Feature Extraction
Transformers
PyTorch
e2d2
custom_code
File size: 28,876 Bytes
6ba80c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
from dataclasses import dataclass
from functools import partial
from typing import Optional, Tuple, Union

import torch
from torch import nn
from transformers import AutoConfig, AutoModelForCausalLM
from transformers.cache_utils import DynamicCache
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    ModelOutput,
)
from transformers.processing_utils import Unpack
from transformers.utils import logging

from .backbone_custom_modeling_qwen3 import CustomQwen3ForCausalLM

try:
    from torch.nn.attention.flex_attention import BlockMask
except ImportError:
    BlockMask = None


logger = logging.get_logger(__name__)


@dataclass
class EncoderBaseModelOutputWithPast(ModelOutput):
    """Custom (encoder) model output.
    Stores previous decoder and updated encoder cache and encoder last hidden state.
    """

    past_key_values: Optional[Union[Tuple[Tuple[torch.FloatTensor]], DynamicCache]] = (
        None
    )
    encoder_last_hidden_state: Optional[torch.FloatTensor] = None
    encoder_past_key_values: Optional[
        Union[Tuple[Tuple[torch.FloatTensor]], DynamicCache]
    ] = None


@dataclass
class DecoderCausalLMOutputWithPast(ModelOutput):
    """Custom (decoder) model output.
    Stores previous encoder and updated decoder cache and decoder logits.
    """

    logits: Optional[torch.FloatTensor] = None
    past_key_values: Optional[Union[Tuple[Tuple[torch.FloatTensor]], DynamicCache]] = (
        None
    )
    encoder_past_key_values: Optional[
        Union[Tuple[Tuple[torch.FloatTensor]], DynamicCache]
    ] = None


class LLMasEncoderDecoder(nn.Module):
    def __init__(
        self,
        pretrained_model_name_or_path: str,
        max_length: int,
        attn_backend: str = "sdpa",
        freeze_encoder: bool = False,
        reinit_encoder: bool = False,
        reinit_decoder: bool = False,
        tie_encoder_decoder_weights: bool = False,
        use_encoder_causal_mask: bool = False,
        num_encoder_layers: int = -1,
        num_decoder_layers: int = -1,
        keep_top_encoder_layers: bool = False,
        keep_top_decoder_layers: bool = False,
        use_gradient_checkpointing: bool = False,
        **llm_init_kwargs,
    ):
        assert not (tie_encoder_decoder_weights and reinit_decoder), (
            "Cannot tie encoder-decoder weights and reinitialize decoder."
        )
        assert not (tie_encoder_decoder_weights and freeze_encoder), (
            "Cannot freeze encoder weights when tying encoder-decoder weights."
        )
        super().__init__()
        self.use_encoder_causal_mask = use_encoder_causal_mask
        self.tie_encoder_decoder_weights = tie_encoder_decoder_weights

        if reinit_encoder:
            assert num_encoder_layers > 0
            encoder_config = AutoConfig.from_pretrained(
                pretrained_model_name_or_path,
                trust_remote_code=True,
                num_hidden_layers=num_encoder_layers,
                attn_implementation=attn_backend,
                **llm_init_kwargs,
            )
            self.encoder = CustomQwen3ForCausalLM(encoder_config)
        else:
            self.encoder = CustomQwen3ForCausalLM.from_pretrained(
                pretrained_model_name_or_path,
                trust_remote_code=True,
                attn_implementation=attn_backend,
                **llm_init_kwargs,
            )
            assert num_encoder_layers <= len(self.encoder.model.layers), (
                f"Cannot keep {num_encoder_layers} layers. "
                f"Pre-trained model only has {len(self.encoder.model.layers)} layers."
            )
            num_encoder_layers = (
                len(self.encoder.model.layers)
                if num_encoder_layers == -1
                else num_encoder_layers
            )
            if keep_top_encoder_layers:
                self.encoder.model.layers = self.encoder.model.layers[
                    -num_encoder_layers:
                ]
            else:
                self.encoder.model.layers = self.encoder.model.layers[
                    :num_encoder_layers
                ]

        if freeze_encoder:
            for name, param in self.encoder.named_parameters():
                if "embed_tokens" not in name:
                    param.requires_grad = False
        if use_gradient_checkpointing:
            self.encoder.gradient_checkpointing_enable()

