu(
|
| 492 |
+
torch.ones((seq_len, seq_len), dtype=torch.bool, device=attn_scores.device),
|
| 493 |
+
diagonal=1,
|
| 494 |
+
)
|
| 495 |
+
attn_scores = attn_scores.masked_fill(mask, float("-inf"))
|
| 496 |
+
attn_weights = F.softmax(attn_scores, dim=-1)
|
| 497 |
+
|
| 498 |
+
attn_weights = attn_weights.to(origin_dtype)
|
| 499 |
+
|
| 500 |
+
# attention_probs_dropout_prob default 0.0
|
| 501 |
+
if getattr(self.config, "attention_probs_dropout_prob", 0.0) > 0:
|
| 502 |
+
attn_weights = F.dropout(
|
| 503 |
+
attn_weights,
|
| 504 |
+
p=self.config.attention_probs_dropout_prob,
|
| 505 |
+
training=self.training,
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
# [batch, num_heads, q_len, k_len] @ [batch, num_heads, k_len, head_dim] -> [batch, num_heads, q_len, head_dim]
|
| 509 |
+
out = torch.matmul(attn_weights, v)
|
| 510 |
+
|
| 511 |
+
# [batch, num_heads, seq_len, head_dim] -> [batch, seq_len, num_heads, head_dim]
|
| 512 |
+
out = out.permute(0, 2, 1, 3)
|
| 513 |
+
# [batch, seq_len, hidden_size]
|
| 514 |
+
out = out.contiguous().view(out.size(0), out.size(1), -1)
|
| 515 |
+
|
| 516 |
+
return out, attn_weights
|
| 517 |
+
|
| 518 |
+
def rope_attn(
|
| 519 |
+
self,
|
| 520 |
+
query_states,
|
| 521 |
+
key_states,
|
| 522 |
+
value_states,
|
| 523 |
+
attention_mask,
|
| 524 |
+
position_ids,
|
| 525 |
+
output_attentions=False,
|
| 526 |
+
past_key_value=None,
|
| 527 |
+
use_cache=False,
|
| 528 |
+
attn_mask_start_row_indices=None,
|
| 529 |
+
):
|
| 530 |
+
"""Attention computation with rotary embeddings.
|
| 531 |
+
|
| 532 |
+
Args:
|
| 533 |
+
query_states (torch.Tensor): Query states
|
| 534 |
+
key_states (torch.Tensor): Key states
|
| 535 |
+
value_states (torch.Tensor): Value states
|
| 536 |
+
attention_mask (Optional[torch.Tensor]): Attention mask
|
| 537 |
+
position_ids (Optional[torch.Tensor]): Position indices
|
| 538 |
+
output_attentions (bool): Return attention weights
|
| 539 |
+
past_key_value (Optional[Tuple[torch.Tensor, torch.Tensor]]): Cached states
|
| 540 |
+
use_cache (bool): Cache new states
|
| 541 |
+
attn_mask_start_row_indices (Optional[torch.Tensor]): Variable length indices
|
| 542 |
+
|
| 543 |
+
Returns:
|
| 544 |
+
Tuple containing:
|
| 545 |
+
- attention_output: Result tensor
|
| 546 |
+
- attention_weights: Optional weights
|
| 547 |
+
- updated_key_value_cache: Optional cache
|
| 548 |
+
"""
|
| 549 |
+
|
| 550 |
+
query_states_dtype = query_states.dtype
|
| 551 |
+
|
| 552 |
+
kv_seq_len = key_states.shape[-3]
|
| 553 |
+
offset = 0
|
| 554 |
+
if past_key_value is not None:
|
| 555 |
+
offset = past_key_value[0].shape[-3]
|
| 556 |
+
kv_seq_len += offset
|
| 557 |
+
|
| 558 |
+
cos_sin = self.rotary_emb(kv_seq_len).permute(
|
| 559 |
+
[0, 2, 1, 3]
|
| 560 |
+
) # [b,h,s,d]->[b,s,h,d]
|
| 561 |
+
if offset > 0:
|
| 562 |
+
cos_sin = cos_sin[:, offset:]
|
| 563 |
+
query_states, key_states = self.rotary_emb.apply_rotary(
|
| 564 |
+
cos_sin, query_states, key_states
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
query_states = query_states.to(query_states_dtype)
|
| 568 |
+
key_states = key_states.to(query_states_dtype)
|
| 569 |
+
if past_key_value is not None:
|
| 570 |
+
# reuse k, v, self_attention
|
| 571 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=1)
|
| 572 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=1)
|
| 573 |
+
|
| 574 |
+
# shape: [2, b, s, kvh, d]
|
| 575 |
+
past_key_value = [key_states, value_states] if use_cache else None
|
| 576 |
+
seq_length = query_states.shape[1]
|
| 577 |
+
attn_output, attn_weights = self.attn_func(
|
| 578 |
+
query_states,
|
| 579 |
+
key_states,
|
| 580 |
+
value_states,
|
| 581 |
+
attention_mask,
|
| 582 |
+
attn_mask_start_row_indices,
|
| 583 |
+
seq_length,
|
| 584 |
+
)
|
| 585 |
+
return attn_output, attn_weights, past_key_value
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
class Ernie4_5_DecoderLayer(nn.Module):
|
| 589 |
+
"""
|
| 590 |
+
A single transformer decoder layer in ERNIE model.
|
| 591 |
+
"""
|
| 592 |
+
|
| 593 |
+
def __init__(self, config, layer_idx):
|
| 594 |
+
"""Initialize the decoder layer.
|
| 595 |
+
|
| 596 |
+
Args:
|
| 597 |
+
config: Model configuration.
|
| 598 |
+
layer_idx (int): Index of this layer in the transformer stack
|
| 599 |
+
"""
|
| 600 |
+
super().__init__()
|
| 601 |
+
self.hidden_size = config.hidden_size
|
| 602 |
+
self.layer_idx = layer_idx
|
| 603 |
+
self.config = config
|
| 604 |
+
|
| 605 |
+
self.self_attn = Ernie4_5_Attention(config, layer_idx)
|
| 606 |
+
self.mlp = Ernie4_5_MLP(config)
|
| 607 |
+
|
| 608 |
+
self.input_layernorm = Ernie4_5_RMSNorm(config)
|
| 609 |
+
self.post_attention_layernorm = Ernie4_5_RMSNorm(config)
|
| 610 |
+
|
| 611 |
+
self.residual_add1 = Ernie4_5_FusedDropoutImpl(config.hidden_dropout_prob)
|
| 612 |
+
self.residual_add2 = Ernie4_5_FusedDropoutImpl(config.hidden_dropout_prob)
|
| 613 |
+
|
| 614 |
+
def forward(
|
| 615 |
+
self,
|
| 616 |
+
hidden_states: torch.Tensor,
|
| 617 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 618 |
+
attn_mask_start_row_indices: Optional[torch.Tensor] = None,
|
| 619 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 620 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 621 |
+
output_attentions: Optional[bool] = False,
|
| 622 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 623 |
+
use_cache: Optional[bool] = False,
|
| 624 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 625 |
+
"""Forward pass through the decoder layer.
|
| 626 |
+
|
| 627 |
+
Args:
|
| 628 |
+
hidden_states (torch.Tensor): Input tensor [batch_size, seq_len, hidden_size]
|
| 629 |
+
attention_mask (Optional[torch.Tensor]): Attention mask tensor
|
| 630 |
+
attn_mask_start_row_indices (Optional[torch.Tensor]): Indices for variable length attention
|
| 631 |
+
position_ids (Optional[torch.Tensor]): Position indices for rotary embeddings
|
| 632 |
+
output_attentions (Optional[bool]): Whether to return attention weights
|
| 633 |
+
past_key_value (Optional[Tuple[torch.Tensor]]): Cached key/value states
|
| 634 |
+
use_cache (Optional[bool]): Whether to cache key/value states
|
| 635 |
+
|
| 636 |
+
Returns:
|
| 637 |
+
Union: Various output combinations depending on arguments:
|
| 638 |
+
- Base case: Hidden states tensor
|
| 639 |
+
- With attention: Tuple of (hidden_states, attention_weights)
|
| 640 |
+
- With cache: Tuple of (hidden_states, cached_key_value)
|
| 641 |
+
"""
|
| 642 |
+
residual = hidden_states
|
| 643 |
+
|
| 644 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 645 |
+
|
| 646 |
+
# Self Attention
|
| 647 |
+
(hidden_states, self_attn_weights, present_key_value) = self.self_attn(
|
| 648 |
+
hidden_states=hidden_states,
|
| 649 |
+
past_key_value=past_key_value,
|
| 650 |
+
attention_mask=attention_mask,
|
| 651 |
+
attn_mask_start_row_indices=attn_mask_start_row_indices,
|
| 652 |
+
position_ids=position_ids,
|
| 653 |
+
output_attentions=output_attentions,
|
| 654 |
+
use_cache=use_cache,
|
| 655 |
+
token_type_ids=token_type_ids,
|
| 656 |
+
)
|
| 657 |
+
hidden_states = self.residual_add1(hidden_states, residual)
|
| 658 |
+
|
| 659 |
+
# Fully Connected
|
| 660 |
+
residual = hidden_states
|
| 661 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 662 |
+
hidden_states = self.mlp(hidden_states)
|
| 663 |
+
|
| 664 |
+
hidden_states = self.residual_add2(hidden_states, residual)
|
| 665 |
+
outputs = (hidden_states,)
|
| 666 |
+
|
| 667 |
+
if output_attentions:
|
| 668 |
+
outputs += (self_attn_weights,)
|
| 669 |
+
|
| 670 |
+
if use_cache:
|
| 671 |
+
outputs += (present_key_value,)
|
| 672 |
+
|
| 673 |
+
if type(outputs) is tuple and len(outputs) == 1:
|
| 674 |
+
outputs = outputs[0]
|
| 675 |
+
|
| 676 |
+
return outputs
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
class Ernie4_5_PretrainedModel(PreTrainedModel):
|
| 680 |
+
"""Base class for ERNIE pretrained models."""
|
| 681 |
+
|
| 682 |
+
config_class = Ernie4_5_Config
|
| 683 |
+
base_model_prefix = "ernie"
|
| 684 |
+
|
| 685 |
+
|
| 686 |
+
class Ernie4_5_Model(Ernie4_5_PretrainedModel):
|
| 687 |
+
|
| 688 |
+
def __init__(self, config):
|
| 689 |
+
"""Initialize the ERNIE model architecture.
|
| 690 |
+
|
| 691 |
+
Args:
|
| 692 |
+
config: Model configuration.
|
| 693 |
+
"""
|
| 694 |
+
super().__init__(config)
|
| 695 |
+
self.padding_idx = config.pad_token_id
|
| 696 |
+
self.vocab_size = config.vocab_size
|
| 697 |
+
self.hidden_size = config.hidden_size
|
| 698 |
+
self.config = config
|
| 699 |
+
|
| 700 |
+
self.embed_tokens = nn.Embedding(
|
| 701 |
+
self.vocab_size,
|
| 702 |
+
self.hidden_size,
|
| 703 |
+
)
|
| 704 |
+
|
| 705 |
+
self.layers = nn.ModuleList(
|
| 706 |
+
[Ernie4_5_DecoderLayer(config, i) for i in range(config.num_hidden_layers)]
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
self.norm = Ernie4_5_RMSNorm(config)
|
| 710 |
+
|
| 711 |
+
self.gradient_checkpointing = False
|
| 712 |
+
|
| 713 |
+
def get_input_embeddings(self):
|
| 714 |
+
"""Get the input embedding layer.
|
| 715 |
+
|
| 716 |
+
Returns:
|
| 717 |
+
nn.Embedding: The embedding layer for input tokens
|
| 718 |
+
"""
|
| 719 |
+
return self.embed_tokens
|
| 720 |
+
|
| 721 |
+
def set_input_embeddings(self, value):
|
| 722 |
+
"""Set new input embeddings.
|
| 723 |
+
|
| 724 |
+
Args:
|
| 725 |
+
value (nn.Embedding): New embedding layer to use
|
| 726 |
+
"""
|
| 727 |
+
self.embed_tokens = value
|
| 728 |
+
|
| 729 |
+
def forward(
|
| 730 |
+
self,
|
| 731 |
+
input_ids=None,
|
| 732 |
+
position_ids=None,
|
| 733 |
+
token_type_ids=None,
|
| 734 |
+
attention_mask=None,
|
| 735 |
+
attn_mask_start_row_indices=None,
|
| 736 |
+
inputs_embeds=None,
|
| 737 |
+
use_cache=None,
|
| 738 |
+
past_key_values=None,
|
| 739 |
+
output_attentions=False,
|
| 740 |
+
output_hidden_states=None,
|
| 741 |
+
return_dict=False,
|
| 742 |
+
):
|
| 743 |
+
"""Forward pass through the ERNIE model.
