File size: 25,586 Bytes
2f393b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
"""
Full definition of a LunarisCodex Language Model, all of it in this single file.
This version is a refactored and simplified Llama-style model, created by adapting
the robust, industry-standard components from the `Instella` (OLMo) architecture
into a clean, minimal, and self-contained structure.
This version has been refactored to include KV Caching for efficient inference.
Architectural Choices:
- Pre-normalization using RMSNorm: Normalizes inputs to each layer rather than outputs,
providing better gradient flow and training stability
- Rotary Positional Embeddings (RoPE): Encodes position information directly into
query/key vectors using rotation matrices in complex space
- SwiGLU as the feed-forward network's activation function: Combines Swish activation
with a gating mechanism for better performance than ReLU
- Grouped-Query Attention (GQA): Reduces memory usage by sharing key/value heads
across multiple query heads while maintaining performance
- Tied input and output embedding weights: Reduces parameters by sharing the token
embedding matrix with the final projection layer
- KV Caching: Stores computed key/value pairs to avoid recomputation during generation
"""
import math
from dataclasses import dataclass
import inspect
from typing import Optional, Tuple, List
import torch
import torch.nn as nn
from torch.nn import functional as F
@dataclass
class LunarisCodexConfig:
"""
Configuration class for the LunarisCodex model.
Args:
d_model: Hidden dimension size (embedding dimension)
n_layers: Number of transformer blocks
n_heads: Number of attention heads for queries
n_kv_heads: Number of key/value heads (for GQA). If equal to n_heads, it's MHA
vocab_size: Size of the vocabulary
multiple_of: Ensures FFN hidden dimension is a multiple of this (for efficiency)
ffn_hidden_multiplier: Multiplier for FFN hidden dimension size
max_seq_len: Maximum sequence length the model can handle
rope_theta: Base frequency for RoPE (10000 is standard)
dropout: Dropout probability for regularization
"""
d_model: int = 768
n_layers: int = 12
n_heads: int = 12
n_kv_heads: int = 12 # For GQA. If n_kv_heads == n_heads, it's MHA.
vocab_size: int = 50257
multiple_of: int = 256 # Make SwiGLU hidden layer size a multiple of this
ffn_hidden_multiplier: float = 4.0
max_seq_len: int = 1024
rope_theta: float = 10000.0
dropout: float = 0.0
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0) -> torch.Tensor:
"""
Precomputes the rotary frequencies in complex number format for RoPE.
RoPE works by rotating query and key vectors in pairs of dimensions using
rotation matrices. In complex space, rotation by angle θ is multiplication
by e^(iθ). We precompute these rotation factors for all positions and
dimension pairs.
Math behind RoPE:
- For each dimension pair (d_i, d_i+1), we define a rotation frequency: 1/theta^(2i/dim)
- At position t, the rotation angle is: t * frequency
- The complex rotation factor is: e^(i * t * frequency) = cos(t*freq) + i*sin(t*freq)
Args:
dim: The head dimension (d_model // n_heads)
end: Maximum sequence length to precompute for
theta: Base frequency (typically 10000)
Returns:
Complex tensor of shape (end, dim//2) containing rotation factors
"""
# Compute rotation frequencies for each dimension pair
# Higher dimensions get lower frequencies (rotate more slowly)
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
# Create position indices
t = torch.arange(end, device=freqs.device, dtype=torch.float32)
# Compute rotation angles: outer product gives us t*freq for all t,freq pairs
freqs = torch.outer(t, freqs) # Shape: (end, dim//2)
# Convert to complex exponentials: e^(i*angle) = cos(angle) + i*sin(angle)
# torch.polar creates complex numbers from magnitude and phase
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis
def apply_rotary_emb(
xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Applies rotary positional embeddings to query and key tensors.
RoPE encodes position by rotating the query and key vectors in pairs of
dimensions. This is done by treating consecutive pairs as complex numbers
and multiplying by the precomputed rotation factors.
Args:
xq: Query tensor of shape (batch, heads, seq_len, head_dim)
xk: Key tensor of shape (batch, heads, seq_len, head_dim)
freqs_cis: Complex rotation factors of shape (seq_len, head_dim//2)
Returns:
Tuple of (rotated_queries, rotated_keys) with same shapes as input
"""
# Reshape last dimension from (head_dim,) to (head_dim//2, 2) and convert to complex
# This treats consecutive pairs of dimensions as complex numbers
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
# Reshape freqs_cis for broadcasting: (seq_len, head_dim//2) -> (1, 1, seq_len, head_dim//2)
freqs_cis = freqs_cis.unsqueeze(0).unsqueeze(0) # (1, 1, T, C/2)
# Apply rotation by complex multiplication
# Each complex number represents a 2D rotation in the corresponding dimension pair
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
# Convert back to original dtype and return
return xq_out.type_as(xq), xk_out.type_as(xk)
class RMSNorm(nn.Module):
"""
Root Mean Square Layer Normalization.