        if tie_encoder_decoder_weights:
            self.decoder = self.encoder
            num_decoder_layers = (
                len(self.decoder.model.layers)
                if num_decoder_layers == -1
                else num_decoder_layers
            )
            assert num_decoder_layers <= len(self.decoder.model.layers), (
                f"Cannot keep {num_decoder_layers} layers. "
                f"Pre-trained model only has {len(self.decoder.model.layers)} layers."
            )
            # Keep **top** layers when tying weights
            self.decoder_layer_idxs = list(range(len(self.encoder.model.layers)))[
                -num_decoder_layers:
            ]

        else:
            if reinit_decoder:
                assert num_decoder_layers > 0
                decoder_config = AutoConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    trust_remote_code=True,
                    num_hidden_layers=num_decoder_layers,
                    attn_implementation=attn_backend,
                    **llm_init_kwargs,
                )
                self.decoder = CustomQwen3ForCausalLM(decoder_config)
            else:
                self.decoder = CustomQwen3ForCausalLM.from_pretrained(
                    pretrained_model_name_or_path,
                    trust_remote_code=True,
                    attn_implementation=attn_backend,
                    **llm_init_kwargs,
                )
                assert num_decoder_layers <= len(self.decoder.model.layers), (
                    f"Cannot keep {num_decoder_layers} layers. "
                    f"Pre-trained model only has {len(self.decoder.layers)} layers."
                )
                if keep_top_decoder_layers:
                    self.decoder.model.layers = self.decoder.model.layers[
                        -num_decoder_layers:
                    ]
                else:
                    self.decoder.model.layers = self.decoder.model.layers[
                        :num_decoder_layers
                    ]
            del self.decoder.model.embed_tokens
            # if in the original LM, the lm_head is weight-tied to embedding,
            # point decoder lm_head to encoder's (instead of initializing separately)
            if (
                self.encoder.lm_head.weight.data_ptr()
                == self.encoder.model.embed_tokens.weight.data_ptr()
            ):
                self.decoder.lm_head = self.encoder.lm_head
            else:
                del self.encoder.lm_head
            if use_gradient_checkpointing:
                self.decoder.gradient_checkpointing_enable()
        self.max_length = max_length

    def freeze_encoder(self):
        for p in self.encoder.model.parameters():
            p.requires_grad = False

    def unfreeze_encoder(self):
        for p in self.encoder.model.parameters():
            p.requires_grad = True

    # noinspection PyUnusedLocal
    def forward(
        self,
        # Decoder inputs
        input_ids: torch.LongTensor,
        attention_mask: Optional[Union[torch.FloatTensor, BlockMask]] = None,
        position_ids: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        past_key_values: Optional[DynamicCache] = None,
        encoder_last_hidden_state: Optional[torch.FloatTensor] = None,
        # Encoder inputs
        encoder_input_ids: Optional[torch.LongTensor] = None,
        encoder_attention_mask: Optional[Union[torch.FloatTensor, BlockMask]] = None,
        encoder_position_ids: Optional[torch.LongTensor] = None,
        encoder_cache_position: Optional[torch.LongTensor] = None,
        encoder_past_key_values: Optional[DynamicCache] = None,
        # Additional args
        fix_cache_length: bool = True,  # Not used; compatibility with other backbones
        return_updated_cache: bool = False,
        **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
    ) -> Union[DecoderCausalLMOutputWithPast, EncoderBaseModelOutputWithPast]:
        # During training/eval encoder_last_hidden_state is None.
        # During generation encoder_last_hidden_state can be not None.
        new_seen_tokens = (
            0
            if encoder_last_hidden_state is None
            else encoder_last_hidden_state.shape[1]
        )
        # Encode clean tokens
        if encoder_input_ids is not None:
            if self.use_encoder_causal_mask:
                encoder_attention_mask = None  # None --> enforces use of causal mask
            if encoder_cache_position is None and encoder_position_ids is not None:
                encoder_cache_position = encoder_position_ids[0]
            encoder_output = self.encoder.model(
                input_ids=encoder_input_ids,
                attention_mask=encoder_attention_mask,
                position_ids=encoder_position_ids,
                use_cache=True,
                past_key_values=encoder_past_key_values,
                cache_position=encoder_cache_position,
            )
            if return_updated_cache:
                # encoder_output.past_key_values now contains latest encoder input
                return EncoderBaseModelOutputWithPast(
                    encoder_last_hidden_state=encoder_output.last_hidden_state,
                    encoder_past_key_values=encoder_output.past_key_values,
                    past_key_values=past_key_values,
                )
            encoder_last_hidden_state = encoder_output.last_hidden_state