|
| 744 |
+
|
| 745 |
+
Args:
|
| 746 |
+
input_ids (Optional[torch.Tensor]): Input token IDs
|
| 747 |
+
position_ids (Optional[torch.Tensor]): Position indices
|
| 748 |
+
attention_mask (Optional[torch.Tensor]): Attention mask
|
| 749 |
+
attn_mask_start_row_indices (Optional[torch.Tensor]): Variable length attention indices
|
| 750 |
+
inputs_embeds (Optional[torch.Tensor]): Precomputed embeddings
|
| 751 |
+
use_cache (Optional[bool]): Whether to cache key/value states
|
| 752 |
+
past_key_values (Optional[Tuple[Tuple[torch.Tensor]]]): Cached key/value states
|
| 753 |
+
output_attentions (Optional[bool]): Whether to output attention weights
|
| 754 |
+
output_hidden_states (Optional[bool]): Whether to output all hidden states
|
| 755 |
+
return_dict (Optional[bool]): Whether to return dict or tuple
|
| 756 |
+
|
| 757 |
+
Returns:
|
| 758 |
+
Union[Tuple, BaseModelOutputWithPast]:
|
| 759 |
+
Various outputs depending on configuration, including:
|
| 760 |
+
- last_hidden_state: Final layer hidden states
|
| 761 |
+
- past_key_values: Cached key/value states if use_cache=True
|
| 762 |
+
- hidden_states: All hidden states if output_hidden_states=True
|
| 763 |
+
- attentions: Attention weights if output_attentions=True
|
| 764 |
+
"""
|
| 765 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 766 |
+
|
| 767 |
+
# retrieve input_ids and inputs_embeds
|
| 768 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 769 |
+
raise ValueError(
|
| 770 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
| 771 |
+
)
|
| 772 |
+
elif input_ids is not None:
|
| 773 |
+
_, seq_length = input_ids.shape
|
| 774 |
+
elif inputs_embeds is not None:
|
| 775 |
+
_, seq_length, _ = inputs_embeds.shape
|
| 776 |
+
else:
|
| 777 |
+
raise ValueError(
|
| 778 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
| 779 |
+
)
|
| 780 |
+
|
| 781 |
+
if past_key_values is None:
|
| 782 |
+
past_key_values = tuple([None] * len(self.layers))
|
| 783 |
+
|
| 784 |
+
if inputs_embeds is None:
|
| 785 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 786 |
+
inputs_embeds = inputs_embeds.to(self.embed_tokens.weight.dtype)
|
| 787 |
+
|
| 788 |
+
hidden_states = inputs_embeds
|
| 789 |
+
|
| 790 |
+
# decoder layers
|
| 791 |
+
all_hidden_states = () if output_hidden_states else None
|
| 792 |
+
all_self_attns = () if output_attentions else None
|
| 793 |
+
next_decoder_cache = () if use_cache else None
|
| 794 |
+
|
| 795 |
+
for idx, (decoder_layer) in enumerate(self.layers):
|
| 796 |
+
|
| 797 |
+
if output_hidden_states:
|
| 798 |
+
all_hidden_states += (hidden_states,)
|
| 799 |
+
|
| 800 |
+
past_key_value = (
|
| 801 |
+
past_key_values[idx] if past_key_values is not None else None
|
| 802 |
+
)
|
| 803 |
+
|
| 804 |
+
layer_outputs = decoder_layer(
|
| 805 |
+
hidden_states,
|
| 806 |
+
attention_mask,
|
| 807 |
+
attn_mask_start_row_indices,
|
| 808 |
+
position_ids,
|
| 809 |
+
token_type_ids,
|
| 810 |
+
output_attentions,
|
| 811 |
+
past_key_value,
|
| 812 |
+
use_cache,
|
| 813 |
+
)
|
| 814 |
+
|
| 815 |
+
if isinstance(layer_outputs, (tuple, list)):
|
| 816 |
+
hidden_states = layer_outputs[0]
|
| 817 |
+
else:
|
| 818 |
+
hidden_states = layer_outputs
|
| 819 |
+
|
| 820 |
+
if use_cache:
|
| 821 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
| 822 |
+
|
| 823 |
+
if output_attentions:
|
| 824 |
+
all_self_attns += (layer_outputs[1],)
|
| 825 |
+
|
| 826 |
+
# apply kv cache
|
| 827 |
+
if past_key_value is not None:
|
| 828 |
+
hidden_states = hidden_states[:, -1:, :]
|
| 829 |
+
|
| 830 |
+
hidden_states = self.norm(hidden_states)
|
| 831 |
+
|
| 832 |
+
# add hidden states from the last decoder layer
|
| 833 |
+
if output_hidden_states:
|
| 834 |
+
all_hidden_states += (hidden_states,)
|
| 835 |
+
|
| 836 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 837 |
+
|
| 838 |
+
if not return_dict:
|
| 839 |
+
return tuple(
|
| 840 |
+
v
|
| 841 |
+
for v in [
|
| 842 |
+
hidden_states,
|
| 843 |
+
next_cache,
|
| 844 |
+
all_hidden_states,
|
| 845 |
+
all_self_attns,
|
| 846 |
+
]
|
| 847 |
+
if v is not None
|
| 848 |
+
)
|
| 849 |
+
|
| 850 |
+
return BaseModelOutputWithPast(
|
| 851 |
+
last_hidden_state=hidden_states,
|
| 852 |
+
past_key_values=next_cache,
|
| 853 |
+
hidden_states=all_hidden_states,
|
| 854 |
+
attentions=all_self_attns,
|
| 855 |
+
)
|
| 856 |
+
|
| 857 |
+
|
| 858 |
+
class Ernie4_5_LMHead(nn.Module):
|
| 859 |
+
"""Language model head for ERNIE"""
|
| 860 |
+
|
| 861 |
+
def __init__(self, config):
|
| 862 |
+
"""Initialize the language model head.
|
| 863 |
+
|
| 864 |
+
Args:
|
| 865 |
+
config: Model configuration containing:
|
| 866 |
+
- vocab_size: Size of vocabulary
|
| 867 |
+
- hidden_size: Dimension of hidden states
|
| 868 |
+
- tie_word_embeddings: Whether to tie input/output embeddings
|
| 869 |
+
- weight_share_add_bias: Whether to add bias when weight sharing
|
| 870 |
+
- use_bias: Whether to use bias term
|
| 871 |
+
"""
|
| 872 |
+
|
| 873 |
+
super(Ernie4_5_LMHead, self).__init__()
|
| 874 |
+
self.config = config
|
| 875 |
+
vocab_size = config.vocab_size
|
| 876 |
+
|
| 877 |
+
if config.tie_word_embeddings:
|
| 878 |
+
# Weight of shape [vocab_size, hidden_size]
|
| 879 |
+
self.weight = nn.Parameter(
|
| 880 |
+
torch.empty(
|
| 881 |
+
vocab_size, config.hidden_size, dtype=torch.get_default_dtype()
|
| 882 |
+
)
|
| 883 |
+
)
|
| 884 |
+
else:
|
| 885 |
+
# Weight of shape [hidden_size, vocab_size]
|
| 886 |
+
self.weight = nn.Parameter(
|
| 887 |
+
torch.empty(
|
| 888 |
+
config.hidden_size, vocab_size, dtype=torch.get_default_dtype()
|
| 889 |
+
)
|
| 890 |
+
)
|
| 891 |
+
nn.init.xavier_uniform_(self.weight)
|
| 892 |
+
|
| 893 |
+
logger.info(
|
| 894 |
+
f"output-weight: {self.weight.shape}, tie_word_embeddings: {config.tie_word_embeddings}"
|
| 895 |
+
)
|
| 896 |
+
|
| 897 |
+
if config.weight_share_add_bias and config.use_bias:
|
| 898 |
+
self.bias = nn.Parameter(
|
| 899 |
+
torch.zeros(vocab_size, dtype=torch.get_default_dtype())
|
| 900 |
+
)
|
| 901 |
+
else:
|
| 902 |
+
self.bias = None
|
| 903 |
+
|
| 904 |
+
def forward(self, hidden_states):
|
| 905 |
+
"""Project hidden states to vocabulary logits.
|
| 906 |
+
|
| 907 |
+
Args:
|
| 908 |
+
hidden_states (torch.Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
|
| 909 |
+
|
| 910 |
+
Returns:
|
| 911 |
+
Logits tensor of shape [batch_size, seq_len, vocab_size]
|
| 912 |
+
"""
|
| 913 |
+
return self.calc_lm_head_logits(
|
| 914 |
+
self.config, hidden_states, self.weight, self.bias
|
| 915 |
+
)
|
| 916 |
+
|
| 917 |
+
def calc_lm_head_logits(self, config, hidden_states, weight, bias):
|
| 918 |
+
"""
|
| 919 |
+
Calculate language model head logits.
|
| 920 |
+
|
| 921 |
+
This is the core function that computes the final output logits for a language model.
|
| 922 |
+
|
| 923 |
+
Args:
|
| 924 |
+
config: Model configuration.
|
| 925 |
+
hidden_states (Tensor): Hidden states from the transformer layers
|
| 926 |
+
weight (Tensor): Weight matrix for the language model head
|
| 927 |
+
bias (Tensor): Bias vector for the language model head
|
| 928 |
+
|
| 929 |
+
Returns:
|
| 930 |
+
Tensor: The computed logits for language modeling.
|
| 931 |
+
"""
|
| 932 |
+
|
| 933 |
+
if config.tie_word_embeddings:
|
| 934 |
+
logits = torch.matmul(hidden_states, weight.T)
|
| 935 |
+
else:
|
| 936 |
+
logits = torch.matmul(hidden_states, weight)
|
| 937 |
+
|
| 938 |
+
if bias is not None:
|
| 939 |
+
logits = logits + bias
|
| 940 |
+
|
| 941 |
+
return logits
|
| 942 |
+
|
| 943 |
+
|
| 944 |
+
class Ernie4_5_ForCausalLM(Ernie4_5_PretrainedModel, GenerationMixin):
|
| 945 |
+
"""ERNIE model for causal language modeling."""
|
| 946 |
+
|
| 947 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 948 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
| 949 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
| 950 |
+
|
| 951 |
+
def __init__(self, config):
|
| 952 |
+
"""
|
| 953 |
+
Initializes the ERNIE model for causal language modeling.
|
| 954 |
+
|
| 955 |
+
Args:
|
| 956 |
+
config: Model configuration.
|
| 957 |
+
"""
|
| 958 |
+
super().__init__(config)
|
| 959 |
+
|
| 960 |
+
self.config = config
|
| 961 |
+
self.model = Ernie4_5_Model(config)
|
| 962 |
+
self.lm_head = Ernie4_5_LMHead(config)
|
| 963 |
+
|
| 964 |
+
# Initialize weights and apply final processing
|
| 965 |
+
self.post_init()
|
| 966 |
+
|
| 967 |
+
@torch.no_grad()
|
| 968 |
+
def set_state_dict(self, state_dict, *args, **kwargs):
|
| 969 |
+
"""
|
| 970 |
+
Loads the model state dictionary.
|
| 971 |
+
"""
|
| 972 |
+
ret = super().set_state_dict(state_dict)
|
| 973 |
+
return ret
|
| 974 |
+
|
| 975 |
+
def get_input_embeddings(self):
|
| 976 |
+
"""Returns the input embeddings layer."""
|
| 977 |
+
return self.model.embed_tokens
|
| 978 |
+
|
| 979 |
+
def set_input_embeddings(self, value):
|
| 980 |
+
"""Sets the input embeddings layer."""
|
| 981 |
+
self.model.embed_tokens = value
|
| 982 |
+
|
| 983 |
+
def get_output_embeddings(self):
|
| 984 |
+
"""Returns the output embeddings (LM head)."""
|
| 985 |
+
return self.lm_head
|
| 986 |
+
|
| 987 |
+
def set_output_embeddings(self, new_embeddings):
|
| 988 |
+
"""Sets the output embeddings layer."""
|
| 989 |
+
self.lm_head = new_embeddings
|
| 990 |
+
|
| 991 |
+
def set_decoder(self, decoder):
|
| 992 |
+
"""Sets the ERNIE decoder model."""
|
| 993 |
+
self.model = decoder
|
| 994 |
+
|
| 995 |
+
def get_decoder(self):
|
| 996 |
+
"""Gets the ERNIE decoder model."""