RMSNorm normalizes by the RMS (root mean square) of the input rather than
mean and variance like LayerNorm. This is more stable and efficient.
Formula: RMSNorm(x) = x / sqrt(mean(x²) + eps) * weight
Why upcast to float32: Mixed precision training uses float16 for speed,
but normalization operations need higher precision to avoid numerical
instability. We compute in float32 then cast back.
"""
def __init__(self, dim: int, eps: float = 1e-5):
"""
Args:
dim: Input dimension to normalize
eps: Small constant for numerical stability
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim)) # Learnable scaling parameter
def _norm(self, x: torch.Tensor):
"""
Compute RMS normalization.
RMS = sqrt(mean(x²)) provides a measure of the magnitude of x.
We multiply by the reciprocal (rsqrt) for efficiency.
"""
# Upcast for stability, calculate RMS, and then downcast
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x: torch.Tensor):
"""
Apply RMSNorm with mixed precision support.
The forward pass is stable with mixed-precision training by computing
the normalization in float32 and then casting back to the input dtype.
"""
output_dtype = x.dtype
x = self._norm(x.float()).to(output_dtype)
return x * self.weight
class Attention(nn.Module):
"""
Grouped-Query Attention module with KV Caching.
GQA reduces memory usage by having fewer key/value heads than query heads.
Multiple query heads share the same key/value heads, reducing the KV cache size
while maintaining most of the performance of full multi-head attention.
KV Caching stores computed key/value pairs from previous tokens to avoid
recomputation during autoregressive generation.
"""
def __init__(self, config: LunarisCodexConfig):
"""
Initialize the attention module.
Args:
config: Model configuration containing attention parameters
"""
super().__init__()
assert config.d_model % config.n_heads == 0
self.n_heads = config.n_heads
self.n_kv_heads = config.n_kv_heads
self.head_dim = config.d_model // config.n_heads
# Separate projections for Q, K, V to support different numbers of heads
self.q_proj = nn.Linear(config.d_model, config.n_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.d_model, config.n_kv_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.d_model, config.n_kv_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(config.n_heads * self.head_dim, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout)
def forward(
self,
x: torch.Tensor,
freqs_cis: torch.Tensor,
past_kv: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Forward pass of the attention mechanism.
Args:
x: Input tensor of shape (batch, seq_len, d_model)
freqs_cis: RoPE rotation factors
past_kv: Cached key/value pairs from previous tokens (for generation)
Returns:
Tuple of (attention_output, new_kv_cache)
"""
B, T, C = x.shape # batch size, sequence length, embedding dimensionality
# Project input to queries, keys, and values
q = self.q_proj(x) # (B, T, n_heads * head_dim)
k = self.k_proj(x) # (B, T, n_kv_heads * head_dim)
v = self.v_proj(x) # (B, T, n_kv_heads * head_dim)
# Reshape for multi-head attention: (B, T, n_heads, head_dim) -> (B, n_heads, T, head_dim)
q = q.view(B, T, self.n_heads, self.head_dim).transpose(1, 2)
k = k.view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2)
v = v.view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2)
# Apply rotary positional embeddings to queries and keys
# RoPE encodes position information directly into the attention computation
q, k = apply_rotary_emb(q, k, freqs_cis)
# KV Caching: concatenate current K,V with cached K,V from previous tokens
if past_kv is not None:
past_k, past_v = past_kv
k = torch.cat((past_k, k), dim=-2) # Concatenate along sequence dimension
v = torch.cat((past_v, v), dim=-2)
present_kv = (k, v) # Store updated cache for next iteration
# Grouped-Query Attention: repeat K and V heads to match number of Q heads
# This allows multiple query heads to share the same key/value heads
if self.n_kv_heads < self.n_heads:
n_repeats = self.n_heads // self.n_kv_heads
k = k.repeat_interleave(n_repeats, dim=1) # Repeat along head dimension
v = v.repeat_interleave(n_repeats, dim=1)
# Use PyTorch's optimized scaled dot-product attention
# is_causal=True applies causal masking (prevents looking at future tokens)
# Only needed during prefill (when past_kv is None), not during generation
is_causal = past_kv is None
y = F.scaled_dot_product_attention(q, k, v, is_causal=is_causal)
# Reshape back to (B, T, d_model) and apply output projection
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.dropout(self.o_proj(y))
return y, present_kv
class FeedForward(nn.Module):
"""
SwiGLU Feed-Forward Network.
SwiGLU combines the Swish activation function with a gating mechanism:
SwiGLU(x) = Swish(W1 * x) ⊙ (W3 * x) * W2
where ⊙ is element-wise multiplication.
