t1_25k_v2_tag5
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the t1_25k_v2_tag5 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2831
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.3339 | 0.0833 | 100 | 0.3726 |
| 0.3653 | 0.1667 | 200 | 0.3403 |
| 0.3069 | 0.25 | 300 | 0.3316 |
| 0.3415 | 0.3333 | 400 | 0.3231 |
| 0.3585 | 0.4167 | 500 | 0.3171 |
| 0.3065 | 0.5 | 600 | 0.3067 |
| 0.3224 | 0.5833 | 700 | 0.3012 |
| 0.2843 | 0.6667 | 800 | 0.2934 |
| 0.303 | 0.75 | 900 | 0.2890 |
| 0.3089 | 0.8333 | 1000 | 0.2836 |
| 0.2656 | 0.9167 | 1100 | 0.2829 |
| 0.2509 | 1.0 | 1200 | 0.2831 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 3
Model tree for lemonhat/Llama-3.1-8B-Instruct-t1_25k_v2_tag5
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct