File size: 8,849 Bytes
69c4a3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import logging
import os
import time
import hydra
import torch
import numpy as np
import pandas as pd
import wandb
import matplotlib.pyplot as plt
from torch.func import vmap
from tqdm import tqdm
from omegaconf import OmegaConf
from marinegym import init_simulation_app
from torchrl.data import CompositeSpec
from torchrl.envs.utils import set_exploration_type, ExplorationType
from marinegym.utils.torchrl import SyncDataCollector
from marinegym.utils.torchrl.transforms import (
FromMultiDiscreteAction,
FromDiscreteAction,
ravel_composite,
AttitudeController,
RateController,
)
from marinegym.utils.wandb import init_wandb
from marinegym.utils.torchrl import RenderCallback, EpisodeStats
from marinegym.learning import ALGOS
from setproctitle import setproctitle
from torchrl.envs.transforms import TransformedEnv, InitTracker, Compose
from pathlib import Path
@hydra.main(version_base=None, config_path=".", config_name="train")
def main(cfg):
OmegaConf.register_new_resolver("eval", eval)
OmegaConf.resolve(cfg)
OmegaConf.set_struct(cfg, False)
simulation_app = init_simulation_app(cfg)
run = init_wandb(cfg)
setproctitle(run.name)
print(OmegaConf.to_yaml(cfg))
from marinegym.envs.isaac_env import IsaacEnv
env_class = IsaacEnv.REGISTRY[cfg.task.name]
base_env = env_class(cfg, headless=cfg.headless)
transforms = [InitTracker()]
# a CompositeSpec is by default processed by a entity-based encoder
# ravel it to use a MLP encoder instead
if cfg.task.get("ravel_obs", False):
transform = ravel_composite(base_env.observation_spec, ("agents", "observation"))
transforms.append(transform)
if cfg.task.get("ravel_obs_central", False):
transform = ravel_composite(base_env.observation_spec, ("agents", "observation_central"))
transforms.append(transform)
# optionally discretize the action space or use a controller
action_transform: str = cfg.task.get("action_transform", None)
if action_transform is not None:
if action_transform.startswith("multidiscrete"):
nbins = int(action_transform.split(":")[1])
transform = FromMultiDiscreteAction(nbins=nbins)
transforms.append(transform)
elif action_transform.startswith("discrete"):
nbins = int(action_transform.split(":")[1])
transform = FromDiscreteAction(nbins=nbins)
transforms.append(transform)
else:
raise NotImplementedError(f"Unknown action transform: {action_transform}")
env = TransformedEnv(base_env, Compose(*transforms)).train()
env.set_seed(cfg.seed)
try:
policy = ALGOS[cfg.algo.name.lower()](
cfg.algo,
env.observation_spec,
env.action_spec,
env.reward_spec,
device=base_env.device
)
except KeyError:
raise NotImplementedError(f"Unknown algorithm: {cfg.algo.name}")
frames_per_batch = env.num_envs * int(cfg.algo.train_every)
total_frames = cfg.get("total_frames", -1) // frames_per_batch * frames_per_batch
max_iters = cfg.get("max_iters", -1)
eval_interval = cfg.get("eval_interval", -1)
save_interval = cfg.get("save_interval", -1)
stats_keys = [
k for k in base_env.observation_spec.keys(True, True)
if isinstance(k, tuple) and k[0]=="stats"
]
episode_stats = EpisodeStats(stats_keys)
collector = SyncDataCollector(
env,
policy=policy,
frames_per_batch=frames_per_batch,
total_frames=total_frames,
device=cfg.sim.device,
return_same_td=True,
)
@torch.no_grad()
def evaluate(
seed: int=0,
exploration_type: ExplorationType=ExplorationType.MODE
):
base_env.enable_render(True)
base_env.eval()
env.eval()
env.set_seed(seed)
render_callback = RenderCallback(interval=2)
with set_exploration_type(exploration_type):
trajs = env.rollout(
max_steps=base_env.max_episode_length,
policy=policy,
callback=render_callback,
