--- license: apache-2.0 base_model: matthieulel/dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals tags: - image-classification - vision - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals-head-finetuned-100-galaxy_mnist results: [] --- # dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals-head-finetuned-100-galaxy_mnist This model is a fine-tuned version of [matthieulel/dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals](https://huggingface.co/matthieulel/dinov2-base-imagenet1k-1-layer-finetuned-galaxy10-decals) on the matthieulel/galaxy_mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.2235 - Accuracy: 0.909 - Precision: 0.9108 - Recall: 0.909 - F1: 0.9089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.1235 | 0.99 | 62 | 0.9579 | 0.622 | 0.6410 | 0.622 | 0.6249 | | 0.5488 | 2.0 | 125 | 0.3964 | 0.852 | 0.8534 | 0.852 | 0.8523 | | 0.384 | 2.99 | 187 | 0.2877 | 0.882 | 0.8820 | 0.882 | 0.8819 | | 0.3493 | 4.0 | 250 | 0.2621 | 0.8885 | 0.8885 | 0.8885 | 0.8885 | | 0.3184 | 4.99 | 312 | 0.2570 | 0.8945 | 0.8957 | 0.8945 | 0.8946 | | 0.3027 | 6.0 | 375 | 0.2485 | 0.9 | 0.9013 | 0.9 | 0.9000 | | 0.3245 | 6.99 | 437 | 0.2397 | 0.9035 | 0.9038 | 0.9035 | 0.9034 | | 0.2666 | 8.0 | 500 | 0.2413 | 0.9035 | 0.9051 | 0.9035 | 0.9034 | | 0.2705 | 8.99 | 562 | 0.2336 | 0.905 | 0.9057 | 0.905 | 0.9050 | | 0.2524 | 10.0 | 625 | 0.2320 | 0.9065 | 0.9072 | 0.9065 | 0.9065 | | 0.271 | 10.99 | 687 | 0.2293 | 0.908 | 0.9085 | 0.908 | 0.9079 | | 0.2624 | 12.0 | 750 | 0.2266 | 0.9045 | 0.9047 | 0.9045 | 0.9045 | | 0.2681 | 12.99 | 812 | 0.2286 | 0.908 | 0.9088 | 0.908 | 0.9079 | | 0.262 | 14.0 | 875 | 0.2239 | 0.9085 | 0.9089 | 0.9085 | 0.9085 | | 0.3015 | 14.99 | 937 | 0.2265 | 0.9075 | 0.9085 | 0.9075 | 0.9074 | | 0.2635 | 16.0 | 1000 | 0.2256 | 0.9065 | 0.9082 | 0.9065 | 0.9064 | | 0.2708 | 16.99 | 1062 | 0.2239 | 0.9075 | 0.9089 | 0.9075 | 0.9075 | | 0.2616 | 18.0 | 1125 | 0.2231 | 0.9075 | 0.9084 | 0.9075 | 0.9074 | | 0.2658 | 18.99 | 1187 | 0.2229 | 0.9075 | 0.9092 | 0.9075 | 0.9075 | | 0.2578 | 20.0 | 1250 | 0.2216 | 0.908 | 0.9093 | 0.908 | 0.9080 | | 0.2823 | 20.99 | 1312 | 0.2206 | 0.9075 | 0.9084 | 0.9075 | 0.9075 | | 0.2714 | 22.0 | 1375 | 0.2223 | 0.9085 | 0.9100 | 0.9085 | 0.9084 | | 0.2631 | 22.99 | 1437 | 0.2235 | 0.909 | 0.9108 | 0.909 | 0.9089 | | 0.2695 | 24.0 | 1500 | 0.2214 | 0.9085 | 0.9101 | 0.9085 | 0.9084 | | 0.2698 | 24.99 | 1562 | 0.2208 | 0.908 | 0.9095 | 0.908 | 0.9079 | | 0.2285 | 26.0 | 1625 | 0.2188 | 0.9075 | 0.9083 | 0.9075 | 0.9075 | | 0.2716 | 26.99 | 1687 | 0.2202 | 0.9075 | 0.9089 | 0.9075 | 0.9075 | | 0.2628 | 28.0 | 1750 | 0.2205 | 0.9075 | 0.9090 | 0.9075 | 0.9074 | | 0.2619 | 28.99 | 1812 | 0.2207 | 0.907 | 0.9085 | 0.907 | 0.9069 | | 0.2568 | 29.76 | 1860 | 0.2204 | 0.907 | 0.9085 | 0.907 | 0.9069 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.1