|
| 997 |
+
return self.model
|
| 998 |
+
|
| 999 |
+
def forward(
|
| 1000 |
+
self,
|
| 1001 |
+
input_ids,
|
| 1002 |
+
position_ids=None,
|
| 1003 |
+
attention_mask=None,
|
| 1004 |
+
attn_mask_start_row_indices=None,
|
| 1005 |
+
token_type_ids=None,
|
| 1006 |
+
inputs_embeds=None,
|
| 1007 |
+
labels=None,
|
| 1008 |
+
use_cache=False,
|
| 1009 |
+
past_key_values=None,
|
| 1010 |
+
output_attentions=None,
|
| 1011 |
+
output_hidden_states=None,
|
| 1012 |
+
**kwargs,
|
| 1013 |
+
):
|
| 1014 |
+
"""
|
| 1015 |
+
Forward pass for causal language modeling.
|
| 1016 |
+
|
| 1017 |
+
Args:
|
| 1018 |
+
input_ids (torch.Tensor): Input token IDs.
|
| 1019 |
+
position_ids (torch.Tensor): Position IDs.
|
| 1020 |
+
attention_mask (torch.Tensor): Attention mask.
|
| 1021 |
+
attn_mask_start_row_indices (torch.Tensor): Attention mask start indices.
|
| 1022 |
+
inputs_embeds (torch.Tensor): Optional embedded inputs.
|
| 1023 |
+
labels (torch.Tensor): Target labels.
|
| 1024 |
+
use_cache (bool): Whether to use cached hidden states.
|
| 1025 |
+
past_key_values (dict): Pre-computed hidden states.
|
| 1026 |
+
output_attentions (bool): Whether to output attentions.
|
| 1027 |
+
output_hidden_states (bool): Whether to output hidden states.
|
| 1028 |
+
|
| 1029 |
+
Returns:
|
| 1030 |
+
CausalLMOutputWithPast: Model outputs.
|
| 1031 |
+
"""
|
| 1032 |
+
|
| 1033 |
+
if past_key_values is not None:
|
| 1034 |
+
input_ids = input_ids[:, -1:]
|
| 1035 |
+
|
| 1036 |
+
outputs = self.model(
|
| 1037 |
+
input_ids,
|
| 1038 |
+
position_ids=position_ids,
|
| 1039 |
+
attention_mask=attention_mask,
|
| 1040 |
+
token_type_ids=token_type_ids,
|
| 1041 |
+
attn_mask_start_row_indices=attn_mask_start_row_indices,
|
| 1042 |
+
inputs_embeds=inputs_embeds,
|
| 1043 |
+
use_cache=use_cache,
|
| 1044 |
+
past_key_values=past_key_values,
|
| 1045 |
+
output_attentions=output_attentions,
|
| 1046 |
+
output_hidden_states=output_hidden_states,
|
| 1047 |
+
return_dict=True,
|
| 1048 |
+
)
|
| 1049 |
+
|
| 1050 |
+
hidden_states = outputs.last_hidden_state
|
| 1051 |
+
logits = self.lm_head(hidden_states)
|
| 1052 |
+
|
| 1053 |
+
loss = None
|
| 1054 |
+
if labels is not None:
|
| 1055 |
+
loss = self.loss_function(
|
| 1056 |
+
logits=logits,
|
| 1057 |
+
labels=labels,
|
| 1058 |
+
vocab_size=self.config.vocab_size,
|
| 1059 |
+
**kwargs,
|
| 1060 |
+
)
|
| 1061 |
+
|
| 1062 |
+
return CausalLMOutputWithPast(
|
| 1063 |
+
loss=loss,
|
| 1064 |
+
logits=logits,
|
| 1065 |
+
past_key_values=outputs.past_key_values,
|
| 1066 |
+
hidden_states=outputs.hidden_states,
|
| 1067 |
+
attentions=outputs.attentions,
|
| 1068 |
+
)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,1020 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|IMAGE_PLACEHOLDER|>",
|
| 4 |
+
"<|AUDIO_PLACEHOLDER|>",
|
| 5 |
+
"<|LOC_0|>",
|
| 6 |
+
"<|LOC_1|>",
|
| 7 |
+
"<|LOC_2|>",
|
| 8 |
+
"<|LOC_3|>",
|
| 9 |
+
"<|LOC_4|>",
|
| 10 |
+
"<|LOC_5|>",
|
| 11 |
+
"<|LOC_6|>",
|
| 12 |
+
"<|LOC_7|>",
|
| 13 |
+
"<|LOC_8|>",
|
| 14 |
+
"<|LOC_9|>",
|
| 15 |
+
"<|LOC_10|>",
|
| 16 |
+
"<|LOC_11|>",
|
| 17 |
+
"<|LOC_12|>",
|
| 18 |
+
"<|LOC_13|>",
|
| 19 |
+
"<|LOC_14|>",
|
| 20 |
+
"<|LOC_15|>",
|
| 21 |
+
"<|LOC_16|>",
|
| 22 |
+
"<|LOC_17|>",
|
| 23 |
+
"<|LOC_18|>",
|
| 24 |
+
"<|LOC_19|>",
|
| 25 |
+
"<|LOC_20|>",
|
| 26 |
+
"<|LOC_21|>",
|
| 27 |
+
"<|LOC_22|>",
|
| 28 |
+
"<|LOC_23|>",
|
| 29 |
+
"<|LOC_24|>",
|
| 30 |
+
"<|LOC_25|>",
|
| 31 |
+
"<|LOC_26|>",
|
| 32 |
+
"<|LOC_27|>",
|
| 33 |
+
"<|LOC_28|>",
|
| 34 |
+
"<|LOC_29|>",
|
| 35 |
+
"<|LOC_30|>",
|
| 36 |
+
"<|LOC_31|>",
|
| 37 |
+
"<|LOC_32|>",
|
| 38 |
+
"<|LOC_33|>",
|
| 39 |
+
"<|LOC_34|>",
|
| 40 |
+
"<|LOC_35|>",
|
| 41 |
+
"<|LOC_36|>",
|
| 42 |
+
"<|LOC_37|>",
|
| 43 |
+
"<|LOC_38|>",
|
| 44 |
+
"<|LOC_39|>",
|
| 45 |
+
"<|LOC_40|>",
|
| 46 |
+
"<|LOC_41|>",
|
| 47 |
+
"<|LOC_42|>",
|
| 48 |
+
"<|LOC_43|>",
|
| 49 |
+
"<|LOC_44|>",
|
| 50 |
+
"<|LOC_45|>",
|
| 51 |
+
"<|LOC_46|>",
|
| 52 |
+
"<|LOC_47|>",
|
| 53 |
+
"<|LOC_48|>",
|
| 54 |
+
"<|LOC_49|>",
|
| 55 |
+
"<|LOC_50|>",
|
| 56 |
+
"<|LOC_51|>",
|
| 57 |
+
"<|LOC_52|>",
|
| 58 |
+
"<|LOC_53|>",
|
| 59 |
+
"<|LOC_54|>",
|
| 60 |
+
"<|LOC_55|>",
|
| 61 |
+
"<|LOC_56|>",
|
| 62 |
+
"<|LOC_57|>",
|
| 63 |
+
"<|LOC_58|>",
|
| 64 |
+
"<|LOC_59|>",
|
| 65 |
+
"<|LOC_60|>",
|
| 66 |
+
"<|LOC_61|>",
|
| 67 |
+
"<|LOC_62|>",
|
| 68 |
+
"<|LOC_63|>",
|
| 69 |
+
"<|LOC_64|>",
|
| 70 |
+
"<|LOC_65|>",
|
| 71 |
+
"<|LOC_66|>",
|
| 72 |
+
"<|LOC_67|>",
|
| 73 |
+
"<|LOC_68|>",
|
| 74 |
+
"<|LOC_69|>",
|
| 75 |
+
"<|LOC_70|>",
|
| 76 |
+
"<|LOC_71|>",
|
| 77 |
+
"<|LOC_72|>",
|
| 78 |
+
"<|LOC_73|>",
|
| 79 |
+
"<|LOC_74|>",
|
| 80 |
+
"<|LOC_75|>",
|
| 81 |
+
"<|LOC_76|>",
|
| 82 |
+
"<|LOC_77|>",
|
| 83 |
+
"<|LOC_78|>",
|
| 84 |
+
"<|LOC_79|>",
|
| 85 |
+
"<|LOC_80|>",
|
| 86 |
+
"<|LOC_81|>",
|
| 87 |
+
"<|LOC_82|>",
|
| 88 |
+
"<|LOC_83|>",
|
| 89 |
+
"<|LOC_84|>",
|
| 90 |
+
"<|LOC_85|>",
|
| 91 |
+
"<|LOC_86|>",
|
| 92 |
+
"<|LOC_87|>",
|
| 93 |
+
"<|LOC_88|>",
|
| 94 |
+
"<|LOC_89|>",
|
| 95 |
+
"<|LOC_90|>",
|
| 96 |
+
"<|LOC_91|>",
|
| 97 |
+
"<|LOC_92|>",
|
| 98 |
+
"<|LOC_93|>",
|
| 99 |
+
"<|LOC_94|>",
|
| 100 |
+
"<|LOC_95|>",
|
| 101 |
+
"<|LOC_96|>",
|
| 102 |
+
"<|LOC_97|>",
|
| 103 |
+
"<|LOC_98|>",
|
| 104 |
+
"<|LOC_99|>",
|
| 105 |
+
"<|LOC_100|>",
|
| 106 |
+
"<|LOC_101|>",
|
| 107 |
+
"<|LOC_102|>",
|
| 108 |
+
"<|LOC_103|>",
|
| 109 |
+
"<|LOC_104|>",
|
| 110 |
+
"<|LOC_105|>",
|
| 111 |
+
"<|LOC_106|>",
|
| 112 |
+
"<|LOC_107|>",
|
| 113 |
+
"<|LOC_108|>",
|
| 114 |
+
"<|LOC_109|>",
|
| 115 |
+
"<|LOC_110|>",
|
| 116 |
+
"<|LOC_111|>",
|
| 117 |
+
"<|LOC_112|>",
|
| 118 |
+
"<|LOC_113|>",
|
| 119 |
+
"<|LOC_114|>",
|
| 120 |
+
"<|LOC_115|>",
|
| 121 |
+
"<|LOC_116|>",
|
| 122 |
+
"<|LOC_117|>",
|
| 123 |
+
"<|LOC_118|>",
|
| 124 |
+
"<|LOC_119|>",
|
| 125 |
+
"<|LOC_120|>",
|
| 126 |
+
"<|LOC_121|>",
|
| 127 |
+
"<|LOC_122|>",
|
| 128 |
+
"<|LOC_123|>",
|
| 129 |
+
"<|LOC_124|>",
|
| 130 |
+
"<|LOC_125|>",
|
| 131 |
+
"<|LOC_126|>",
|
| 132 |
+
"<|LOC_127|>",
|
| 133 |
+
"<|LOC_128|>",
|
| 134 |
+
"<|LOC_129|>",
|
| 135 |
+
"<|LOC_130|>",
|
| 136 |
+
"<|LOC_131|>",
|
| 137 |
+
"<|LOC_132|>",
|
| 138 |
+
"<|LOC_133|>",
|
| 139 |
+
"<|LOC_134|>",
|
| 140 |
+
"<|LOC_135|>",
|
| 141 |
+
"<|LOC_136|>",
|
| 142 |
+
"<|LOC_137|>",
|
| 143 |
+
"<|LOC_138|>",
|
| 144 |
+
"<|LOC_139|>",
|
| 145 |
+
"<|LOC_140|>",
|
| 146 |
+
"<|LOC_141|>",
|
| 147 |
+
"<|LOC_142|>",
|
| 148 |
+
"<|LOC_143|>",
|
| 149 |
+
"<|LOC_144|>",
|
| 150 |
+
"<|LOC_145|>",
|
| 151 |
+
"<|LOC_146|>",
|
| 152 |
+
"<|LOC_147|>",
|
| 153 |
+
"<|LOC_148|>",
|
| 154 |
+
"<|LOC_149|>",
|
| 155 |
+
"<|LOC_150|>",
|
| 156 |
+
"<|LOC_151|>",
