File size: 8,849 Bytes
69c4a3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import logging
import os
import time

import hydra
import torch
import numpy as np
import pandas as pd
import wandb
import matplotlib.pyplot as plt

from torch.func import vmap
from tqdm import tqdm
from omegaconf import OmegaConf

from marinegym import init_simulation_app
from torchrl.data import CompositeSpec
from torchrl.envs.utils import set_exploration_type, ExplorationType
from marinegym.utils.torchrl import SyncDataCollector
from marinegym.utils.torchrl.transforms import (
    FromMultiDiscreteAction,
    FromDiscreteAction,
    ravel_composite,
    AttitudeController,
    RateController,
)
from marinegym.utils.wandb import init_wandb
from marinegym.utils.torchrl import RenderCallback, EpisodeStats
from marinegym.learning import ALGOS

from setproctitle import setproctitle
from torchrl.envs.transforms import TransformedEnv, InitTracker, Compose

from pathlib import Path


@hydra.main(version_base=None, config_path=".", config_name="train")
def main(cfg):
    OmegaConf.register_new_resolver("eval", eval)
    OmegaConf.resolve(cfg)
    OmegaConf.set_struct(cfg, False)
    simulation_app = init_simulation_app(cfg)
    run = init_wandb(cfg)
    setproctitle(run.name)
    print(OmegaConf.to_yaml(cfg))

    from marinegym.envs.isaac_env import IsaacEnv

    env_class = IsaacEnv.REGISTRY[cfg.task.name]
    base_env = env_class(cfg, headless=cfg.headless)

    transforms = [InitTracker()]

    # a CompositeSpec is by default processed by a entity-based encoder
    # ravel it to use a MLP encoder instead
    if cfg.task.get("ravel_obs", False):
        transform = ravel_composite(base_env.observation_spec, ("agents", "observation"))
        transforms.append(transform)
    if cfg.task.get("ravel_obs_central", False):
        transform = ravel_composite(base_env.observation_spec, ("agents", "observation_central"))
        transforms.append(transform)

    # optionally discretize the action space or use a controller
    action_transform: str = cfg.task.get("action_transform", None)
    if action_transform is not None:
        if action_transform.startswith("multidiscrete"):
            nbins = int(action_transform.split(":")[1])
            transform = FromMultiDiscreteAction(nbins=nbins)
            transforms.append(transform)
        elif action_transform.startswith("discrete"):
            nbins = int(action_transform.split(":")[1])
            transform = FromDiscreteAction(nbins=nbins)
            transforms.append(transform)
        else:
            raise NotImplementedError(f"Unknown action transform: {action_transform}")

    env = TransformedEnv(base_env, Compose(*transforms)).train()
    env.set_seed(cfg.seed)

    try:
        policy = ALGOS[cfg.algo.name.lower()](
            cfg.algo,
            env.observation_spec,
            env.action_spec,
            env.reward_spec,
            device=base_env.device
        )
    except KeyError:
        raise NotImplementedError(f"Unknown algorithm: {cfg.algo.name}")

    frames_per_batch = env.num_envs * int(cfg.algo.train_every)
    total_frames = cfg.get("total_frames", -1) // frames_per_batch * frames_per_batch
    max_iters = cfg.get("max_iters", -1)
    eval_interval = cfg.get("eval_interval", -1)
    save_interval = cfg.get("save_interval", -1)

    stats_keys = [
        k for k in base_env.observation_spec.keys(True, True)
        if isinstance(k, tuple) and k[0]=="stats"
    ]
    episode_stats = EpisodeStats(stats_keys)
    collector = SyncDataCollector(
        env,
        policy=policy,
        frames_per_batch=frames_per_batch,
        total_frames=total_frames,
        device=cfg.sim.device,
        return_same_td=True,
    )

    @torch.no_grad()
    def evaluate(
        seed: int=0,
        exploration_type: ExplorationType=ExplorationType.MODE
    ):

        base_env.enable_render(True)
        base_env.eval()
        env.eval()
        env.set_seed(seed)

        render_callback = RenderCallback(interval=2)

        with set_exploration_type(exploration_type):
            trajs = env.rollout(
                max_steps=base_env.max_episode_length,
                policy=policy,
                callback=render_callback,
                auto_reset=True,
                break_when_any_done=False,
                return_contiguous=False,
            )
        base_env.enable_render(not cfg.headless)
        env.reset()

        done = trajs.get(("next", "done"))
        first_done = torch.argmax(done.long(), dim=1).cpu()

        def take_first_episode(tensor: torch.Tensor):
            indices = first_done.reshape(first_done.shape+(1,)*(tensor.ndim-2))
            return torch.take_along_dim(tensor, indices, dim=1).reshape(-1)

        traj_stats = {
            k: take_first_episode(v)
            for k, v in trajs[("next", "stats")].cpu().items()
        }

        info = {
            "eval/stats." + k: torch.mean(v.float()).item()
            for k, v in traj_stats.items()
        }