        # Run decoder with xattn to clean token hidden states
        if encoder_last_hidden_state is None:  # No new encoder tokens
            q_start_idx = 0
            decoder_hidden_states = self.encoder.model.embed_tokens(input_ids)
            if cache_position is None:
                if position_ids is not None:
                    cache_position = position_ids[0]
                else:
                    past_seen_tokens = (
                        past_key_values.get_seq_length()
                        if past_key_values is not None
                        else 0
                    )
                    cache_position = torch.arange(
                        past_seen_tokens,
                        past_seen_tokens + decoder_hidden_states.shape[1],
                        device=decoder_hidden_states.device,
                    )
            if position_ids is None:
                position_ids = cache_position.unsqueeze(0)
            decoder_position_embeddings = self.decoder.model.rotary_emb(
                decoder_hidden_states, position_ids
            )
        else:
            q_start_idx = encoder_last_hidden_state.shape[1]
            decoder_hidden_states = self.encoder.model.embed_tokens(input_ids)
            decoder_hidden_states = torch.cat(
                [
                    encoder_last_hidden_state,
                    decoder_hidden_states,
                ],
                dim=1,
            )
            if cache_position is None:
                if position_ids is not None:
                    cache_position = position_ids[0]
                else:
                    past_seen_tokens = (
                        past_key_values.get_seq_length()
                        if past_key_values is not None
                        else 0
                    )
                    cache_position = torch.cat(
                        [
                            torch.arange(  # clean token position ids
                                past_seen_tokens,
                                past_seen_tokens + encoder_last_hidden_state.shape[1],
                                device=decoder_hidden_states.device,
                            ),
                            torch.arange(  # noisy position ids
                                past_seen_tokens + new_seen_tokens,
                                past_seen_tokens + new_seen_tokens + input_ids.shape[1],
                                device=decoder_hidden_states.device,
                            ),
                        ],
                        dim=-1,
                    )
            if position_ids is None:
                position_ids = cache_position.unsqueeze(0)
            decoder_position_embeddings = self.decoder.model.rotary_emb(
                decoder_hidden_states, position_ids
            )

        if hasattr(self.decoder.model, "_update_causal_mask"):  # bc on transformers
            # noinspection PyProtectedMember
            attention_mask = self.decoder.model._update_causal_mask(
                attention_mask=attention_mask,
                input_tensor=decoder_hidden_states,
                cache_position=cache_position,
                past_key_values=past_key_values,
                output_attentions=False,
            )
        for decoder_layer in self.decoder.model.layers:
            layer_idx = decoder_layer.self_attn.layer_idx
            if (
                self.tie_encoder_decoder_weights
                and layer_idx not in self.decoder_layer_idxs
            ):
                continue
            # past_key_values gets updated in-place.
            # Record previous length to re-truncate after each layer forward
            if past_key_values is not None and len(past_key_values) > layer_idx:
                prev_cache_len = past_key_values[layer_idx][0].shape[-2]  # type: ignore
            else:
                prev_cache_len = 0
            cache_len = prev_cache_len + new_seen_tokens

            if self.decoder.model.gradient_checkpointing and self.training:
                # noinspection PyProtectedMember
                decoder_hidden_states = self.decoder._gradient_checkpointing_func(
                    partial(decoder_layer.__call__, **flash_attn_kwargs),
                    decoder_hidden_states,  # hidden_states=,
                    attention_mask,  # attention_mask=,
                    position_ids,  # position_ids=,
                    past_key_values,  # past_key_value=,
                    False,  # output_attentions=,
                    True,  # use_cache=,
                    cache_position,  # cache_position=,
                    decoder_position_embeddings,  # position_embeddings=,
                    q_start_idx,  # q_start_idx=
                )[0]  # Shape: (input_ids.shape[0], input_ids.shape[1], hidden_dim)
            else:
                decoder_hidden_states = decoder_layer(
                    hidden_states=decoder_hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=False,
                    use_cache=True,
                    cache_position=cache_position,
                    position_embeddings=decoder_position_embeddings,
                    q_start_idx=q_start_idx,  # Indicates where to slice output
                    **flash_attn_kwargs,
                )[0]  # Shape: (input_ids.shape[0], input_ids.shape[1], hidden_dim)
            # Update decoder_hidden_states
            if q_start_idx > 0:
                decoder_hidden_states = torch.cat(
                    [
                        encoder_last_hidden_state,
                        decoder_hidden_states,
                    ],
                    dim=1,
                )

