Commit
·
5fe8b41
1
Parent(s):
5243f61
Update to follow HF naming scheme
Browse files- rita_modeling.py +21 -17
rita_modeling.py
CHANGED
|
@@ -129,8 +129,8 @@ class SelfAttention(nn.Module):
|
|
| 129 |
def forward(
|
| 130 |
self,
|
| 131 |
x,
|
| 132 |
-
|
| 133 |
-
|
| 134 |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
| 135 |
|
| 136 |
N, L, D = x.size() # Batch_size, Context_size, d_model
|
|
@@ -153,14 +153,14 @@ class SelfAttention(nn.Module):
|
|
| 153 |
# causal self-attention; Self-attend: (N, nh, L, hs) x (N, nh, hs, L) -> (N, nh, L, L)
|
| 154 |
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
| 155 |
|
| 156 |
-
if
|
| 157 |
-
att[:,:,-L:, -L: ].masked_fill_(
|
| 158 |
|
| 159 |
att = (
|
| 160 |
att.transpose(0, 2)
|
| 161 |
-
.masked_fill(
|
| 162 |
.transpose(0, 2)
|
| 163 |
-
if
|
| 164 |
else att
|
| 165 |
)
|
| 166 |
|
|
@@ -197,11 +197,11 @@ class DecoderLayer(nn.Module):
|
|
| 197 |
def forward(
|
| 198 |
self,
|
| 199 |
x: torch.FloatTensor,
|
| 200 |
-
|
| 201 |
-
|
| 202 |
) -> torch.FloatTensor:
|
| 203 |
y = self.attn_norm(x)
|
| 204 |
-
y = self.self_attention(y,
|
| 205 |
x = x + self.attn_dropout(y)
|
| 206 |
|
| 207 |
y = self.mlp_norm(x)
|
|
@@ -228,27 +228,27 @@ class RITAModel(PreTrainedModel):
|
|
| 228 |
input_ids=None,
|
| 229 |
past_key_values=None, # NOT USED
|
| 230 |
attention_mask=None,
|
|
|
|
| 231 |
token_type_ids=None, # NOT USED
|
| 232 |
position_ids=None, # NOT USED
|
| 233 |
head_mask=None, # NOT USED
|
| 234 |
inputs_embeds=None,
|
| 235 |
encoder_hidden_states=None, # NOT USED
|
| 236 |
-
|
| 237 |
labels=None,
|
| 238 |
use_cache=None, # NOT USED
|
| 239 |
output_attentions=None, # NOT USED
|
| 240 |
output_hidden_states=None, # NOT USED
|
| 241 |
return_dict=None # NOT USED
|
| 242 |
) -> torch.FloatTensor:
|
| 243 |
-
|
| 244 |
if inputs_embeds == None:
|
| 245 |
x = self.embedding(input_ids) # N x L x D
|
| 246 |
else:
|
| 247 |
x = inputs_embeds
|
| 248 |
-
if
|
| 249 |
-
|
| 250 |
for layer in self.layers:
|
| 251 |
-
x = layer(x,
|
| 252 |
x = self.final_norm(x) # N x L x D
|
| 253 |
|
| 254 |
return BaseModelOutput(
|
|
@@ -295,23 +295,25 @@ class RITAModelForCausalLM(PreTrainedModel):
|
|
| 295 |
input_ids=None,
|
| 296 |
past_key_values=None, # NOT USED
|
| 297 |
attention_mask=None,
|
|
|
|
| 298 |
token_type_ids=None, # NOT USED
|
| 299 |
position_ids=None, # NOT USED
|
| 300 |
head_mask=None, # NOT USED
|
| 301 |
inputs_embeds=None,
|
| 302 |
encoder_hidden_states=None, # NOT USED
|
| 303 |
-
|
| 304 |
labels=None,
|
| 305 |
use_cache=None, # NOT USED
|
| 306 |
output_attentions=None, # NOT USED
|
| 307 |
output_hidden_states=None, # NOT USED
|
| 308 |
return_dict=None # NOT USED
|
| 309 |
) -> torch.FloatTensor:
|
| 310 |
-
|
| 311 |
transformer_outputs = self.transformer(
|
| 312 |
input_ids,
|
| 313 |
past_key_values=past_key_values,
|
| 314 |
-
|
|
|
|
| 315 |
token_type_ids=token_type_ids,
|
| 316 |
position_ids=position_ids,
|
| 317 |
head_mask=head_mask,
|
|
@@ -382,6 +384,7 @@ class RITAModelForSequenceClassification(PreTrainedModel):
|
|
| 382 |
input_ids=None,
|
| 383 |
past_key_values=None,
|
| 384 |
attention_mask=None,
|
|
|
|
| 385 |
token_type_ids=None,
|
| 386 |
position_ids=None,
|
| 387 |
head_mask=None,
|
|
@@ -404,6 +407,7 @@ class RITAModelForSequenceClassification(PreTrainedModel):
|
|
| 404 |
input_ids,
|
| 405 |
past_key_values=past_key_values,
|
| 406 |
attention_mask=attention_mask,
|
|
|
|
| 407 |
token_type_ids=token_type_ids,
|
| 408 |
position_ids=position_ids,
|
| 409 |
head_mask=head_mask,
|
|
|
|
| 129 |
def forward(
|
| 130 |
self,
|
| 131 |
x,
|
| 132 |
+
causal_mask: Optional[torch.BoolTensor] = None,
|
