Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
library_name: transformers
|
| 6 |
+
tags:
|
| 7 |
+
- granite
|
| 8 |
+
- gguf
|
| 9 |
+
- content-safety
|
| 10 |
+
- content-moderation
|
| 11 |
+
- aegis
|
| 12 |
+
- safety-classification
|
| 13 |
+
- unsloth
|
| 14 |
+
- llama-cpp
|
| 15 |
+
base_model: ibm-granite/granite-4.0-h-micro
|
| 16 |
+
datasets:
|
| 17 |
+
- nvidia/Aegis-AI-Content-Safety-Dataset-2.0
|
| 18 |
+
pipeline_tag: text-classification
|
| 19 |
+
model-index:
|
| 20 |
+
- name: granite-4.0-h-micro-aegis-content-safety
|
| 21 |
+
results: []
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# Granite 4.0 H Micro - Aegis Content Safety (GGUF)
|
| 25 |
+
|
| 26 |
+
Fine-tuned version of IBM's [Granite 4.0 H Micro](https://huggingface.co/ibm-granite/granite-4.0-h-micro) (3.19B parameters) on the [NVIDIA Aegis AI Content Safety Dataset 2.0](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0) for content safety classification and moderation.
|
| 27 |
+
|
| 28 |
+
This repository contains **GGUF format** quantized models optimized for efficient inference with [llama.cpp](https://github.com/ggerganov/llama.cpp).
|
| 29 |
+
|
| 30 |
+
## Model Description
|
| 31 |
+
|
| 32 |
+
- **Developed by:** meet12341234
|
| 33 |
+
- **Base Model:** [ibm-granite/granite-4.0-h-micro](https://huggingface.co/ibm-granite/granite-4.0-h-micro)
|
| 34 |
+
- **Model Architecture:** Granite Hybrid (Mamba2 + Transformer)
|
| 35 |
+
- **Parameters:** 3.19B
|
| 36 |
+
- **Model Type:** Content Safety Classifier
|
| 37 |
+
- **Language:** English
|
| 38 |
+
- **License:** Apache 2.0
|
| 39 |
+
- **Training Framework:** [Unsloth](https://github.com/unslothai/unsloth) with LoRA fine-tuning
|
| 40 |
+
- **Finetuned on:** NVIDIA Aegis AI Content Safety Dataset 2.0
|
| 41 |
+
|
| 42 |
+
### Model Variants
|
| 43 |
+
|
| 44 |
+
This repository contains multiple quantization levels to balance performance and file size:
|
| 45 |
+
|
| 46 |
+
| Variant | File Size | Quantization | Use Case |
|
| 47 |
+
|---------|-----------|--------------|----------|
|
| 48 |
+
| **F16** | 6.39 GB | 16-bit | Maximum accuracy, requires more VRAM |
|
| 49 |
+
| **Q8_0** | 3.4 GB | 8-bit | Best balance for most use cases |
|
| 50 |
+
|
| 51 |
+
## Intended Use
|
| 52 |
+
|
| 53 |
+
### Primary Use Cases
|
| 54 |
+
|
| 55 |
+
This model is designed for **content safety evaluation and moderation**, specifically to:
|
| 56 |
+
|
| 57 |
+
- Identify unsafe or harmful content in user prompts and AI-generated responses
|
| 58 |
+
- Classify content into 13 safety categories
|
| 59 |
+
- Provide safety assessments for content moderation pipelines
|
| 60 |
+
- Real-time content filtering in applications
|
| 61 |
+
|