auto_reset=True,
break_when_any_done=False,
return_contiguous=False,
)
base_env.enable_render(not cfg.headless)
env.reset()
done = trajs.get(("next", "done"))
first_done = torch.argmax(done.long(), dim=1).cpu()
def take_first_episode(tensor: torch.Tensor):
indices = first_done.reshape(first_done.shape+(1,)*(tensor.ndim-2))
return torch.take_along_dim(tensor, indices, dim=1).reshape(-1)
traj_stats = {
k: take_first_episode(v)
for k, v in trajs[("next", "stats")].cpu().items()
}
info = {
"eval/stats." + k: torch.mean(v.float()).item()
for k, v in traj_stats.items()
}
# log video
info["recording"] = wandb.Video(
render_callback.get_video_array(axes="t c h w"),
fps=0.5 / (cfg.sim.dt * cfg.sim.substeps),
format="mp4"
)
# log distributions
# df = pd.DataFrame(traj_stats)
# table = wandb.Table(dataframe=df)
# info["eval/return"] = wandb.plot.histogram(table, "return")
# info["eval/episode_len"] = wandb.plot.histogram(table, "episode_len")
return info
pbar = tqdm(collector, total=total_frames//frames_per_batch)
env.train()
for i, data in enumerate(pbar):
info = {"env_frames": collector._frames, "rollout_fps": collector._fps}
episode_stats.add(data.to_tensordict())
if len(episode_stats) >= base_env.num_envs:
stats = {
"train/" + (".".join(k) if isinstance(k, tuple) else k): torch.mean(v.float()).item()
for k, v in episode_stats.pop().items(True, True)
}
info.update(stats)
info.update(policy.train_op(data.to_tensordict()))
if eval_interval > 0 and i % eval_interval == 0:
logging.info(f"Eval at {collector._frames} steps.")
info.update(evaluate())
env.train()
base_env.train()
if save_interval > 0 and i % save_interval == 0:
try:
ckpt_path = os.path.join(run.dir, f"checkpoint_{collector._frames}.pt")
torch.save(policy.state_dict(), ckpt_path)
logging.info(f"Saved checkpoint to {str(ckpt_path)}")
except AttributeError:
logging.warning(f"Policy {policy} does not implement `.state_dict()`")
run.log(info)
print(OmegaConf.to_yaml({k: v for k, v in info.items() if isinstance(v, float)}))
pbar.set_postfix({"rollout_fps": collector._fps, "frames": collector._frames})
if max_iters > 0 and i >= max_iters - 1:
break
# logging.info(f"Final Eval at {collector._frames} steps.")
# info = {"env_frames": collector._frames}
# info.update(evaluate())
# run.log(info)
try:
ckpt_path = os.path.join(run.dir, "checkpoint_final.pt")
torch.save(policy.state_dict(), ckpt_path)
model_artifact = wandb.Artifact(
f"{cfg.task.name}-{cfg.algo.name.lower()}",
type="model",
description=f"{cfg.task.name}-{cfg.algo.name.lower()}",
metadata=dict(cfg))
model_artifact.add_file(ckpt_path)
wandb.save(ckpt_path)
run.log_artifact(model_artifact)
logging.info(f"Saved checkpoint to {str(ckpt_path)}")
except AttributeError:
logging.warning(f"Policy {policy} does not implement `.state_dict()`")
# upload model to huggingface
if cfg.get("upload_model", False):
from marinegym.utils.huggingface import push_to_hub
repo_name = f"{cfg.task.name}-{cfg.algo.name.lower()}-seed{cfg.seed}"
logging.info(f"Uploading model to HuggingFace: {repo_name}")
logging.info(f"Check: {cfg.task.name}")
repo_id = f"{cfg.hf_entity}/{repo_name}" if cfg.get("hf_entity") else repo_name
# episodic_returns = episode_stats.get("stats/return", [])
video_folder = f"{run.dir}/videos"
if not os.path.exists(video_folder) or not any(Path(video_folder).glob("*.mp4")):
logging.warning(f"Warning: No video found in {video_folder}. Skipping video upload.")
video_folder = ""
push_to_hub(
cfg,
[0.], # TODO: fix this
repo_id,
cfg.algo.name,
run.dir,
video_folder,
create_pr=cfg.get("create_pr", False),
private=cfg.get("hf_private", False)
)
wandb.finish()
simulation_app.close()
if __name__ == "__main__":
main()
|