| 133 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
| 134 |
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
| 135 |
|
| 136 |
N, L, D = x.size() # Batch_size, Context_size, d_model
|
|
|
|
| 153 |
# causal self-attention; Self-attend: (N, nh, L, hs) x (N, nh, hs, L) -> (N, nh, L, L)
|
| 154 |
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
| 155 |
|
| 156 |
+
if causal_mask is not None:
|
| 157 |
+
att[:,:,-L:, -L: ].masked_fill_(causal_mask.view(1, 1, L, L), float("-inf"))
|
| 158 |
|
| 159 |
att = (
|
| 160 |
att.transpose(0, 2)
|
| 161 |
+
.masked_fill(attention_mask.view(1, 1, N, L)==0, float("-inf"))
|
| 162 |
.transpose(0, 2)
|
| 163 |
+
if attention_mask is not None
|
| 164 |
else att
|
| 165 |
)
|
| 166 |
|
|
|
|
| 197 |
def forward(
|
| 198 |
self,
|
| 199 |
x: torch.FloatTensor,
|
| 200 |
+
causal_mask: torch.BoolTensor,
|
| 201 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
| 202 |
) -> torch.FloatTensor:
|
| 203 |
y = self.attn_norm(x)
|
| 204 |
+
y = self.self_attention(y, causal_mask=causal_mask, attention_mask=attention_mask)
|
| 205 |
x = x + self.attn_dropout(y)
|
| 206 |
|
| 207 |
y = self.mlp_norm(x)
|
|
|
|
| 228 |
input_ids=None,
|
| 229 |
past_key_values=None, # NOT USED
|
| 230 |
attention_mask=None,
|
| 231 |
+
causal_mask=None,
|
| 232 |
token_type_ids=None, # NOT USED
|
| 233 |
position_ids=None, # NOT USED
|
| 234 |
head_mask=None, # NOT USED
|
| 235 |
inputs_embeds=None,
|
| 236 |
encoder_hidden_states=None, # NOT USED
|
| 237 |
+
encoder_causal_mask=None, # NOT USED
|
| 238 |
labels=None,
|
| 239 |
use_cache=None, # NOT USED
|
| 240 |
output_attentions=None, # NOT USED
|
| 241 |
output_hidden_states=None, # NOT USED
|
| 242 |
return_dict=None # NOT USED
|
| 243 |
) -> torch.FloatTensor:
|
|
|
|
| 244 |
if inputs_embeds == None:
|
| 245 |
x = self.embedding(input_ids) # N x L x D
|
| 246 |
else:
|
| 247 |
x = inputs_embeds
|
| 248 |
+
if causal_mask == None:
|
| 249 |
+
causal_mask = (torch.triu(torch.ones(input_ids.size(1), input_ids.size(1))) == 0).transpose(0, 1).contiguous().to(input_ids.device)
|
| 250 |
for layer in self.layers:
|
| 251 |
+
x = layer(x, causal_mask=causal_mask, attention_mask=attention_mask)
|
| 252 |
x = self.final_norm(x) # N x L x D
|
| 253 |
|
| 254 |
return BaseModelOutput(
|
|
|
|
| 295 |
input_ids=None,
|
| 296 |
past_key_values=None, # NOT USED
|
| 297 |
attention_mask=None,
|
| 298 |
+
causal_mask=None,
|
| 299 |
token_type_ids=None, # NOT USED
|
| 300 |
position_ids=None, # NOT USED
|
| 301 |
head_mask=None, # NOT USED
|
| 302 |
inputs_embeds=None,
|
| 303 |
encoder_hidden_states=None, # NOT USED
|
| 304 |
+
encoder_causal_mask=None, # NOT USED
|
| 305 |
labels=None,
|
| 306 |
use_cache=None, # NOT USED
|
| 307 |
output_attentions=None, # NOT USED
|
| 308 |
output_hidden_states=None, # NOT USED
|
| 309 |
return_dict=None # NOT USED
|
| 310 |
) -> torch.FloatTensor:
|
| 311 |
+
|
| 312 |
transformer_outputs = self.transformer(
|
| 313 |
input_ids,
|
| 314 |
past_key_values=past_key_values,
|
| 315 |
+
causal_mask=causal_mask,
|
| 316 |
+
attention_mask = attention_mask,
|
| 317 |
token_type_ids=token_type_ids,
|
| 318 |
position_ids=position_ids,
|
| 319 |
head_mask=head_mask,
|
|
|
|
| 384 |
input_ids=None,
|
| 385 |
past_key_values=None,
|
| 386 |
attention_mask=None,
|
| 387 |
+
causal_mask=None,
|
| 388 |
token_type_ids=None,
|
| 389 |
position_ids=None,
|
| 390 |
head_mask=None,
|
|
|
|
| 407 |
input_ids,
|
| 408 |
past_key_values=past_key_values,
|
| 409 |
attention_mask=attention_mask,
|
| 410 |
+
causal_mask=causal_mask,
|
| 411 |
token_type_ids=token_type_ids,
|
| 412 |
position_ids=position_ids,
|
| 413 |
head_mask=head_mask,
|