|
| 157 |
+
"<|LOC_152|>",
|
| 158 |
+
"<|LOC_153|>",
|
| 159 |
+
"<|LOC_154|>",
|
| 160 |
+
"<|LOC_155|>",
|
| 161 |
+
"<|LOC_156|>",
|
| 162 |
+
"<|LOC_157|>",
|
| 163 |
+
"<|LOC_158|>",
|
| 164 |
+
"<|LOC_159|>",
|
| 165 |
+
"<|LOC_160|>",
|
| 166 |
+
"<|LOC_161|>",
|
| 167 |
+
"<|LOC_162|>",
|
| 168 |
+
"<|LOC_163|>",
|
| 169 |
+
"<|LOC_164|>",
|
| 170 |
+
"<|LOC_165|>",
|
| 171 |
+
"<|LOC_166|>",
|
| 172 |
+
"<|LOC_167|>",
|
| 173 |
+
"<|LOC_168|>",
|
| 174 |
+
"<|LOC_169|>",
|
| 175 |
+
"<|LOC_170|>",
|
| 176 |
+
"<|LOC_171|>",
|
| 177 |
+
"<|LOC_172|>",
|
| 178 |
+
"<|LOC_173|>",
|
| 179 |
+
"<|LOC_174|>",
|
| 180 |
+
"<|LOC_175|>",
|
| 181 |
+
"<|LOC_176|>",
|
| 182 |
+
"<|LOC_177|>",
|
| 183 |
+
"<|LOC_178|>",
|
| 184 |
+
"<|LOC_179|>",
|
| 185 |
+
"<|LOC_180|>",
|
| 186 |
+
"<|LOC_181|>",
|
| 187 |
+
"<|LOC_182|>",
|
| 188 |
+
"<|LOC_183|>",
|
| 189 |
+
"<|LOC_184|>",
|
| 190 |
+
"<|LOC_185|>",
|
| 191 |
+
"<|LOC_186|>",
|
| 192 |
+
"<|LOC_187|>",
|
| 193 |
+
"<|LOC_188|>",
|
| 194 |
+
"<|LOC_189|>",
|
| 195 |
+
"<|LOC_190|>",
|
| 196 |
+
"<|LOC_191|>",
|
| 197 |
+
"<|LOC_192|>",
|
| 198 |
+
"<|LOC_193|>",
|
| 199 |
+
"<|LOC_194|>",
|
| 200 |
+
"<|LOC_195|>",
|
| 201 |
+
"<|LOC_196|>",
|
| 202 |
+
"<|LOC_197|>",
|
| 203 |
+
"<|LOC_198|>",
|
| 204 |
+
"<|LOC_199|>",
|
| 205 |
+
"<|LOC_200|>",
|
| 206 |
+
"<|LOC_201|>",
|
| 207 |
+
"<|LOC_202|>",
|
| 208 |
+
"<|LOC_203|>",
|
| 209 |
+
"<|LOC_204|>",
|
| 210 |
+
"<|LOC_205|>",
|
| 211 |
+
"<|LOC_206|>",
|
| 212 |
+
"<|LOC_207|>",
|
| 213 |
+
"<|LOC_208|>",
|
| 214 |
+
"<|LOC_209|>",
|
| 215 |
+
"<|LOC_210|>",
|
| 216 |
+
"<|LOC_211|>",
|
| 217 |
+
"<|LOC_212|>",
|
| 218 |
+
"<|LOC_213|>",
|
| 219 |
+
"<|LOC_214|>",
|
| 220 |
+
"<|LOC_215|>",
|
| 221 |
+
"<|LOC_216|>",
|
| 222 |
+
"<|LOC_217|>",
|
| 223 |
+
"<|LOC_218|>",
|
| 224 |
+
"<|LOC_219|>",
|
| 225 |
+
"<|LOC_220|>",
|
| 226 |
+
"<|LOC_221|>",
|
| 227 |
+
"<|LOC_222|>",
|
| 228 |
+
"<|LOC_223|>",
|
| 229 |
+
"<|LOC_224|>",
|
| 230 |
+
"<|LOC_225|>",
|
| 231 |
+
"<|LOC_226|>",
|
| 232 |
+
"<|LOC_227|>",
|
| 233 |
+
"<|LOC_228|>",
|
| 234 |
+
"<|LOC_229|>",
|
| 235 |
+
"<|LOC_230|>",
|
| 236 |
+
"<|LOC_231|>",
|
| 237 |
+
"<|LOC_232|>",
|
| 238 |
+
"<|LOC_233|>",
|
| 239 |
+
"<|LOC_234|>",
|
| 240 |
+
"<|LOC_235|>",
|
| 241 |
+
"<|LOC_236|>",
|
| 242 |
+
"<|LOC_237|>",
|
| 243 |
+
"<|LOC_238|>",
|
| 244 |
+
"<|LOC_239|>",
|
| 245 |
+
"<|LOC_240|>",
|
| 246 |
+
"<|LOC_241|>",
|
| 247 |
+
"<|LOC_242|>",
|
| 248 |
+
"<|LOC_243|>",
|
| 249 |
+
"<|LOC_244|>",
|
| 250 |
+
"<|LOC_245|>",
|
| 251 |
+
"<|LOC_246|>",
|
| 252 |
+
"<|LOC_247|>",
|
| 253 |
+
"<|LOC_248|>",
|
| 254 |
+
"<|LOC_249|>",
|
| 255 |
+
"<|LOC_250|>",
|
| 256 |
+
"<|LOC_251|>",
|
| 257 |
+
"<|LOC_252|>",
|
| 258 |
+
"<|LOC_253|>",
|
| 259 |
+
"<|LOC_254|>",
|
| 260 |
+
"<|LOC_255|>",
|
| 261 |
+
"<|LOC_256|>",
|
| 262 |
+
"<|LOC_257|>",
|
| 263 |
+
"<|LOC_258|>",
|
| 264 |
+
"<|LOC_259|>",
|
| 265 |
+
"<|LOC_260|>",
|
| 266 |
+
"<|LOC_261|>",
|
| 267 |
+
"<|LOC_262|>",
|
| 268 |
+
"<|LOC_263|>",
|
| 269 |
+
"<|LOC_264|>",
|
| 270 |
+
"<|LOC_265|>",
|
| 271 |
+
"<|LOC_266|>",
|
| 272 |
+
"<|LOC_267|>",
|
| 273 |
+
"<|LOC_268|>",
|
| 274 |
+
"<|LOC_269|>",
|
| 275 |
+
"<|LOC_270|>",
|
| 276 |
+
"<|LOC_271|>",
|
| 277 |
+
"<|LOC_272|>",
|
| 278 |
+
"<|LOC_273|>",
|
| 279 |
+
"<|LOC_274|>",
|
| 280 |
+
"<|LOC_275|>",
|
| 281 |
+
"<|LOC_276|>",
|
| 282 |
+
"<|LOC_277|>",
|
| 283 |
+
"<|LOC_278|>",
|
| 284 |
+
"<|LOC_279|>",
|
| 285 |
+
"<|LOC_280|>",
|
| 286 |
+
"<|LOC_281|>",
|
| 287 |
+
"<|LOC_282|>",
|
| 288 |
+
"<|LOC_283|>",
|
| 289 |
+
"<|LOC_284|>",
|
| 290 |
+
"<|LOC_285|>",
|
| 291 |
+
"<|LOC_286|>",
|
| 292 |
+
"<|LOC_287|>",
|
| 293 |
+
"<|LOC_288|>",
|
| 294 |
+
"<|LOC_289|>",
|
| 295 |
+
"<|LOC_290|>",
|
| 296 |
+
"<|LOC_291|>",
|
| 297 |
+
"<|LOC_292|>",
|
| 298 |
+
"<|LOC_293|>",
|
| 299 |
+
"<|LOC_294|>",
|
| 300 |
+
"<|LOC_295|>",
|
| 301 |
+
"<|LOC_296|>",
|
| 302 |
+
"<|LOC_297|>",
|
| 303 |
+
"<|LOC_298|>",
|
| 304 |
+
"<|LOC_299|>",
|
| 305 |
+
"<|LOC_300|>",
|
| 306 |
+
"<|LOC_301|>",
|
| 307 |
+
"<|LOC_302|>",
|
| 308 |
+
"<|LOC_303|>",
|
| 309 |
+
"<|LOC_304|>",
|
| 310 |
+
"<|LOC_305|>",
|
| 311 |
+
"<|LOC_306|>",
|
| 312 |
+
"<|LOC_307|>",
|
| 313 |
+
"<|LOC_308|>",
|
| 314 |
+
"<|LOC_309|>",
|
| 315 |
+
"<|LOC_310|>",
|
| 316 |
+
"<|LOC_311|>",
|
| 317 |
+
"<|LOC_312|>",
|
| 318 |
+
"<|LOC_313|>",
|
| 319 |
+
"<|LOC_314|>",
|
| 320 |
+
"<|LOC_315|>",
|
| 321 |
+
"<|LOC_316|>",
|
| 322 |
+
"<|LOC_317|>",
|
| 323 |
+
"<|LOC_318|>",
|
| 324 |
+
"<|LOC_319|>",
|
| 325 |
+
"<|LOC_320|>",
|
| 326 |
+
"<|LOC_321|>",
|
| 327 |
+
"<|LOC_322|>",
|
| 328 |
+
"<|LOC_323|>",
|
| 329 |
+
"<|LOC_324|>",
|
| 330 |
+
"<|LOC_325|>",
|
| 331 |
+
"<|LOC_326|>",
|
| 332 |
+
"<|LOC_327|>",
|
| 333 |
+
"<|LOC_328|>",
|
| 334 |
+
"<|LOC_329|>",
|
| 335 |
+
"<|LOC_330|>",
|
| 336 |
+
"<|LOC_331|>",
|
| 337 |
+
"<|LOC_332|>",
|
| 338 |
+
"<|LOC_333|>",
|
| 339 |
+
"<|LOC_334|>",
|
| 340 |
+
"<|LOC_335|>",
|
| 341 |
+
"<|LOC_336|>",
|
| 342 |
+
"<|LOC_337|>",
|
| 343 |
+
"<|LOC_338|>",
|
| 344 |
+
"<|LOC_339|>",
|
| 345 |
+
"<|LOC_340|>",
|
| 346 |
+
"<|LOC_341|>",
|
| 347 |
+
"<|LOC_342|>",
|
| 348 |
+
"<|LOC_343|>",
|
| 349 |
+
"<|LOC_344|>",
|
| 350 |
+
"<|LOC_345|>",
|
| 351 |
+
"<|LOC_346|>",
|
| 352 |
+
"<|LOC_347|>",
|
| 353 |
+
"<|LOC_348|>",
|
| 354 |
+
"<|LOC_349|>",
|
| 355 |
+
"<|LOC_350|>",
|
| 356 |
+
"<|LOC_351|>",
|
| 357 |
+
"<|LOC_352|>",
|
| 358 |
+
"<|LOC_353|>",
|
| 359 |
+
"<|LOC_354|>",
|
| 360 |
+
"<|LOC_355|>",
|
| 361 |
+
"<|LOC_356|>",
|
| 362 |
+
"<|LOC_357|>",
|
| 363 |
+
"<|LOC_358|>",
|
| 364 |
+
"<|LOC_359|>",
|
| 365 |
+
"<|LOC_360|>",
|
| 366 |
+
"<|LOC_361|>",
|
| 367 |
+
"<|LOC_362|>",
|
| 368 |
+
"<|LOC_363|>",
|
| 369 |
+
"<|LOC_364|>",
|
| 370 |
+
"<|LOC_365|>",
|
| 371 |
+
"<|LOC_366|>",
|
| 372 |
+
"<|LOC_367|>",
|
| 373 |
+
"<|LOC_368|>",
|
| 374 |
+
"<|LOC_369|>",
|
| 375 |
+
"<|LOC_370|>",
|
| 376 |
+
"<|LOC_371|>",
|
| 377 |
+
"<|LOC_372|>",
|
| 378 |
+
"<|LOC_373|>",
|
| 379 |
+
"<|LOC_374|>",
|
| 380 |
+
"<|LOC_375|>",
|
| 381 |
+
"<|LOC_376|>",
|
| 382 |
+
"<|LOC_377|>",
|
| 383 |
+
"<|LOC_378|>",
|
| 384 |
+
"<|LOC_379|>",
|
| 385 |
+
"<|LOC_380|>",
|
| 386 |
+
"<|LOC_381|>",
|
| 387 |
+
"<|LOC_382|>",
|
| 388 |
+
"<|LOC_383|>",
|
| 389 |
+
"<|LOC_384|>",
|
| 390 |
+
"<|LOC_385|>",
|
| 391 |
+
"<|LOC_386|>",
|
| 392 |
+
"<|LOC_387|>",
|
| 393 |
+
"<|LOC_388|>",
|
| 394 |
+
"<|LOC_389|>",
|
| 395 |
+
"<|LOC_390|>",
|
| 396 |
+
"<|LOC_391|>",
|
| 397 |
+
"<|LOC_392|>",
|
| 398 |
+
"<|LOC_393|>",
|
| 399 |
+
"<|LOC_394|>",
|
| 400 |
+
"<|LOC_395|>",
|
| 401 |
+
"<|LOC_396|>",
|
| 402 |
+
"<|LOC_397|>",
|
| 403 |
+
"<|LOC_398|>",
|
| 404 |
+
"<|LOC_399|>",
|
| 405 |
+