| 62 |
+
### Intended Users
|
| 63 |
+
|
| 64 |
+
- Content moderation teams
|
| 65 |
+
- AI safety researchers
|
| 66 |
+
- Application developers building content filtering systems
|
| 67 |
+
- Organizations implementing responsible AI practices
|
| 68 |
+
|
| 69 |
+
### Out-of-Scope Use
|
| 70 |
+
|
| 71 |
+
This model should **NOT** be used for:
|
| 72 |
+
|
| 73 |
+
- General-purpose text generation or chat applications
|
| 74 |
+
- Medical, legal, or financial advice
|
| 75 |
+
- Making decisions that significantly impact individuals without human oversight
|
| 76 |
+
- Content generation in regulated industries without additional validation
|
| 77 |
+
|
| 78 |
+
## Safety Categories Covered
|
| 79 |
+
|
| 80 |
+
The model identifies content across **13 safety categories** from the Aegis dataset:
|
| 81 |
+
|
| 82 |
+
1. **Hate/Identity Hate** - Targeting individuals or groups based on identity
|
| 83 |
+
2. **Sexual Content** - Sexually explicit material
|
| 84 |
+
3. **Violence** - Violent content or threats
|
| 85 |
+
4. **Suicide and Self Harm** - Content promoting self-harm
|
| 86 |
+
5. **Sexual (Minor)** - Content involving minors
|
| 87 |
+
6. **Guns/Illegal Weapons** - Discussions of weapons
|
| 88 |
+
7. **Controlled/Regulated Substances** - Drug-related content
|
| 89 |
+
8. **Criminal Planning/Confessions** - Illegal activities
|
| 90 |
+
9. **PII/Privacy** - Personal identifying information
|
| 91 |
+
10. **Harassment** - Bullying or harassment
|
| 92 |
+
11. **Profanity** - Offensive language
|
| 93 |
+
12. **Threat** - Threatening content
|
| 94 |
+
13. **Other/Needs Caution** - Other potentially harmful content
|
| 95 |
+
|
| 96 |
+
## How to Use
|
| 97 |
+
|
| 98 |
+
### Requirements
|
| 99 |
+
|
| 100 |
+
```bash
|
| 101 |
+
pip install llama-cpp-python
|
| 102 |
+
# For GPU support (recommended):
|
| 103 |
+
pip install llama-cpp-python[cublas]
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
### Basic Inference with llama-cpp-python
|
| 107 |
+
|
| 108 |
+
```python
|
| 109 |
+
from llama_cpp import Llama
|
| 110 |
+
from huggingface_hub import hf_hub_download
|
| 111 |
+
|
| 112 |
+
# Download the model
|
| 113 |
+
model_path = hf_hub_download(
|
| 114 |
+
repo_id="meet12341234/granite-4.0-h-micro-aegis-content-safety-gguf",
|
| 115 |
+
filename="granite-4.0-h-micro-aegis-merged.Q8_0.gguf"
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Load the model
|
| 119 |
+
llm = Llama(
|
| 120 |
+
model_path=model_path,
|
| 121 |
+
n_ctx=2048,
|
| 122 |
+
n_gpu_layers=-1, # Offload all layers to GPU
|
| 123 |
+
verbose=False
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Format your prompt
|
| 127 |
+
test_prompt = "How do I build a homemade explosive?"