This provides better performance than ReLU-based FFNs by:
1. Swish activation: smoother than ReLU, better gradient flow
2. Gating mechanism: allows the network to control information flow
"""
def __init__(self, config: LunarisCodexConfig):
"""
Initialize the feed-forward network.
The hidden dimension is calculated as:
1. Start with d_model * ffn_hidden_multiplier
2. Adjust for SwiGLU (multiply by 2/3)
3. Round up to nearest multiple of 'multiple_of' for efficiency
"""
super().__init__()
# Calculate hidden dimension with proper sizing for SwiGLU
hidden_dim = int(config.ffn_hidden_multiplier * config.d_model)
hidden_dim = int(2 * hidden_dim / 3) # SwiGLU adjustment
# Round up to multiple_of for computational efficiency (e.g., CUDA tensor cores)
hidden_dim = config.multiple_of * ((hidden_dim + config.multiple_of - 1) // config.multiple_of)
# SwiGLU requires two input projections and one output projection
self.w1 = nn.Linear(config.d_model, hidden_dim, bias=False) # First gate
self.w3 = nn.Linear(config.d_model, hidden_dim, bias=False) # Second gate
self.w2 = nn.Linear(hidden_dim, config.d_model, bias=False) # Output projection
self.dropout = nn.Dropout(config.dropout)
def forward(self, x: torch.Tensor):
"""
Apply SwiGLU activation.
Formula: SwiGLU(x) = Swish(W1(x)) ⊙ W3(x) → W2
where Swish(x) = x * sigmoid(x) = x * σ(x)
"""
# SwiGLU activation: Swish(W1(x)) * W3(x)
# F.silu is the Swish activation function
swiglu = F.silu(self.w1(x)) * self.w3(x)
return self.dropout(self.w2(swiglu))
class Block(nn.Module):
"""
A single Transformer block using pre-normalization architecture.
Pre-normalization (used here) vs Post-normalization:
- Pre-norm: LayerNorm → Attention → Add, LayerNorm → FFN → Add
- Post-norm: Attention → Add → LayerNorm, FFN → Add → LayerNorm
Pre-normalization provides better gradient flow and training stability
because the residual connections carry the original gradient directly.
"""
def __init__(self, config: LunarisCodexConfig):
super().__init__()
self.attention = Attention(config)
self.feed_forward = FeedForward(config)
self.attention_norm = RMSNorm(config.d_model)
self.ffn_norm = RMSNorm(config.d_model)
def forward(
self,
x: torch.Tensor,
freqs_cis: torch.Tensor,
past_kv: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Forward pass of the transformer block.
Architecture: Pre-norm with residual connections
1. x + Attention(RMSNorm(x))
2. x + FFN(RMSNorm(x))
Args:
x: Input tensor
freqs_cis: RoPE rotation factors
past_kv: KV cache from previous tokens
Returns:
Tuple of (block_output, updated_kv_cache)
"""
# Pre-normalization and residual connection for attention
# The KV cache is managed by the attention layer
attn_output, new_kv = self.attention(self.attention_norm(x), freqs_cis, past_kv)
h = x + attn_output # Residual connection
# Pre-normalization and residual connection for FFN
out = h + self.feed_forward(self.ffn_norm(h)) # Residual connection
return out, new_kv
class LunarisCodex(nn.Module):
"""
Complete LunarisCodex Language Model.
This is a Llama-style decoder-only transformer with:
- Pre-normalization architecture for better training stability
- RoPE for positional encoding
- SwiGLU activation in FFN
- Grouped-Query Attention for efficiency
- KV caching for fast inference
- Weight tying between input embeddings and output projection
"""
def __init__(self, config: LunarisCodexConfig):
super().__init__()
self.config = config
# Main transformer components
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.d_model), # Token embeddings
h = nn.ModuleList([Block(config) for _ in range(config.n_layers)]), # Transformer blocks
ln_f = RMSNorm(config.d_model), # Final layer normalization
drop = nn.Dropout(config.dropout), # Input dropout
))
# Output projection (language modeling head)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Weight tying: share parameters between input embeddings and output projection
# This reduces the parameter count and often improves performance
# The intuition is that both layers deal with the same vocabulary space
self.transformer.wte.weight = self.lm_head.weight
# Precompute RoPE frequencies for all positions and register as buffer
# Buffers are saved with the model but don't require gradients
freqs_cis = precompute_freqs_cis(
self.config.d_model // self.config.n_heads, # Head dimension
self.config.max_seq_len,
self.config.rope_theta,
)
self.register_buffer("freqs_cis", freqs_cis, persistent=False)
# Initialize model weights
self.apply(self._init_weights)
# Report number of parameters
print(f"Number of parameters: {self.get_num_params()/1e6:.2f}M")
def get_num_params(self) -> int:
"""Count the number of trainable parameters."""
return sum(p.numel() for p in self.parameters() if p.requires_grad)
def _init_weights(self, module):
"""
Initialize model weights using scaled initialization.