"<|LOC_400|>",
|
| 406 |
+
"<|LOC_401|>",
|
| 407 |
+
"<|LOC_402|>",
|
| 408 |
+
"<|LOC_403|>",
|
| 409 |
+
"<|LOC_404|>",
|
| 410 |
+
"<|LOC_405|>",
|
| 411 |
+
"<|LOC_406|>",
|
| 412 |
+
"<|LOC_407|>",
|
| 413 |
+
"<|LOC_408|>",
|
| 414 |
+
"<|LOC_409|>",
|
| 415 |
+
"<|LOC_410|>",
|
| 416 |
+
"<|LOC_411|>",
|
| 417 |
+
"<|LOC_412|>",
|
| 418 |
+
"<|LOC_413|>",
|
| 419 |
+
"<|LOC_414|>",
|
| 420 |
+
"<|LOC_415|>",
|
| 421 |
+
"<|LOC_416|>",
|
| 422 |
+
"<|LOC_417|>",
|
| 423 |
+
"<|LOC_418|>",
|
| 424 |
+
"<|LOC_419|>",
|
| 425 |
+
"<|LOC_420|>",
|
| 426 |
+
"<|LOC_421|>",
|
| 427 |
+
"<|LOC_422|>",
|
| 428 |
+
"<|LOC_423|>",
|
| 429 |
+
"<|LOC_424|>",
|
| 430 |
+
"<|LOC_425|>",
|
| 431 |
+
"<|LOC_426|>",
|
| 432 |
+
"<|LOC_427|>",
|
| 433 |
+
"<|LOC_428|>",
|
| 434 |
+
"<|LOC_429|>",
|
| 435 |
+
"<|LOC_430|>",
|
| 436 |
+
"<|LOC_431|>",
|
| 437 |
+
"<|LOC_432|>",
|
| 438 |
+
"<|LOC_433|>",
|
| 439 |
+
"<|LOC_434|>",
|
| 440 |
+
"<|LOC_435|>",
|
| 441 |
+
"<|LOC_436|>",
|
| 442 |
+
"<|LOC_437|>",
|
| 443 |
+
"<|LOC_438|>",
|
| 444 |
+
"<|LOC_439|>",
|
| 445 |
+
"<|LOC_440|>",
|
| 446 |
+
"<|LOC_441|>",
|
| 447 |
+
"<|LOC_442|>",
|
| 448 |
+
"<|LOC_443|>",
|
| 449 |
+
"<|LOC_444|>",
|
| 450 |
+
"<|LOC_445|>",
|
| 451 |
+
"<|LOC_446|>",
|
| 452 |
+
"<|LOC_447|>",
|
| 453 |
+
"<|LOC_448|>",
|
| 454 |
+
"<|LOC_449|>",
|
| 455 |
+
"<|LOC_450|>",
|
| 456 |
+
"<|LOC_451|>",
|
| 457 |
+
"<|LOC_452|>",
|
| 458 |
+
"<|LOC_453|>",
|
| 459 |
+
"<|LOC_454|>",
|
| 460 |
+
"<|LOC_455|>",
|
| 461 |
+
"<|LOC_456|>",
|
| 462 |
+
"<|LOC_457|>",
|
| 463 |
+
"<|LOC_458|>",
|
| 464 |
+
"<|LOC_459|>",
|
| 465 |
+
"<|LOC_460|>",
|
| 466 |
+
"<|LOC_461|>",
|
| 467 |
+
"<|LOC_462|>",
|
| 468 |
+
"<|LOC_463|>",
|
| 469 |
+
"<|LOC_464|>",
|
| 470 |
+
"<|LOC_465|>",
|
| 471 |
+
"<|LOC_466|>",
|
| 472 |
+
"<|LOC_467|>",
|
| 473 |
+
"<|LOC_468|>",
|
| 474 |
+
"<|LOC_469|>",
|
| 475 |
+
"<|LOC_470|>",
|
| 476 |
+
"<|LOC_471|>",
|
| 477 |
+
"<|LOC_472|>",
|
| 478 |
+
"<|LOC_473|>",
|
| 479 |
+
"<|LOC_474|>",
|
| 480 |
+
"<|LOC_475|>",
|
| 481 |
+
"<|LOC_476|>",
|
| 482 |
+
"<|LOC_477|>",
|
| 483 |
+
"<|LOC_478|>",
|
| 484 |
+
"<|LOC_479|>",
|
| 485 |
+
"<|LOC_480|>",
|
| 486 |
+
"<|LOC_481|>",
|
| 487 |
+
"<|LOC_482|>",
|
| 488 |
+
"<|LOC_483|>",
|
| 489 |
+
"<|LOC_484|>",
|
| 490 |
+
"<|LOC_485|>",
|
| 491 |
+
"<|LOC_486|>",
|
| 492 |
+
"<|LOC_487|>",
|
| 493 |
+
"<|LOC_488|>",
|
| 494 |
+
"<|LOC_489|>",
|
| 495 |
+
"<|LOC_490|>",
|
| 496 |
+
"<|LOC_491|>",
|
| 497 |
+
"<|LOC_492|>",
|
| 498 |
+
"<|LOC_493|>",
|
| 499 |
+
"<|LOC_494|>",
|
| 500 |
+
"<|LOC_495|>",
|
| 501 |
+
"<|LOC_496|>",
|
| 502 |
+
"<|LOC_497|>",
|
| 503 |
+
"<|LOC_498|>",
|
| 504 |
+
"<|LOC_499|>",
|
| 505 |
+
"<|LOC_500|>",
|
| 506 |
+
"<|LOC_501|>",
|
| 507 |
+
"<|LOC_502|>",
|
| 508 |
+
"<|LOC_503|>",
|
| 509 |
+
"<|LOC_504|>",
|
| 510 |
+
"<|LOC_505|>",
|
| 511 |
+
"<|LOC_506|>",
|
| 512 |
+
"<|LOC_507|>",
|
| 513 |
+
"<|LOC_508|>",
|
| 514 |
+
"<|LOC_509|>",
|
| 515 |
+
"<|LOC_510|>",
|
| 516 |
+
"<|LOC_511|>",
|
| 517 |
+
"<|LOC_512|>",
|
| 518 |
+
"<|LOC_513|>",
|
| 519 |
+
"<|LOC_514|>",
|
| 520 |
+
"<|LOC_515|>",
|
| 521 |
+
"<|LOC_516|>",
|
| 522 |
+
"<|LOC_517|>",
|
| 523 |
+
"<|LOC_518|>",
|
| 524 |
+
"<|LOC_519|>",
|
| 525 |
+
"<|LOC_520|>",
|
| 526 |
+
"<|LOC_521|>",
|
| 527 |
+
"<|LOC_522|>",
|
| 528 |
+
"<|LOC_523|>",
|
| 529 |
+
"<|LOC_524|>",
|
| 530 |
+
"<|LOC_525|>",
|
| 531 |
+
"<|LOC_526|>",
|
| 532 |
+
"<|LOC_527|>",
|
| 533 |
+
"<|LOC_528|>",
|
| 534 |
+
"<|LOC_529|>",
|
| 535 |
+
"<|LOC_530|>",
|
| 536 |
+
"<|LOC_531|>",
|
| 537 |
+
"<|LOC_532|>",
|
| 538 |
+
"<|LOC_533|>",
|
| 539 |
+
"<|LOC_534|>",
|
| 540 |
+
"<|LOC_535|>",
|
| 541 |
+
"<|LOC_536|>",
|
| 542 |
+
"<|LOC_537|>",
|
| 543 |
+
"<|LOC_538|>",
|
| 544 |
+
"<|LOC_539|>",
|
| 545 |
+
"<|LOC_540|>",
|
| 546 |
+
"<|LOC_541|>",
|
| 547 |
+
"<|LOC_542|>",
|
| 548 |
+
"<|LOC_543|>",
|
| 549 |
+
"<|LOC_544|>",
|
| 550 |
+
"<|LOC_545|>",
|
| 551 |
+
"<|LOC_546|>",
|
| 552 |
+
"<|LOC_547|>",
|
| 553 |
+
"<|LOC_548|>",
|
| 554 |
+
"<|LOC_549|>",
|
| 555 |
+
"<|LOC_550|>",
|
| 556 |
+
"<|LOC_551|>",
|
| 557 |
+
"<|LOC_552|>",
|
| 558 |
+
"<|LOC_553|>",
|
| 559 |
+
"<|LOC_554|>",
|
| 560 |
+
"<|LOC_555|>",
|
| 561 |
+
"<|LOC_556|>",
|
| 562 |
+
"<|LOC_557|>",
|
| 563 |
+
"<|LOC_558|>",
|
| 564 |
+
"<|LOC_559|>",
|
| 565 |
+
"<|LOC_560|>",
|
| 566 |
+
"<|LOC_561|>",
|
| 567 |
+
"<|LOC_562|>",
|
| 568 |
+
"<|LOC_563|>",
|
| 569 |
+
"<|LOC_564|>",
|
| 570 |
+
"<|LOC_565|>",
|
| 571 |
+
"<|LOC_566|>",
|
| 572 |
+
"<|LOC_567|>",
|
| 573 |
+
"<|LOC_568|>",
|
| 574 |
+
"<|LOC_569|>",
|
| 575 |
+
"<|LOC_570|>",
|
| 576 |
+
"<|LOC_571|>",
|
| 577 |
+
"<|LOC_572|>",
|
| 578 |
+
"<|LOC_573|>",
|
| 579 |
+
"<|LOC_574|>",
|
| 580 |
+
"<|LOC_575|>",
|
| 581 |
+
"<|LOC_576|>",
|
| 582 |
+
"<|LOC_577|>",
|
| 583 |
+
"<|LOC_578|>",
|
| 584 |
+
"<|LOC_579|>",
|
| 585 |
+
"<|LOC_580|>",
|
| 586 |
+
"<|LOC_581|>",
|
| 587 |
+
"<|LOC_582|>",
|
| 588 |
+
"<|LOC_583|>",
|
| 589 |
+
"<|LOC_584|>",
|
| 590 |
+
"<|LOC_585|>",
|
| 591 |
+
"<|LOC_586|>",
|
| 592 |
+
"<|LOC_587|>",
|
| 593 |
+
"<|LOC_588|>",
|
| 594 |
+
"<|LOC_589|>",
|
| 595 |
+
"<|LOC_590|>",
|
| 596 |
+
"<|LOC_591|>",
|
| 597 |
+
"<|LOC_592|>",
|
| 598 |
+
"<|LOC_593|>",
|
| 599 |
+
"<|LOC_594|>",
|
| 600 |
+
"<|LOC_595|>",
|
| 601 |
+
"<|LOC_596|>",
|
| 602 |
+
"<|LOC_597|>",
|
| 603 |
+
"<|LOC_598|>",
|
| 604 |
+
"<|LOC_599|>",
|
| 605 |
+
"<|LOC_600|>",
|
| 606 |
+
"<|LOC_601|>",
|
| 607 |
+
"<|LOC_602|>",
|
| 608 |
+
"<|LOC_603|>",
|
| 609 |
+
"<|LOC_604|>",
|
| 610 |
+
"<|LOC_605|>",
|
| 611 |
+
"<|LOC_606|>",
|
| 612 |
+
"<|LOC_607|>",
|
| 613 |
+
"<|LOC_608|>",
|
| 614 |
+
"<|LOC_609|>",
|
| 615 |
+
"<|LOC_610|>",
|
| 616 |
+
"<|LOC_611|>",
|
| 617 |
+
"<|LOC_612|>",
|
| 618 |
+
"<|LOC_613|>",
|
| 619 |
+
"<|LOC_614|>",
|
| 620 |
+
"<|LOC_615|>",
|
| 621 |
+
"<|LOC_616|>",
|
| 622 |
+
"<|LOC_617|>",
|
| 623 |
+
"<|LOC_618|>",
|
| 624 |
+
"<|LOC_619|>",
|
| 625 |
+
"<|LOC_620|>",
|
| 626 |
+
"<|LOC_621|>",
|
| 627 |
+
"<|LOC_622|>",
|
| 628 |
+
"<|LOC_623|>",
|
| 629 |
+
"<|LOC_624|>",
|
| 630 |
+
"<|LOC_625|>",
|
| 631 |
+
"<|LOC_626|>",
|
| 632 |
+
"<|LOC_627|>",
|
| 633 |
+
"<|LOC_628|>",
|
| 634 |
+
"<|LOC_629|>",
|
| 635 |
+
"<|LOC_630|>",
|
| 636 |
+
"<|LOC_631|>",
|
| 637 |
+
"<|LOC_632|>",
|
| 638 |
+
"<|LOC_633|>",
|
| 639 |
+
"<|LOC_634|>",
|
| 640 |
+
"<|LOC_635|>",
|
| 641 |
+
"<|LOC_636|>",
|
| 642 |
+
"<|LOC_637|>",
|
| 643 |
+
"<|LOC_638|>",
|
| 644 |
+
"<|LOC_639|>",
|
| 645 |
+
"<|LOC_640|>",
|
| 646 |
+
"<|LOC_641|>",
|
| 647 |
+
"<|LOC_642|>",
|
| 648 |
+
"<|LOC_643|>",
|
| 649 |
+
"<|LOC_644|>",
|
| 650 |
+
"<|LOC_645|>",
|
| 651 |
+
"<|LOC_646|>",
|
| 652 |
+
"<|LOC_647|>",
|
| 653 |
+
"<|LOC_648|>",
|
| 654 |
+