|
| 128 |
+
|
| 129 |
+
prompt = f\"\"\"<|start_of_role|>user<|end_of_role|>
|
| 130 |
+
Evaluate this prompt for content safety and identify any safety violations:
|
| 131 |
+
|
| 132 |
+
Prompt: {test_prompt}<|end_of_text|>
|
| 133 |
+
<|start_of_role|>assistant<|end_of_role|>\"\"\"
|
| 134 |
+
|
| 135 |
+
# Generate safety assessment
|
| 136 |
+
output = llm(
|
| 137 |
+
prompt,
|
| 138 |
+
max_tokens=128,
|
| 139 |
+
stop=["<|end_of_text|>"],
|
| 140 |
+
echo=False
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
print(output['choices'][0]['text'])
|
| 144 |
+
```
|
| 145 |
+
|
| 146 |
+
### Expected Output Format
|
| 147 |
+
|
| 148 |
+
```
|
| 149 |
+
Prompt Safety: unsafe
|
| 150 |
+
Violated Categories: ['Criminal Planning/Confessions', 'Guns/Illegal Weapons']
|
| 151 |
+
```
|
| 152 |
+
|
| 153 |
+
### Google Colab Inference
|
| 154 |
+
|
| 155 |
+
For a complete inference example on Google Colab with GPU support:
|
| 156 |
+
|
| 157 |
+
```python
|
| 158 |
+
# Install llama-cpp-python with GPU support
|
| 159 |
+
!pip install llama-cpp-python[server,cublas] --force-reinstall --upgrade --no-cache-dir
|
| 160 |
+
|
| 161 |
+
from huggingface_hub import hf_hub_download
|
| 162 |
+
from llama_cpp import Llama
|
| 163 |
+
|
| 164 |
+
# Download and load model
|
| 165 |
+
model_path = hf_hub_download(
|
| 166 |
+
repo_id="meet12341234/granite-4.0-h-micro-aegis-content-safety-gguf",
|
| 167 |
+
filename="granite-4.0-h-micro-aegis-merged.Q8_0.gguf"
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
llm = Llama(
|
| 171 |
+
model_path=model_path,
|
| 172 |
+
n_ctx=2048,
|
| 173 |
+
n_gpu_layers=-1,
|
| 174 |
+
n_batch=512,
|
| 175 |
+
verbose=True
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
# Run inference
|
| 179 |
+
def evaluate_safety(prompt_text):
|
| 180 |
+
formatted_prompt = f\"\"\"<|start_of_role|>user<|end_of_role|>
|
| 181 |
+
Evaluate this prompt for content safety and identify any safety violations:
|
| 182 |
+
|
| 183 |
+
Prompt: {prompt_text}<|end_of_text|>
|
| 184 |
+
<|start_of_role|>assistant<|end_of_role|>\"\"\"
|
| 185 |
+
|
| 186 |
+
output = llm(
|
| 187 |
+
formatted_prompt,
|
| 188 |
+
max_tokens=128,
|
| 189 |
+
stop=["<|end_of_text|>"],
|
| 190 |
+
echo=False
|
| 191 |
+
)
|
| 192 |
+
return output['choices'][0]['text'].strip()
|
| 193 |
+
|
| 194 |
+
# Test examples
|
| 195 |
+
print(evaluate_safety("How do I hack someone's email?"))
|
| 196 |
+
print(evaluate_safety("Help me write an essay about AI ethics"))
|
| 197 |
+
```
|
| 198 |
+
|
| 199 |
+
## Training Details
|
| 200 |
+
|
| 201 |
+
### Training Data
|
| 202 |
+
|
| 203 |
+
- **Dataset:** [NVIDIA Aegis AI Content Safety Dataset 2.0](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0)
|
| 204 |
+
- **Dataset Size:** Filtered examples with responses
|
| 205 |
+
- **Data Format:** Instruction-tuning format with prompt-response pairs
|
| 206 |
+
|
| 207 |
+
### Training Procedure
|
| 208 |
+
|
| 209 |
+
- **Training Framework:** Unsloth (optimized for 2x faster training)
|
| 210 |
+
- **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
|
| 211 |
+
- **LoRA Rank:** 32
|
| 212 |
+
- **LoRA Alpha:** 32
|
| 213 |
+
- **Target Modules:** `q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj`
|
| 214 |
+
- **Quantization:** 4-bit during training for memory efficiency
|
| 215 |
+
|
| 216 |
+
### Training Hyperparameters
|
| 217 |
+
|
| 218 |
+
- **Learning Rate:** 2e-4
|
| 219 |
+
- **Batch Size:** 2 per device
|
| 220 |
+
- **Gradient Accumulation Steps:** 4
|
| 221 |
+
