Upload configuration_magma.py
Browse files- configuration_magma.py +144 -0
configuration_magma.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
"""Magma model configuration"""
|
| 21 |
+
|
| 22 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 23 |
+
from transformers.utils import logging
|
| 24 |
+
from transformers.models.auto import CONFIG_MAPPING
|
| 25 |
+
|
| 26 |
+
logger = logging.get_logger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class MagmaConfig(PretrainedConfig):
|
| 30 |
+
r"""
|
| 31 |
+
This is the configuration class to store the configuration of a [`MagmaModel`]. It is used to instantiate an Magma
|
| 32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 33 |
+
defaults will yield a similar configuration to that of the Magma-7B.
|
| 34 |
+
|
| 35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 36 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 41 |
+
Vocabulary size of the Magma model. Defines the number of different tokens that can be represented by the
|
| 42 |
+
`inputs_ids` passed when calling [`MagmaModel`]
|
| 43 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 44 |
+
Dimension of the hidden representations.
|
| 45 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 46 |
+
Dimension of the MLP representations.
|
| 47 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 48 |
+
Number of hidden layers in the Transformer decoder.
|
| 49 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 50 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 51 |
+
num_key_value_heads (`int`, *optional*):
|
| 52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 58 |
+
`num_attention_heads`.
|
| 59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 60 |
+
The non-linear activation function (function or string) in the decoder.
|
| 61 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 62 |
+
The maximum sequence length that this model might ever be used with. Magma 1 supports up to 2048 tokens,
|
| 63 |
+
Magma 2 up to 4096, CodeMagma up to 16384.
|
| 64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 66 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 67 |
+
The epsilon used by the rms normalization layers.
|
| 68 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 69 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 70 |
+
relevant if `config.is_decoder=True`.
|
| 71 |
+
pad_token_id (`int`, *optional*):
|
| 72 |
+
Padding token id.
|
| 73 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 74 |
+
Beginning of stream token id.
|
| 75 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 76 |
+
End of stream token id.
|
| 77 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 78 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 79 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
|
| 80 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
| 81 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 82 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 83 |
+
Whether to tie weight embeddings
|
| 84 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 85 |
+
The base period of the RoPE embeddings.
|
| 86 |
+
rope_scaling (`Dict`, *optional*):
|
| 87 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 88 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
| 89 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 90 |
+
`max_position_embeddings` to the expected new maximum.
|
| 91 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
| 92 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 93 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 94 |
+
The dropout ratio for the attention probabilities.
|
| 95 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
| 96 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
| 97 |
+
|
| 98 |
+
```python
|
| 99 |
+
>>> from transformers import MagmaModel, MagmaConfig
|
| 100 |
+
|
| 101 |
+
>>> # Initializing a Magma magma-7b style configuration
|
| 102 |
+
>>> configuration = MagmaConfig()
|
| 103 |
+
|
| 104 |
+
>>> # Initializing a model from the magma-7b style configuration
|
| 105 |
+
>>> model = MagmaModel(configuration)
|
| 106 |
+
|
| 107 |
+
>>> # Accessing the model configuration
|
| 108 |
+
>>> configuration = model.config
|
| 109 |
+
```"""
|
| 110 |
+
|
| 111 |
+
model_type = "magma"
|
| 112 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 113 |
+
|
| 114 |
+
def __init__(
|
| 115 |
+
self,
|
| 116 |
+
vision_config=None,
|
| 117 |
+
text_config=None,
|
| 118 |
+
image_token_index=None,
|
| 119 |
+
tie_word_embeddings=False,
|
| 120 |
+
**kwargs,
|
| 121 |
+
):
|
| 122 |
+
self.vision_config = vision_config
|
| 123 |
+
self.image_token_index = image_token_index
|
| 124 |
+
|
| 125 |
+
if isinstance(text_config, dict):
|
| 126 |
+
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
|
| 127 |
+
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
| 128 |
+
elif text_config is None:
|
| 129 |
+
if "model_type" in kwargs:
|
| 130 |
+
text_config = CONFIG_MAPPING[kwargs["model_type"]](**kwargs)
|
| 131 |
+
|
| 132 |
+
if text_config is not None:
|
| 133 |
+
# copy all variables in text_config to self
|
| 134 |
+
for key, value in text_config.__dict__.items():
|
| 135 |
+
if not key.startswith("_") and not key.startswith("__"):
|
| 136 |
+
setattr(self, key, value)
|
| 137 |
+
self.text_config = text_config
|
| 138 |
+
else:
|
| 139 |
+
self.text_config = None
|
| 140 |
+
|
| 141 |
+
super().__init__(
|
| 142 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 143 |
+
**kwargs,
|
| 144 |
+
)
|