"<|LOC_649|>",
|
| 655 |
+
"<|LOC_650|>",
|
| 656 |
+
"<|LOC_651|>",
|
| 657 |
+
"<|LOC_652|>",
|
| 658 |
+
"<|LOC_653|>",
|
| 659 |
+
"<|LOC_654|>",
|
| 660 |
+
"<|LOC_655|>",
|
| 661 |
+
"<|LOC_656|>",
|
| 662 |
+
"<|LOC_657|>",
|
| 663 |
+
"<|LOC_658|>",
|
| 664 |
+
"<|LOC_659|>",
|
| 665 |
+
"<|LOC_660|>",
|
| 666 |
+
"<|LOC_661|>",
|
| 667 |
+
"<|LOC_662|>",
|
| 668 |
+
"<|LOC_663|>",
|
| 669 |
+
"<|LOC_664|>",
|
| 670 |
+
"<|LOC_665|>",
|
| 671 |
+
"<|LOC_666|>",
|
| 672 |
+
"<|LOC_667|>",
|
| 673 |
+
"<|LOC_668|>",
|
| 674 |
+
"<|LOC_669|>",
|
| 675 |
+
"<|LOC_670|>",
|
| 676 |
+
"<|LOC_671|>",
|
| 677 |
+
"<|LOC_672|>",
|
| 678 |
+
"<|LOC_673|>",
|
| 679 |
+
"<|LOC_674|>",
|
| 680 |
+
"<|LOC_675|>",
|
| 681 |
+
"<|LOC_676|>",
|
| 682 |
+
"<|LOC_677|>",
|
| 683 |
+
"<|LOC_678|>",
|
| 684 |
+
"<|LOC_679|>",
|
| 685 |
+
"<|LOC_680|>",
|
| 686 |
+
"<|LOC_681|>",
|
| 687 |
+
"<|LOC_682|>",
|
| 688 |
+
"<|LOC_683|>",
|
| 689 |
+
"<|LOC_684|>",
|
| 690 |
+
"<|LOC_685|>",
|
| 691 |
+
"<|LOC_686|>",
|
| 692 |
+
"<|LOC_687|>",
|
| 693 |
+
"<|LOC_688|>",
|
| 694 |
+
"<|LOC_689|>",
|
| 695 |
+
"<|LOC_690|>",
|
| 696 |
+
"<|LOC_691|>",
|
| 697 |
+
"<|LOC_692|>",
|
| 698 |
+
"<|LOC_693|>",
|
| 699 |
+
"<|LOC_694|>",
|
| 700 |
+
"<|LOC_695|>",
|
| 701 |
+
"<|LOC_696|>",
|
| 702 |
+
"<|LOC_697|>",
|
| 703 |
+
"<|LOC_698|>",
|
| 704 |
+
"<|LOC_699|>",
|
| 705 |
+
"<|LOC_700|>",
|
| 706 |
+
"<|LOC_701|>",
|
| 707 |
+
"<|LOC_702|>",
|
| 708 |
+
"<|LOC_703|>",
|
| 709 |
+
"<|LOC_704|>",
|
| 710 |
+
"<|LOC_705|>",
|
| 711 |
+
"<|LOC_706|>",
|
| 712 |
+
"<|LOC_707|>",
|
| 713 |
+
"<|LOC_708|>",
|
| 714 |
+
"<|LOC_709|>",
|
| 715 |
+
"<|LOC_710|>",
|
| 716 |
+
"<|LOC_711|>",
|
| 717 |
+
"<|LOC_712|>",
|
| 718 |
+
"<|LOC_713|>",
|
| 719 |
+
"<|LOC_714|>",
|
| 720 |
+
"<|LOC_715|>",
|
| 721 |
+
"<|LOC_716|>",
|
| 722 |
+
"<|LOC_717|>",
|
| 723 |
+
"<|LOC_718|>",
|
| 724 |
+
"<|LOC_719|>",
|
| 725 |
+
"<|LOC_720|>",
|
| 726 |
+
"<|LOC_721|>",
|
| 727 |
+
"<|LOC_722|>",
|
| 728 |
+
"<|LOC_723|>",
|
| 729 |
+
"<|LOC_724|>",
|
| 730 |
+
"<|LOC_725|>",
|
| 731 |
+
"<|LOC_726|>",
|
| 732 |
+
"<|LOC_727|>",
|
| 733 |
+
"<|LOC_728|>",
|
| 734 |
+
"<|LOC_729|>",
|
| 735 |
+
"<|LOC_730|>",
|
| 736 |
+
"<|LOC_731|>",
|
| 737 |
+
"<|LOC_732|>",
|
| 738 |
+
"<|LOC_733|>",
|
| 739 |
+
"<|LOC_734|>",
|
| 740 |
+
"<|LOC_735|>",
|
| 741 |
+
"<|LOC_736|>",
|
| 742 |
+
"<|LOC_737|>",
|
| 743 |
+
"<|LOC_738|>",
|
| 744 |
+
"<|LOC_739|>",
|
| 745 |
+
"<|LOC_740|>",
|
| 746 |
+
"<|LOC_741|>",
|
| 747 |
+
"<|LOC_742|>",
|
| 748 |
+
"<|LOC_743|>",
|
| 749 |
+
"<|LOC_744|>",
|
| 750 |
+
"<|LOC_745|>",
|
| 751 |
+
"<|LOC_746|>",
|
| 752 |
+
"<|LOC_747|>",
|
| 753 |
+
"<|LOC_748|>",
|
| 754 |
+
"<|LOC_749|>",
|
| 755 |
+
"<|LOC_750|>",
|
| 756 |
+
"<|LOC_751|>",
|
| 757 |
+
"<|LOC_752|>",
|
| 758 |
+
"<|LOC_753|>",
|
| 759 |
+
"<|LOC_754|>",
|
| 760 |
+
"<|LOC_755|>",
|
| 761 |
+
"<|LOC_756|>",
|
| 762 |
+
"<|LOC_757|>",
|
| 763 |
+
"<|LOC_758|>",
|
| 764 |
+
"<|LOC_759|>",
|
| 765 |
+
"<|LOC_760|>",
|
| 766 |
+
"<|LOC_761|>",
|
| 767 |
+
"<|LOC_762|>",
|
| 768 |
+
"<|LOC_763|>",
|
| 769 |
+
"<|LOC_764|>",
|
| 770 |
+
"<|LOC_765|>",
|
| 771 |
+
"<|LOC_766|>",
|
| 772 |
+
"<|LOC_767|>",
|
| 773 |
+
"<|LOC_768|>",
|
| 774 |
+
"<|LOC_769|>",
|
| 775 |
+
"<|LOC_770|>",
|
| 776 |
+
"<|LOC_771|>",
|
| 777 |
+
"<|LOC_772|>",
|
| 778 |
+
"<|LOC_773|>",
|
| 779 |
+
"<|LOC_774|>",
|
| 780 |
+
"<|LOC_775|>",
|
| 781 |
+
"<|LOC_776|>",
|
| 782 |
+
"<|LOC_777|>",
|
| 783 |
+
"<|LOC_778|>",
|
| 784 |
+
"<|LOC_779|>",
|
| 785 |
+
"<|LOC_780|>",
|
| 786 |
+
"<|LOC_781|>",
|
| 787 |
+
"<|LOC_782|>",
|
| 788 |
+
"<|LOC_783|>",
|
| 789 |
+
"<|LOC_784|>",
|
| 790 |
+
"<|LOC_785|>",
|
| 791 |
+
"<|LOC_786|>",
|
| 792 |
+
"<|LOC_787|>",
|
| 793 |
+
"<|LOC_788|>",
|
| 794 |
+
"<|LOC_789|>",
|
| 795 |
+
"<|LOC_790|>",
|
| 796 |
+
"<|LOC_791|>",
|
| 797 |
+
"<|LOC_792|>",
|
| 798 |
+
"<|LOC_793|>",
|
| 799 |
+
"<|LOC_794|>",
|
| 800 |
+
"<|LOC_795|>",
|
| 801 |
+
"<|LOC_796|>",
|
| 802 |
+
"<|LOC_797|>",
|
| 803 |
+
"<|LOC_798|>",
|
| 804 |
+
"<|LOC_799|>",
|
| 805 |
+
"<|LOC_800|>",
|
| 806 |
+
"<|LOC_801|>",
|
| 807 |
+
"<|LOC_802|>",
|
| 808 |
+
"<|LOC_803|>",
|
| 809 |
+
"<|LOC_804|>",
|
| 810 |
+
"<|LOC_805|>",
|
| 811 |
+
"<|LOC_806|>",
|
| 812 |
+
"<|LOC_807|>",
|
| 813 |
+
"<|LOC_808|>",
|
| 814 |
+
"<|LOC_809|>",
|
| 815 |
+
"<|LOC_810|>",
|
| 816 |
+
"<|LOC_811|>",
|
| 817 |
+
"<|LOC_812|>",
|
| 818 |
+
"<|LOC_813|>",
|
| 819 |
+
"<|LOC_814|>",
|
| 820 |
+
"<|LOC_815|>",
|
| 821 |
+
"<|LOC_816|>",
|
| 822 |
+
"<|LOC_817|>",
|
| 823 |
+
"<|LOC_818|>",
|
| 824 |
+
"<|LOC_819|>",
|
| 825 |
+
"<|LOC_820|>",
|
| 826 |
+
"<|LOC_821|>",
|
| 827 |
+
"<|LOC_822|>",
|
| 828 |
+
"<|LOC_823|>",
|
| 829 |
+
"<|LOC_824|>",
|
| 830 |
+
"<|LOC_825|>",
|
| 831 |
+
"<|LOC_826|>",
|
| 832 |
+
"<|LOC_827|>",
|
| 833 |
+
"<|LOC_828|>",
|
| 834 |
+
"<|LOC_829|>",
|
| 835 |
+
"<|LOC_830|>",
|
| 836 |
+
"<|LOC_831|>",
|
| 837 |
+
"<|LOC_832|>",
|
| 838 |
+
"<|LOC_833|>",
|
| 839 |
+
"<|LOC_834|>",
|
| 840 |
+
"<|LOC_835|>",
|
| 841 |
+
"<|LOC_836|>",
|
| 842 |
+
"<|LOC_837|>",
|
| 843 |
+
"<|LOC_838|>",
|
| 844 |
+
"<|LOC_839|>",
|
| 845 |
+
"<|LOC_840|>",
|
| 846 |
+
"<|LOC_841|>",
|
| 847 |
+
"<|LOC_842|>",
|
| 848 |
+
"<|LOC_843|>",
|
| 849 |
+
"<|LOC_844|>",
|
| 850 |
+
"<|LOC_845|>",
|
| 851 |
+
"<|LOC_846|>",
|
| 852 |
+
"<|LOC_847|>",
|
| 853 |
+
"<|LOC_848|>",
|
| 854 |
+
"<|LOC_849|>",
|
| 855 |
+
"<|LOC_850|>",
|
| 856 |
+
"<|LOC_851|>",
|
| 857 |
+
"<|LOC_852|>",
|
| 858 |
+
"<|LOC_853|>",
|
| 859 |
+
"<|LOC_854|>",
|
| 860 |
+
"<|LOC_855|>",
|
| 861 |
+
"<|LOC_856|>",
|
| 862 |
+
"<|LOC_857|>",
|
| 863 |
+
"<|LOC_858|>",
|
| 864 |
+
"<|LOC_859|>",
|
| 865 |
+
"<|LOC_860|>",
|
| 866 |
+
"<|LOC_861|>",
|
| 867 |
+
"<|LOC_862|>",
|
| 868 |
+
"<|LOC_863|>",
|
| 869 |
+
"<|LOC_864|>",
|
| 870 |
+
"<|LOC_865|>",
|
| 871 |
+
"<|LOC_866|>",
|
| 872 |
+
"<|LOC_867|>",
|
| 873 |
+
"<|LOC_868|>",
|
| 874 |
+
"<|LOC_869|>",
|
| 875 |
+
"<|LOC_870|>",
|
| 876 |
+
"<|LOC_871|>",
|
| 877 |
+
"<|LOC_872|>",
|
| 878 |
+
"<|LOC_873|>",
|
| 879 |
+
"<|LOC_874|>",
|
| 880 |
+
"<|LOC_875|>",
|
| 881 |
+
"<|LOC_876|>",
|
| 882 |
+
"<|LOC_877|>",
|
| 883 |
+
"<|LOC_878|>",
|
| 884 |
+
"<|LOC_879|>",
|
| 885 |
+
"<|LOC_880|>",
|
| 886 |
+
"<|LOC_881|>",
|
| 887 |
+
"<|LOC_882|>",
|
| 888 |
+
"<|LOC_883|>",
|
| 889 |
+
"<|LOC_884|>",
|
| 890 |
+
"<|LOC_885|>",
|
| 891 |
+
"<|LOC_886|>",
|
| 892 |
+
"<|LOC_887|>",
|
| 893 |
+
"<|LOC_888|>",
|
| 894 |
+
"<|LOC_889|>",
|
| 895 |
+
"<|LOC_890|>",
|
| 896 |
+
"<|LOC_891|>",
|
| 897 |
+
"<|LOC_892|>",
|
| 898 |
+
"<|LOC_893|>",
|
| 899 |
+
"<|LOC_894|>",
|
| 900 |
+
"<|LOC_895|>",
|
| 901 |
+
"<|LOC_896|>",
|
| 902 |
+
"<|LOC_897|>",
|