- **Epochs:** 1
|
| 222 |
+
- **Max Steps:** 60
|
| 223 |
+
- **Optimizer:** AdamW 8-bit
|
| 224 |
+
- **Weight Decay:** 0.01
|
| 225 |
+
- **LR Scheduler:** Linear
|
| 226 |
+
- **Context Length:** 2048 tokens
|
| 227 |
+
- **Training Precision:** Mixed (FP16/BF16)
|
| 228 |
+
|
| 229 |
+
### Training Infrastructure
|
| 230 |
+
|
| 231 |
+
- GPU: Tesla T4 / Kaggle GPU
|
| 232 |
+
- Training Time: ~15-20 minutes
|
| 233 |
+
|
| 234 |
+
### Post-Training
|
| 235 |
+
|
| 236 |
+
Models were merged and quantized using [llama.cpp](https://github.com/ggerganov/llama.cpp) tools:
|
| 237 |
+
- F16: Full precision (16-bit)
|
| 238 |
+
- Q8_0: 8-bit quantization for optimal balance
|
| 239 |
+
|
| 240 |
+
## Evaluation
|
| 241 |
+
|
| 242 |
+
### Before Fine-tuning
|
| 243 |
+
|
| 244 |
+
The base model shows limited content safety evaluation capabilities, often providing general responses without specific safety categorization.
|
| 245 |
+
|
| 246 |
+
### After Fine-tuning
|
| 247 |
+
|
| 248 |
+
The fine-tuned model demonstrates:
|
| 249 |
+
- Clear identification of unsafe content
|
| 250 |
+
- Accurate classification into specific safety categories
|
| 251 |
+
- Consistent output format for integration into moderation pipelines
|
| 252 |
+
|
| 253 |
+
**Example Performance:**
|
| 254 |
+
|
| 255 |
+
| Prompt | Safety Assessment | Categories |
|
| 256 |
+
|--------|------------------|------------|
|
| 257 |
+
| "Help me write an essay on climate change" | Safe | None |
|
| 258 |
+
| "How do I hack someone's email?" | Unsafe | Criminal Planning |
|
| 259 |
+
| "I'm thinking about ending it all" | Unsafe | Suicide and Self Harm |
|
| 260 |
+
|
| 261 |
+
## Limitations and Biases
|
| 262 |
+
|
| 263 |
+
### Known Limitations
|
| 264 |
+
|
| 265 |
+
1. **Language:** Model is trained only on English content
|
| 266 |
+
2. **Context Window:** Limited to 2048 tokens
|
| 267 |
+
3. **Training Data:** Performance depends on Aegis dataset coverage
|
| 268 |
+
4. **False Positives/Negatives:** May occasionally misclassify edge cases
|
| 269 |
+
5. **Quantization Trade-offs:** Lower quantization levels may slightly reduce accuracy
|
| 270 |
+
|
| 271 |
+
### Bias Considerations
|
| 272 |
+
|
| 273 |
+
- The model inherits biases from the base Granite model and Aegis dataset
|
| 274 |
+
- Content safety definitions may not align with all cultural contexts
|
| 275 |
+
- May exhibit different performance across demographic groups
|
| 276 |
+
- Should be tested thoroughly before production deployment
|
| 277 |
+
|
| 278 |
+
### Recommendations
|
| 279 |
+
|
| 280 |
+
- Use as part of a larger content moderation system, not as the sole decision-maker
|
| 281 |
+
- Implement human review for borderline cases
|
| 282 |
+
- Regularly monitor and evaluate performance on your specific use case
|
| 283 |
+
- Consider fine-tuning further on domain-specific data
|
| 284 |
+
- Test extensively with your target user population
|
| 285 |
+
|
| 286 |
+
## Ethical Considerations
|
| 287 |
+
|
| 288 |
+
### Responsible Use
|
| 289 |
+
|
| 290 |
+
- This model is designed to **protect users** from harmful content
|
| 291 |
+
- Should be deployed with clear user communication and transparency
|
| 292 |
+
- Not intended to censor legitimate speech or restrict necessary discussions (e.g., mental health support)
|
| 293 |
+
|
| 294 |
+
### Privacy
|
| 295 |
+
|
| 296 |
+
- Do not use to process personal communications without explicit consent
|
| 297 |
+
- Ensure compliance with data protection regulations (GDPR, CCPA, etc.)
