Image-Text-to-Text
PEFT
Safetensors
conversational
magistermilitum commited on
Commit
8b471b8
·
verified ·
1 Parent(s): 2a72a63

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -168
README.md CHANGED
@@ -1,29 +1,36 @@
1
  ---
2
  base_model: openbmb/MiniCPM-Llama3-V-2_5
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
11
 
12
- ## Model Details
13
-
14
  ### Model Description
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
@@ -35,168 +42,94 @@ library_name: peft
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
  - PEFT 0.14.1.dev0
 
1
  ---
2
  base_model: openbmb/MiniCPM-Llama3-V-2_5
3
  library_name: peft
4
+ license: mit
5
+ datasets:
6
+ - magistermilitum/Tridis
7
+ - CATMuS/medieval
8
+ language:
9
+ - la
10
+ - fr
11
+ - es
12
+ - de
13
+ pipeline_tag: image-text-to-text
14
  ---
15
 
16
  # Model Card for Model ID
17
 
18
+ This is a first model abble to switch adapters between two transcription styles for Wertern ancient manuscripts:
19
 
20
+ ABBreviated style: Keeping the original abbreviations from the manuscripts using MUFI characters
21
+ NOT_ABBreviated style : Developping the abbreviations and symbols used in the manuscript to produce a normalized text
22
 
23
 
 
 
24
  ### Model Description
25
 
26
  <!-- Provide a longer summary of what this model is. -->
27
 
28
 
29
 
30
+ - **Developed by:** [Sergio Torres Aguilar]
31
+ - **Model type:** [Multimodal]
32
+ - **Language(s) (NLP):** [Latin, French, Spanish, German]
33
+ - **License:** [MIT]
 
 
 
34
 
35
  ### Model Sources [optional]
36
 
 
42
 
43
  ## Uses
44
 
45
+ The model use two light PEFT adapter added to the MiniCPM-Llama3-V-2_5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  ## How to Get Started with the Model
49
 
50
+ The following code is intended to produce both transcription styles based on a folder containing graphical manuscripts lines:
51
+
52
+ ```python
53
+ from transformers import AutoModelForCausalLM, AutoTokenizer
54
+ from peft import PeftModel
55
+ import torch
56
+ from PIL import Image
57
+ import os
58
+ from tqdm import tqdm
59
+ import json
60
+
61
+ # Configuration
62
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
63
+ model_name = "openbmb/MiniCPM-Llama3-V-2_5"
64
+ abbr_adapters = "magistermilitum/HTR_ABBR_minicpm"
65
+ not_abbr_adapters = "magistermilitum/HTR_NOT_ABBR_minicpm"
66
+
67
+ image_folder = "/your/images/folder/path"
68
+
69
+ class TranscriptionModel:
70
+ """Handles model loading, adapter switching, and transcription generation."""
71
+ def __init__(self, model_name, abbr_adapters, not_abbr_adapters, device):
72
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
73
+ self.base_model = AutoModelForCausalLM.from_pretrained(
74
+ model_name, trust_remote_code=True, attn_implementation='sdpa', torch_dtype=torch.bfloat16, token=True
75
+ )
76
+ self.base_model = PeftModel.from_pretrained(self.base_model, abbr_adapters, adapter_name="ABBR")
77
+ self.base_model.load_adapter(not_abbr_adapters, adapter_name="NOT_ABBR")
78
+ self.base_model.set_adapter("ABBR") # Set default adapter
79
+ self.base_model.to(device).eval()
80
+
81
+ def generate(self, adapter, image):
82
+ """Generate transcription for the given adapter and image."""
83
+ if hasattr(self.base_model, "past_key_values"):
84
+ self.base_model.past_key_values = None
85
+ self.base_model.set_adapter(adapter)
86
+ msgs = [{"role": "user", "content": [f"Transcribe this manuscript line in mode <{adapter}>:", image]}]
87
+ with torch.no_grad():
88
+ res = self.base_model.chat(image=image, msgs=msgs, tokenizer=self.tokenizer, max_new_tokens=128)
89
+ # Remove <ABBR> and <NOT_ABBR> tokens from the output
90
+ res = res.replace(f"<{adapter}>", "").replace(f"</{adapter}>", "")
91
+ return res
92
+
93
+
94
+ class TranscriptionPipeline:
95
+ """Handles image processing, transcription, and result saving."""
96
+ def __init__(self, model, image_folder):
97
+ self.model = model
98
+ self.image_folder = image_folder
99
+
100
+ def run_inference(self):
101
+ """Process all images in the folder and generate transcriptions."""
102
+ results = []
103
+ for image_file in tqdm([f for f in os.listdir(self.image_folder)[:20] if f.endswith(('.png', '.jpg', '.jpeg'))]):
104
+ image = Image.open(os.path.join(self.image_folder, image_file)).convert("RGB")
105
+ print(f"\nProcessing image: {image_file}")
106
+
107
+ # Generate transcriptions for both adapters
108
+ transcriptions = {
109
+ adapter: self.model.generate(adapter, image)
110
+ for adapter in ["ABBR", "NOT_ABBR"]
111
+ }
112
+ for adapter, res in transcriptions.items():
113
+ print(f"Mode ({adapter}): {res}")
114
+ results.append({"image": image_file, "transcriptions": transcriptions})
115
+
116
+ #image.show() #Optional
117
+
118
+ # Save results to a JSON file
119
+ with open("transcriptions_results.json", "w", encoding="utf-8") as f:
120
+ json.dump(results, f, ensure_ascii=False, indent=4)
121
+
122
+
123
+ # Initialize and run the pipeline
124
+ model = TranscriptionModel(model_name, abbr_adapters, not_abbr_adapters, device)
125
+ TranscriptionPipeline(model, image_folder).run_inference()
126
+ ```
127
+
128
+
129
+
130
+ ## Citation
131
+
132
+ Sergio Torres Aguilar. Dual-Style Transcription of Historical Manuscripts based on Multimodal Small Language Models with Switchable Adapters. 2025. https://hal.science/hal-04983305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
 
 
134
 
135
  - PEFT 0.14.1.dev0