| 903 |
+
"<|LOC_898|>",
|
| 904 |
+
"<|LOC_899|>",
|
| 905 |
+
"<|LOC_900|>",
|
| 906 |
+
"<|LOC_901|>",
|
| 907 |
+
"<|LOC_902|>",
|
| 908 |
+
"<|LOC_903|>",
|
| 909 |
+
"<|LOC_904|>",
|
| 910 |
+
"<|LOC_905|>",
|
| 911 |
+
"<|LOC_906|>",
|
| 912 |
+
"<|LOC_907|>",
|
| 913 |
+
"<|LOC_908|>",
|
| 914 |
+
"<|LOC_909|>",
|
| 915 |
+
"<|LOC_910|>",
|
| 916 |
+
"<|LOC_911|>",
|
| 917 |
+
"<|LOC_912|>",
|
| 918 |
+
"<|LOC_913|>",
|
| 919 |
+
"<|LOC_914|>",
|
| 920 |
+
"<|LOC_915|>",
|
| 921 |
+
"<|LOC_916|>",
|
| 922 |
+
"<|LOC_917|>",
|
| 923 |
+
"<|LOC_918|>",
|
| 924 |
+
"<|LOC_919|>",
|
| 925 |
+
"<|LOC_920|>",
|
| 926 |
+
"<|LOC_921|>",
|
| 927 |
+
"<|LOC_922|>",
|
| 928 |
+
"<|LOC_923|>",
|
| 929 |
+
"<|LOC_924|>",
|
| 930 |
+
"<|LOC_925|>",
|
| 931 |
+
"<|LOC_926|>",
|
| 932 |
+
"<|LOC_927|>",
|
| 933 |
+
"<|LOC_928|>",
|
| 934 |
+
"<|LOC_929|>",
|
| 935 |
+
"<|LOC_930|>",
|
| 936 |
+
"<|LOC_931|>",
|
| 937 |
+
"<|LOC_932|>",
|
| 938 |
+
"<|LOC_933|>",
|
| 939 |
+
"<|LOC_934|>",
|
| 940 |
+
"<|LOC_935|>",
|
| 941 |
+
"<|LOC_936|>",
|
| 942 |
+
"<|LOC_937|>",
|
| 943 |
+
"<|LOC_938|>",
|
| 944 |
+
"<|LOC_939|>",
|
| 945 |
+
"<|LOC_940|>",
|
| 946 |
+
"<|LOC_941|>",
|
| 947 |
+
"<|LOC_942|>",
|
| 948 |
+
"<|LOC_943|>",
|
| 949 |
+
"<|LOC_944|>",
|
| 950 |
+
"<|LOC_945|>",
|
| 951 |
+
"<|LOC_946|>",
|
| 952 |
+
"<|LOC_947|>",
|
| 953 |
+
"<|LOC_948|>",
|
| 954 |
+
"<|LOC_949|>",
|
| 955 |
+
"<|LOC_950|>",
|
| 956 |
+
"<|LOC_951|>",
|
| 957 |
+
"<|LOC_952|>",
|
| 958 |
+
"<|LOC_953|>",
|
| 959 |
+
"<|LOC_954|>",
|
| 960 |
+
"<|LOC_955|>",
|
| 961 |
+
"<|LOC_956|>",
|
| 962 |
+
"<|LOC_957|>",
|
| 963 |
+
"<|LOC_958|>",
|
| 964 |
+
"<|LOC_959|>",
|
| 965 |
+
"<|LOC_960|>",
|
| 966 |
+
"<|LOC_961|>",
|
| 967 |
+
"<|LOC_962|>",
|
| 968 |
+
"<|LOC_963|>",
|
| 969 |
+
"<|LOC_964|>",
|
| 970 |
+
"<|LOC_965|>",
|
| 971 |
+
"<|LOC_966|>",
|
| 972 |
+
"<|LOC_967|>",
|
| 973 |
+
"<|LOC_968|>",
|
| 974 |
+
"<|LOC_969|>",
|
| 975 |
+
"<|LOC_970|>",
|
| 976 |
+
"<|LOC_971|>",
|
| 977 |
+
"<|LOC_972|>",
|
| 978 |
+
"<|LOC_973|>",
|
| 979 |
+
"<|LOC_974|>",
|
| 980 |
+
"<|LOC_975|>",
|
| 981 |
+
"<|LOC_976|>",
|
| 982 |
+
"<|LOC_977|>",
|
| 983 |
+
"<|LOC_978|>",
|
| 984 |
+
"<|LOC_979|>",
|
| 985 |
+
"<|LOC_980|>",
|
| 986 |
+
"<|LOC_981|>",
|
| 987 |
+
"<|LOC_982|>",
|
| 988 |
+
"<|LOC_983|>",
|
| 989 |
+
"<|LOC_984|>",
|
| 990 |
+
"<|LOC_985|>",
|
| 991 |
+
"<|LOC_986|>",
|
| 992 |
+
"<|LOC_987|>",
|
| 993 |
+
"<|LOC_988|>",
|
| 994 |
+
"<|LOC_989|>",
|
| 995 |
+
"<|LOC_990|>",
|
| 996 |
+
"<|LOC_991|>",
|
| 997 |
+
"<|LOC_992|>",
|
| 998 |
+
"<|LOC_993|>",
|
| 999 |
+
"<|LOC_994|>",
|
| 1000 |
+
"<|LOC_995|>",
|
| 1001 |
+
"<|LOC_996|>",
|
| 1002 |
+
"<|LOC_997|>",
|
| 1003 |
+
"<|LOC_998|>",
|
| 1004 |
+
"<|LOC_999|>",
|
| 1005 |
+
"<|LOC_1000|>",
|
| 1006 |
+
"<|LOC_BEGIN|>",
|
| 1007 |
+
"<|LOC_END|>",
|
| 1008 |
+
"<|LOC_SEP|>",
|
| 1009 |
+
"<|CROP_COL_SEP|>",
|
| 1010 |
+
"<|CROP_ROW_SEP|>",
|
| 1011 |
+
"<|IMAGE_SEP|>"
|
| 1012 |
+
],
|
| 1013 |
+
"bos_token": "<s>",
|
| 1014 |
+
"cls_token": "<|begin_of_sentence|>",
|
| 1015 |
+
"eos_token": "</s>",
|
| 1016 |
+
"mask_token": "<mask:1>",
|
| 1017 |
+
"pad_token": "<unk>",
|
| 1018 |
+
"sep_token": "<|end_of_sentence|>",
|
| 1019 |
+
"unk_token": "<unk>"
|
| 1020 |
+
}
|
tokenization_ernie4_5.py
ADDED
|
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2025 Baidu, Inc. All Rights Reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import os
|
| 16 |
+
from shutil import copyfile
|
| 17 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 18 |
+
import torch
|
| 19 |
+
import numpy as np
|
| 20 |
+
import sentencepiece as spm
|
| 21 |
+
|
| 22 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 23 |
+
from transformers.tokenization_utils_base import (
|
| 24 |
+
PaddingStrategy,
|
| 25 |
+
)
|
| 26 |
+
from transformers.utils import logging
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Ernie4_5_Tokenizer(PreTrainedTokenizer):
|
| 33 |
+
|
| 34 |
+
vocab_files_names = {
|
| 35 |
+
"vocab_file": "tokenizer.model",
|
| 36 |
+
}
|
| 37 |
+
# Model input names expected by the tokenizer
|
| 38 |
+
model_input_names = ["input_ids", "position_ids", "attention_mask", "labels"]
|
| 39 |
+
# Padding side (where to add padding tokens)
|
| 40 |
+
padding_side = "right"
|
| 41 |
+
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
vocab_file,
|
| 45 |
+
bos_token="<s>",
|
| 46 |
+
cls_token="<cls>",
|
| 47 |
+
eos_token="</s>",
|
| 48 |
+
mask_token="<mask:0>",
|
| 49 |
+
pad_token="<pad>",
|
| 50 |
+
sep_token="<sep>",
|
| 51 |
+
unk_token="<unk>",
|
| 52 |
+
additional_special_tokens=None,
|
| 53 |
+
split_special_tokens=False,
|
| 54 |
+
tokenizer_alpha=None,
|
| 55 |
+
**kwargs,
|
| 56 |
+
):
|
| 57 |
+
"""
|
| 58 |
+
Initialize the ERNIE tokenizer.
|
| 59 |
+
|
| 60 |
+
Args:
|
| 61 |
+
vocab_file (str): Path to the SentencePiece model file.
|
| 62 |
+
bos_token (str, optional): Beginning of sentence token. Defaults to "<s>".
|
| 63 |
+
cls_token (str, optional): Classification token. Defaults to "<cls>".
|
| 64 |
+
eos_token (str, optional): End of sentence token. Defaults to "</s>".
|
| 65 |
+
mask_token (str, optional): Mask token. Defaults to "<mask:0>".
|
| 66 |
+
pad_token (str, optional): Padding token. Defaults to "<pad>".
|
| 67 |
+
sep_token (str, optional): Separator token. Defaults to "<sep>".
|
| 68 |
+
unk_token (str, optional): Unknown token. Defaults to "<unk>".
|
| 69 |
+
additional_special_tokens (List[str], optional): Additional special tokens.
|
| 70 |
+
Defaults to ["<mask:1>", "<mask:7>"].
|
| 71 |
+
split_special_tokens (bool, optional): Whether to split special tokens. Defaults to False.
|
| 72 |
+
tokenizer_alpha (float, optional): Alpha parameter for SentencePiece sampling.
|
| 73 |
+
**kwargs: Additional keyword arguments passed to the parent class.
|
| 74 |
+
"""
|
| 75 |
+
|
| 76 |
+
self.vocab_file = vocab_file
|
| 77 |
+
self.sp_model = spm.SentencePieceProcessor()
|
| 78 |
+
self.sp_model.Load(vocab_file)
|
| 79 |
+
self.tokenizer_alpha = tokenizer_alpha
|
| 80 |
+
|
| 81 |
+
if additional_special_tokens is None:
|
| 82 |
+
additional_special_tokens = ["<mask:1>", "<mask:7>"]
|
| 83 |
+
super().__init__(
|
| 84 |
+
bos_token=bos_token,
|
| 85 |
+
cls_token=cls_token,
|
| 86 |
+
eos_token=eos_token,
|
| 87 |
+
mask_token=mask_token,
|
| 88 |
+
pad_token=pad_token,
|
| 89 |
+
sep_token=sep_token,
|
| 90 |
+
unk_token=unk_token,
|
| 91 |
+
additional_special_tokens=additional_special_tokens,
|
| 92 |
+
split_special_tokens=split_special_tokens,
|
| 93 |
+
**kwargs,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
@property
|
| 97 |
+
def vocab_size(self):
|
| 98 |
+
"""Returns the size of the vocabulary.