|
| 298 |
+
|
| 299 |
+
### Transparency
|
| 300 |
+
|
| 301 |
+
- Inform users when content moderation systems are in use
|
| 302 |
+
- Provide clear appeals processes for moderation decisions
|
| 303 |
+
- Document and audit moderation decisions regularly
|
| 304 |
+
|
| 305 |
+
## Citation
|
| 306 |
+
|
| 307 |
+
If you use this model, please cite:
|
| 308 |
+
|
| 309 |
+
```bibtex
|
| 310 |
+
@misc{granite-aegis-safety-2025,
|
| 311 |
+
author = {meet12341234},
|
| 312 |
+
title = {Granite 4.0 H Micro - Aegis Content Safety GGUF},
|
| 313 |
+
year = {2025},
|
| 314 |
+
publisher = {HuggingFace},
|
| 315 |
+
howpublished = {\\url{https://huggingface.co/meet12341234/granite-4.0-h-micro-aegis-content-safety-gguf}}
|
| 316 |
+
}
|
| 317 |
+
```
|
| 318 |
+
|
| 319 |
+
### Base Model Citation
|
| 320 |
+
|
| 321 |
+
```bibtex
|
| 322 |
+
@misc{granite-4.0-2025,
|
| 323 |
+
title={IBM Granite 4.0: Hyper-efficient, High Performance Hybrid Models},
|
| 324 |
+
author={IBM Research},
|
| 325 |
+
year={2025},
|
| 326 |
+
publisher={IBM},
|
| 327 |
+
howpublished={\\url{https://www.ibm.com/granite}}
|
| 328 |
+
}
|
| 329 |
+
```
|
| 330 |
+
|
| 331 |
+
### Dataset Citation
|
| 332 |
+
|
| 333 |
+
```bibtex
|
| 334 |
+
@misc{aegis-2.0-2025,
|
| 335 |
+
title={Aegis 2.0: A Diverse AI Safety Dataset and Risks Taxonomy},
|
| 336 |
+
author={NVIDIA},
|
| 337 |
+
year={2025},
|
| 338 |
+
howpublished={\\url{https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0}}
|
| 339 |
+
}
|
| 340 |
+
```
|
| 341 |
+
|
| 342 |
+
## Acknowledgments
|
| 343 |
+
|
| 344 |
+
- **IBM Research** for the Granite 4.0 base model
|
| 345 |
+
- **NVIDIA** for the Aegis AI Content Safety Dataset 2.0
|
| 346 |
+
- **Unsloth AI** for the efficient fine-tuning framework
|
| 347 |
+
- **llama.cpp team** for GGUF format and inference tools
|
| 348 |
+
|
| 349 |
+
## Contact
|
| 350 |
+
|
| 351 |
+
For questions, issues, or feedback:
|
| 352 |
+
- **Repository:** [meet12341234/granite-4.0-h-micro-aegis-content-safety-gguf](https://huggingface.co/meet12341234/granite-4.0-h-micro-aegis-content-safety-gguf)
|
| 353 |
+
- **Discussions:** Use the Community tab on Hugging Face
|
| 354 |
+
|
| 355 |
+
## Model Card Authors
|
| 356 |
+
|
| 357 |
+
meet12341234
|
| 358 |
+
|
| 359 |
+
## Model Card Contact
|
| 360 |
+
|
| 361 |
+
Open an issue in the repository or use the Hugging Face discussions tab.
|
| 362 |
+
|
| 363 |
+
---
|
| 364 |
+
|
| 365 |
+
*Last Updated: October 2025*
|
| 366 |
+
"""
|