--- library_name: transformers license: apache-2.0 base_model: luiz-milare/whisper-medium-medical-v4 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-medical-refined-v1 results: [] --- # whisper-medium-medical-refined-v1 This model is a fine-tuned version of [luiz-milare/whisper-medium-medical-v4](https://huggingface.co/luiz-milare/whisper-medium-medical-v4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2670 - Wer: 20.5464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.109 | 0.4980 | 141 | 0.2438 | 19.8619 | | 0.1185 | 0.9960 | 282 | 0.2499 | 20.6108 | | 0.1186 | 1.4909 | 423 | 0.2533 | 21.2426 | | 0.0984 | 1.9890 | 564 | 0.2529 | 21.1315 | | 0.0734 | 2.4839 | 705 | 0.2710 | 20.5991 | | 0.077 | 2.9819 | 846 | 0.2670 | 20.5464 | ### Framework versions - Transformers 4.52.0 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2