--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T tags: - xcomet_xl_xxl - generated_from_trainer model-index: - name: sft-xcomet_xl_xxl-chosen-10lp-shuff-full-tiny results: [] --- # sft-xcomet_xl_xxl-chosen-10lp-shuff-full-tiny This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the Unbabel/TowerAligned-v0.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.7027 - Nll Loss: 0.7027 - Logps/best: -69.8057 - Rewards/chosen: 3.3548 - Rewards/rejected: 2.9021 - Rewards/accuracies: 0.6820 - Rewards/margins: 0.4527 - Logps/rejected: -68.4018 - Logps/chosen: -69.8057 - Logits/rejected: -1.7405 - Logits/chosen: -1.8685 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Nll Loss | Logps/best | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.8021 | 0.1063 | 100 | 0.7701 | 0.7701 | -76.4054 | 2.6949 | 2.3664 | 0.6740 | 0.3284 | -73.7585 | -76.4054 | -1.7763 | -1.9055 | | 0.7255 | 0.2127 | 200 | 0.7367 | 0.7367 | -73.1546 | 3.0200 | 2.6460 | 0.6820 | 0.3740 | -70.9634 | -73.1546 | -1.7637 | -1.8923 | | 0.6979 | 0.3190 | 300 | 0.7232 | 0.7232 | -71.8372 | 3.1517 | 2.7499 | 0.6660 | 0.4018 | -69.9242 | -71.8372 | -1.7452 | -1.8727 | | 0.7072 | 0.4254 | 400 | 0.7137 | 0.7137 | -70.8879 | 3.2466 | 2.8103 | 0.6960 | 0.4363 | -69.3198 | -70.8879 | -1.7467 | -1.8743 | | 0.6958 | 0.5317 | 500 | 0.7085 | 0.7085 | -70.3945 | 3.2960 | 2.8412 | 0.6920 | 0.4548 | -69.0110 | -70.3945 | -1.7476 | -1.8756 | | 0.7216 | 0.6381 | 600 | 0.7055 | 0.7055 | -70.0888 | 3.3265 | 2.8702 | 0.6900 | 0.4564 | -68.7212 | -70.0888 | -1.7377 | -1.8651 | | 0.7531 | 0.7444 | 700 | 0.7038 | 0.7038 | -69.9193 | 3.3435 | 2.8863 | 0.6860 | 0.4572 | -68.5603 | -69.9193 | -1.7392 | -1.8670 | | 0.6531 | 0.8508 | 800 | 0.7028 | 0.7028 | -69.8163 | 3.3538 | 2.9020 | 0.6800 | 0.4518 | -68.4026 | -69.8163 | -1.7410 | -1.8690 | | 0.6801 | 0.9571 | 900 | 0.7027 | 0.7027 | -69.8057 | 3.3548 | 2.9021 | 0.6820 | 0.4527 | -68.4018 | -69.8057 | -1.7405 | -1.8685 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1