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
int: The number of tokens in the vocabulary.
|
| 102 |
+
"""
|
| 103 |
+
return self.sp_model.vocab_size()
|
| 104 |
+
|
| 105 |
+
def get_vocab(self):
|
| 106 |
+
"""Get the vocabulary as a dictionary mapping tokens to their IDs.
|
| 107 |
+
|
| 108 |
+
Returns:
|
| 109 |
+
dict: A dictionary mapping tokens to their corresponding IDs.
|
| 110 |
+
"""
|
| 111 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 112 |
+
vocab.update(self.added_tokens_encoder)
|
| 113 |
+
return vocab
|
| 114 |
+
|
| 115 |
+
def _tokenize(self, text):
|
| 116 |
+
"""Tokenize text using SentencePiece.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
text (str): The text to tokenize.
|
| 120 |
+
|
| 121 |
+
Returns:
|
| 122 |
+
list: A list of tokens.
|
| 123 |
+
"""
|
| 124 |
+
if self.tokenizer_alpha is not None:
|
| 125 |
+
return self.sp_model.encode_as_pieces(
|
| 126 |
+
text,
|
| 127 |
+
enable_sampling=True,
|
| 128 |
+
nbest_size=-1,
|
| 129 |
+
alpha=self.tokenizer_alpha,
|
| 130 |
+
)
|
| 131 |
+
else:
|
| 132 |
+
return self.sp_model.encode_as_pieces(text)
|
| 133 |
+
|
| 134 |
+
def _convert_token_to_id(self, token):
|
| 135 |
+
"""Convert a token (str) to an ID using the vocabulary.
|
| 136 |
+
|
| 137 |
+
Args:
|
| 138 |
+
token (str): The token to convert.
|
| 139 |
+
|
| 140 |
+
Returns:
|
| 141 |
+
int: The corresponding token ID.
|
| 142 |
+
"""
|
| 143 |
+
return self.sp_model.piece_to_id(token)
|
| 144 |
+
|
| 145 |
+
def _convert_id_to_token(self, id):
|
| 146 |
+
"""Convert an ID to a token (str) using the vocabulary.
|
| 147 |
+
|
| 148 |
+
Args:
|
| 149 |
+
id (int): The token ID to convert.
|
| 150 |
+
|
| 151 |
+
Returns:
|
| 152 |
+
str: The corresponding token.
|
| 153 |
+
"""
|
| 154 |
+
if id >= self.vocab_size:
|
| 155 |
+
return self.unk_token
|
| 156 |
+
else:
|
| 157 |
+
return self.sp_model.id_to_piece(id)
|
| 158 |
+
|
| 159 |
+
def convert_tokens_to_string(self, tokens):
|
| 160 |
+
"""Convert a sequence of tokens back to a single string.
|
| 161 |
+
|
| 162 |
+
Args:
|
| 163 |
+
tokens (List[str]): A list of tokens to convert.
|
| 164 |
+
|
| 165 |
+
Returns:
|
| 166 |
+
str: The reconstructed string.
|
| 167 |
+
"""
|
| 168 |
+
current_sub_tokens = []
|
| 169 |
+
out_string = ""
|
| 170 |
+
prev_is_special = False
|
| 171 |
+
for token in tokens:
|
| 172 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
| 173 |
+
if token in self.all_special_tokens:
|
| 174 |
+
if not prev_is_special:
|
| 175 |
+
out_string += " "
|
| 176 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 177 |
+
prev_is_special = True
|
| 178 |
+
current_sub_tokens = []
|
| 179 |
+
else:
|
| 180 |
+
current_sub_tokens.append(token)
|
| 181 |
+
prev_is_special = False
|
| 182 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
| 183 |
+
return out_string
|
| 184 |
+
|
| 185 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 186 |
+
"""Build model inputs by adding special tokens to sequences.
|
| 187 |
+
|
| 188 |
+
Args:
|
| 189 |
+
token_ids_0 (List[int]): List of token IDs for the first sequence.
|
| 190 |
+
token_ids_1 (List[int], optional): List of token IDs for the second sequence.
|
| 191 |
+
|
| 192 |
+
Returns:
|
| 193 |
+
List[int]: List of token IDs with special tokens added.
|
| 194 |
+
"""
|
| 195 |
+
output = token_ids_0
|
| 196 |
+
last_cls_index = -1
|
| 197 |
+
last_sep_index = -1
|
| 198 |
+
if self.cls_token_id in output:
|
| 199 |
+
last_cls_index = len(output) - output[::-1].index(self.cls_token_id) - 1
|
| 200 |
+
if self.sep_token_id in output:
|
| 201 |
+
last_sep_index = len(output) - output[::-1].index(self.sep_token_id) - 1
|
| 202 |
+
|
| 203 |
+
if last_cls_index > last_sep_index:
|
| 204 |
+
next_token_id = self.sep_token_id
|
| 205 |
+
elif last_sep_index > last_cls_index:
|
| 206 |
+
next_token_id = self.cls_token_id
|
| 207 |
+
else:
|
| 208 |
+
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
| 209 |
+
next_token_id = self.cls_token_id
|
| 210 |
+
|
| 211 |
+
output = [self.bos_token_id] + output
|
| 212 |
+
# Assume no markup in text if token_ids_1 is given.
|
| 213 |
+
if token_ids_1 is not None:
|
| 214 |
+
output = output + token_ids_1 + [next_token_id]
|
| 215 |
+
return output
|
| 216 |
+
|
| 217 |
+
def get_special_tokens_mask(
|
| 218 |
+
self, token_ids_0, token_ids_1=None, already_has_special_tokens=False
|
| 219 |
+
):
|
| 220 |
+
"""Get a mask showing which tokens are special tokens.
|
| 221 |
+
|
| 222 |
+
Args:
|
| 223 |
+
token_ids_0 (List[int]): List of token IDs for the first sequence.
|
| 224 |
+
token_ids_1 (List[int], optional): List of token IDs for the second sequence.
|
| 225 |
+
already_has_special_tokens (bool): Whether the tokens already include special tokens.
|
| 226 |
+
|
| 227 |
+
Returns:
|
| 228 |
+
List[int]: A mask where 1 indicates special tokens and 0 indicates regular tokens.
|
| 229 |
+
"""
|
| 230 |
+
if already_has_special_tokens:
|
| 231 |
+
return super().get_special_tokens_mask(
|
| 232 |
+
token_ids_0, token_ids_1, already_has_special_tokens=True
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# [bos_token, cls_token, tokens_0, sep_token]
|
| 236 |
+
if token_ids_1 is None:
|
| 237 |
+
return [1, 1] + ([0] * len(token_ids_0)) + [1]
|
| 238 |
+
# [bos_token, cls_token, tokens_0, sep_token, tokens_1, cls_token]
|
| 239 |
+
return [1, 1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
| 240 |
+
|
| 241 |
+
def save_vocabulary(
|
| 242 |
+
self, save_directory, filename_prefix: Optional[str] = None
|
| 243 |
+
) -> Tuple[str]:
|
| 244 |
+
"""
|
| 245 |
+
Save the vocabulary and special tokens file to a directory.
|
| 246 |
+
|
| 247 |
+
Args:
|
| 248 |
+
save_directory (str): The directory in which to save the vocabulary.
|
| 249 |
+
filename_prefix (Optional[str]): Optional prefix for the saved filename.
|
| 250 |
+
|
| 251 |
+
Returns:
|
| 252 |
+
Tuple[str]: Paths to the files saved.
|
| 253 |
+
|
| 254 |
+
Raises:
|
| 255 |
+
ValueError: If the save_directory is not a valid directory.
|
| 256 |
+
"""
|
| 257 |
+
if not os.path.isdir(save_directory):
|
| 258 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 259 |
+
return
|
| 260 |
+
out_vocab_file = os.path.join(
|
| 261 |
+
save_directory,
|
| 262 |
+
(filename_prefix + "-" if filename_prefix else "")
|
| 263 |
+
+ self.vocab_files_names["vocab_file"],
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
| 267 |
+
out_vocab_file
|
| 268 |
+
) and os.path.isfile(self.vocab_file):
|
| 269 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 270 |
+
elif not os.path.isfile(self.vocab_file):
|
| 271 |
+
with open(out_vocab_file, "wb") as fi:
|
| 272 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 273 |
+
fi.write(content_spiece_model)
|
| 274 |
+
|
| 275 |
+
return (out_vocab_file,)
|
| 276 |
+
|
| 277 |
+
def _pad(
|
| 278 |
+
self,
|
| 279 |
+
encoded_inputs: Union[Dict],
|
| 280 |
+
max_length: Optional[int] = None,
|
| 281 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
| 282 |
+
pad_to_multiple_of: Optional[int] = None,
|
| 283 |
+
padding_side: Optional[str] = None,
|
| 284 |
+
return_attention_mask: Optional[bool] = None,
|
| 285 |
+
) -> dict:
|
| 286 |
+
"""
|
| 287 |
+
Pad encoded inputs according to specified strategy.
|
| 288 |
+
|
| 289 |
+
Args:
|
| 290 |
+
encoded_inputs (Union[Dict]): Dictionary of encoded inputs.
|
| 291 |
+
max_length (Optional[int]): Maximum length to pad to.
|
| 292 |
+
padding_strategy (PaddingStrategy): Strategy for padding.
|
| 293 |
+
pad_to_multiple_of (Optional[int]): Pad to a multiple of this value.
|
| 294 |
+
return_attention_mask (Optional[bool]): Whether to return attention mask.
|
| 295 |
+
|
| 296 |
+
Returns:
|
| 297 |
+
dict: Dictionary with padded inputs and optional attention mask.
|
| 298 |
+
|
| 299 |
+
Raises:
|
| 300 |
+
ValueError: If attention_mask has unexpected type or invalid padding strategy.
|
| 301 |
+
"""
|
| 302 |
+
if return_attention_mask is None:
|
| 303 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
| 304 |
+
if return_attention_mask:
|
| 305 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
| 306 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
| 307 |
+
max_length = len(required_input)
|
| 308 |
+
if (
|
| 309 |
+
max_length is not None
|
| 310 |
+
and pad_to_multiple_of is not None
|
| 311 |
+
and (max_length % pad_to_multiple_of != 0)
|
| 312 |
+
):
|
| 313 |
+
max_length = (
|
| 314 |
+
(max_length // pad_to_multiple_of) + 1
|
| 315 |
+
) * pad_to_multiple_of
|
| 316 |
+
needs_to_be_padded = (
|
| 317 |
+
padding_strategy != PaddingStrategy.DO_NOT_PAD
|
| 318 |
+
and len(required_input) != max_length
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
if (
|
| 322 |
+
"attention_mask" in encoded_inputs
|
| 323 |
+
and encoded_inputs["attention_mask"] is not None
|
| 324 |
+
):
|
| 325 |
+
attention_mask = encoded_inputs.pop("attention_mask")
|
| 326 |
+
if isinstance(attention_mask, torch.Tensor):
|
| 327 |
+
attention_mask = attention_mask.numpy()
|
| 328 |
+
elif isinstance(attention_mask, list):
|
| 329 |
+
attention_mask = np.array(attention_mask)
|
| 330 |
+
elif not isinstance(attention_mask, np.ndarray):
|
| 331 |
+
raise ValueError(
|
| 332 |
+
f"Unexpected type {type(attention_mask)} of attention_mask, "
|
| 333 |
+
)
|
| 334 |
+
else:
|
| 335 |
+
# Create default attention mask if none provided
|
| 336 |
+
attention_mask = np.tril(
|
| 337 |
+
np.ones((len(required_input), len(required_input)), dtype=np.int64)
|
| 338 |
+
)
|
| 339 |
+
attention_mask = np.expand_dims(attention_mask, axis=0)
|
| 340 |
+
|
| 341 |
+
if needs_to_be_padded:
|
| 342 |
+
difference = max_length - len(required_input)
|
| 343 |
+
if self.padding_side == "right":
|
| 344 |
+
if attention_mask.ndim == 1:
|
| 345 |
+
pad_width = [(0, difference)]
|
| 346 |
+
else:
|
| 347 |
+
pad_width = [(0, 0), (0, difference), (0, difference)]
|
| 348 |
+
elif self.padding_side == "left":
|
| 349 |
+
if attention_mask.ndim == 1:
|
| 350 |
+
pad_width = [(difference, 0)]
|
| 351 |
+
else:
|
| 352 |
+
pad_width = [(0, 0), (difference, 0), (difference, 0)]
|
| 353 |
+
else:
|
| 354 |
+
raise ValueError(
|
| 355 |
+
"Invalid padding strategy:" + str(self.padding_side)
|
| 356 |
+
)
|
| 357 |
+
attention_mask = np.pad(
|
| 358 |
+
attention_mask,
|
| 359 |
+
pad_width=pad_width,
|
| 360 |
+
mode="constant",
|
| 361 |
+
constant_values=0,
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
encoded_inputs = super()._pad(
|
| 365 |
+
encoded_inputs,
|
| 366 |
+
max_length,
|
| 367 |
+
padding_strategy=padding_strategy,
|
| 368 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
| 369 |
+
return_attention_mask=False,
|
| 370 |
+
)
|
| 371 |
+
if return_attention_mask:
|
| 372 |
+
encoded_inputs["attention_mask"] = attention_mask.tolist()
|
| 373 |
+
return encoded_inputs
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34ef7db83df785924fb83d7b887b6e822a031c56e15cff40aaf9b982988180df
|
| 3 |
+
size 1614363
|
tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|