        # log video
        info["recording"] = wandb.Video(
            render_callback.get_video_array(axes="t c h w"),
            fps=0.5 / (cfg.sim.dt * cfg.sim.substeps),
            format="mp4"
        )

        # log distributions
        # df = pd.DataFrame(traj_stats)
        # table = wandb.Table(dataframe=df)
        # info["eval/return"] = wandb.plot.histogram(table, "return")
        # info["eval/episode_len"] = wandb.plot.histogram(table, "episode_len")

        return info

    pbar = tqdm(collector, total=total_frames//frames_per_batch)
    env.train()
    for i, data in enumerate(pbar):
        info = {"env_frames": collector._frames, "rollout_fps": collector._fps}
        episode_stats.add(data.to_tensordict())

        if len(episode_stats) >= base_env.num_envs:
            stats = {
                "train/" + (".".join(k) if isinstance(k, tuple) else k): torch.mean(v.float()).item()
                for k, v in episode_stats.pop().items(True, True)
            }
            info.update(stats)

        info.update(policy.train_op(data.to_tensordict()))

        if eval_interval > 0 and i % eval_interval == 0:
            logging.info(f"Eval at {collector._frames} steps.")
            info.update(evaluate())
            env.train()
            base_env.train()

        if save_interval > 0 and i % save_interval == 0:
            try:
                ckpt_path = os.path.join(run.dir, f"checkpoint_{collector._frames}.pt")
                torch.save(policy.state_dict(), ckpt_path)
                logging.info(f"Saved checkpoint to {str(ckpt_path)}")
            except AttributeError:
                logging.warning(f"Policy {policy} does not implement `.state_dict()`")

        run.log(info)
        print(OmegaConf.to_yaml({k: v for k, v in info.items() if isinstance(v, float)}))

        pbar.set_postfix({"rollout_fps": collector._fps, "frames": collector._frames})

        if max_iters > 0 and i >= max_iters - 1:
            break

    # logging.info(f"Final Eval at {collector._frames} steps.")
    # info = {"env_frames": collector._frames}
    # info.update(evaluate())
    # run.log(info)

    try:
        ckpt_path = os.path.join(run.dir, "checkpoint_final.pt")
        torch.save(policy.state_dict(), ckpt_path)

        model_artifact = wandb.Artifact(
            f"{cfg.task.name}-{cfg.algo.name.lower()}",
            type="model",
            description=f"{cfg.task.name}-{cfg.algo.name.lower()}",
            metadata=dict(cfg))

        model_artifact.add_file(ckpt_path)
        wandb.save(ckpt_path)
        run.log_artifact(model_artifact)

        logging.info(f"Saved checkpoint to {str(ckpt_path)}")
    except AttributeError:
        logging.warning(f"Policy {policy} does not implement `.state_dict()`")

    # upload model to huggingface
    if cfg.get("upload_model", False):
        from marinegym.utils.huggingface import push_to_hub

        repo_name = f"{cfg.task.name}-{cfg.algo.name.lower()}-seed{cfg.seed}"
        logging.info(f"Uploading model to HuggingFace: {repo_name}")
        logging.info(f"Check: {cfg.task.name}")
        repo_id = f"{cfg.hf_entity}/{repo_name}" if cfg.get("hf_entity") else repo_name

        # episodic_returns = episode_stats.get("stats/return", [])

        video_folder = f"{run.dir}/videos"
        if not os.path.exists(video_folder) or not any(Path(video_folder).glob("*.mp4")):
            logging.warning(f"Warning: No video found in {video_folder}. Skipping video upload.")
            video_folder = ""

        push_to_hub(
            cfg,
            [0.],  # TODO: fix this
            repo_id,
            cfg.algo.name,
            run.dir,
            video_folder,
            create_pr=cfg.get("create_pr", False),
            private=cfg.get("hf_private", False)
        )

    wandb.finish()

    simulation_app.close()


if __name__ == "__main__":
    main()