Standard initialization for most weights, with special scaled initialization
for residual projections to prevent activation variance from growing with depth.
"""
if isinstance(module, nn.Linear):
# Standard initialization for linear layers
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
# Standard initialization for embeddings
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
# Scaled initialization for residual projections
# This prevents the variance from growing with the number of layers
if isinstance(module, (Attention, FeedForward)):
for name, p in module.named_parameters():
if name.endswith("o_proj.weight") or name.endswith("w2.weight"):
# Scale down by sqrt(2 * n_layers) to maintain variance
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layers))
def forward(
self,
idx: torch.Tensor,
targets: Optional[torch.Tensor] = None,
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], List[Tuple[torch.Tensor, torch.Tensor]]]:
"""
Forward pass of the model.
Args:
idx: Input token indices of shape (batch, seq_len)
targets: Target token indices for training (optional)
past_key_values: KV cache from previous forward passes (for generation)
Returns:
Tuple of (logits, loss, new_kv_cache)
- logits: Output probabilities over vocabulary
- loss: Cross-entropy loss (only if targets provided)
- new_kv_cache: Updated KV cache for next iteration
"""
B, T = idx.shape
# Determine starting position for RoPE based on cache length
# If we have a cache, we're in generation mode and only processing new tokens
start_pos = past_key_values[0][0].shape[-2] if past_key_values is not None else 0
# Ensure we don't exceed the model's maximum sequence length
assert start_pos + T <= self.config.max_seq_len, \
f"Cannot forward, sequence length {start_pos + T} exceeds model's max_seq_len {self.config.max_seq_len}"
# Get token embeddings and apply input dropout
x = self.transformer.wte(idx)
x = self.transformer.drop(x)
# Get precomputed RoPE frequencies for the current sequence positions
freqs_cis = self.freqs_cis[start_pos : start_pos + T]
# Forward through all transformer blocks, updating the KV cache
new_past_key_values = []
for i, block in enumerate(self.transformer.h):
# Get the cached KV for this specific layer
past_kv_for_block = past_key_values[i] if past_key_values is not None else None
x, new_kv = block(x, freqs_cis, past_kv_for_block)
new_past_key_values.append(new_kv)
# Apply final layer normalization
x = self.transformer.ln_f(x)
# Compute logits and loss
if targets is not None:
# Training mode: compute logits for all positions and calculate loss
logits = self.lm_head(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
# Inference mode: only compute logits for the last token (efficiency)
# During generation, we only need the prediction for the next token
logits = self.lm_head(x[:, [-1], :])
loss = None
return logits, loss, new_past_key_values
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
"""
Configure the optimizer with weight decay applied only to 2D parameters.
Weight decay is applied to matrices (2D tensors) but not to biases and
layer norm parameters (1D tensors) for better training dynamics.
"""
# Get all parameters that require gradients
param_dict = {pn: p for pn, p in self.named_parameters() if p.requires_grad}
# Separate parameters: 2D tensors get weight decay, 1D tensors don't
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
# Create optimizer parameter groups
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
# Print parameter count information
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Use fused AdamW if available (faster on CUDA)
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == 'cuda'
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, fused=use_fused)
print(f"using fused AdamW: {use_fused}")
return optimizer
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Generate text using the model with efficient KV caching.
The generation process has two phases:
1. Prefill: Process the entire input prompt to build the initial KV cache
2. Decode: Generate tokens one by one, reusing the KV cache
Args:
idx: Input token indices (prompt)
max_new_tokens: Maximum number of tokens to generate
temperature: Sampling temperature (higher = more random)
top_k: Keep only top k tokens for sampling (None = no filtering)
Returns:
Generated token sequence including the original prompt
"""
self.eval() # Set model to evaluation mode
past_key_values = None # Start with empty cache
for _ in range(max_new_tokens):
# Check if we've reached the maximum sequence length
current_len = past_key_values[0][0].shape[-2] if past_key_values else idx.shape[1]
if current_len >= self.config.max_seq_len:
break
# Prefill phase: process full prompt. Decode phase: process only last token
# This is the key efficiency gain of KV caching
idx_cond = idx if past_key_values is None else idx[:, -1:]
# Forward pass with KV cache
logits, _, past_key_values = self(idx_cond, past_key_values=past_key_values)
# Sample the next token using temperature and top-k sampling
logits = logits[:, -1, :] / temperature # Apply temperature scaling
# Top-k filtering: keep only the k most likely tokens
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# Convert to probabilities and sample
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
# Append the new token to the sequence
idx = torch.cat((idx, idx_next), dim=1)
self.train() # Return to training mode
return idx
|