            if past_key_values is not None:
                # DynamicCache extends along sequence dimension by default;
                # truncate back to original cache len + encoder output length
                past_key_values.key_cache[layer_idx] = past_key_values.key_cache[
                    layer_idx
                ][..., :cache_len, :]
                past_key_values.value_cache[layer_idx] = past_key_values.value_cache[
                    layer_idx
                ][..., :cache_len, :]
        decoder_hidden_states = self.decoder.model.norm(
            decoder_hidden_states[:, q_start_idx:, :]
        )
        logits = self.decoder.lm_head(decoder_hidden_states)
        return DecoderCausalLMOutputWithPast(
            logits=logits,
            past_key_values=past_key_values,
            encoder_past_key_values=encoder_past_key_values,
            # Do not need to store encoder_last_hidden_state.
            # If it was passed in, then it has become part of the past_key_values cache.
        )


class LLMasEncoderDecoderShareKV(nn.Module):
    def __init__(
        self,
        pretrained_model_name_or_path: str,
        max_length: int,
        attn_backend: str = "sdpa",
        freeze_encoder: bool = False,
        reinit_encoder: bool = False,
        reinit_decoder: bool = False,
        tie_encoder_decoder_weights: bool = False,
        use_encoder_causal_mask: bool = False,
        num_encoder_layers: int = -1,
        num_decoder_layers: int = -1,
        keep_top_encoder_layers: bool = False,
        keep_top_decoder_layers: bool = False,
        use_gradient_checkpointing: bool = False,
        **llm_init_kwargs,
    ):
        assert not (tie_encoder_decoder_weights and reinit_decoder), (
            "Cannot tie encoder-decoder weights and reinitialize decoder."
        )
        assert not (tie_encoder_decoder_weights and freeze_encoder), (
            "Cannot freeze encoder weights when tying encoder-decoder weights."
        )
        super().__init__()
        self.use_encoder_causal_mask = use_encoder_causal_mask
        self.tie_encoder_decoder_weights = tie_encoder_decoder_weights

        if reinit_encoder:
            assert num_encoder_layers > 0
            encoder_config = AutoConfig.from_pretrained(
                pretrained_model_name_or_path,
                trust_remote_code=True,
                num_hidden_layers=num_encoder_layers,
                attn_implementation=attn_backend,
                **llm_init_kwargs,
            )
            self.encoder = AutoModelForCausalLM.from_config(encoder_config)
        else:
            self.encoder = AutoModelForCausalLM.from_pretrained(
                pretrained_model_name_or_path,
                trust_remote_code=True,
                attn_implementation=attn_backend,
                **llm_init_kwargs,
            )
            assert num_encoder_layers <= len(self.encoder.model.layers), (
                f"Cannot keep {num_encoder_layers} layers. "
                f"Pre-trained model only has {len(self.encoder.model.layers)} layers."
            )
            num_encoder_layers = (
                len(self.encoder.model.layers)
                if num_encoder_layers == -1
                else num_encoder_layers
            )
            if keep_top_encoder_layers:
                self.encoder.model.layers = self.encoder.model.layers[
                    -num_encoder_layers:
                ]
            else:
                self.encoder.model.layers = self.encoder.model.layers[
                    :num_encoder_layers
                ]

        if freeze_encoder:
            for name, param in self.encoder.named_parameters():
                if "embed_tokens" not in name:
                    param.requires_grad = False
        if use_gradient_checkpointing:
            self.encoder.gradient_checkpointing_enable()

        if tie_encoder_decoder_weights:
            self.decoder = self.encoder
            num_decoder_layers = (
                len(self.decoder.model.layers)
                if num_decoder_layers == -1
                else num_decoder_layers
            )
            assert num_decoder_layers <= len(self.decoder.model.layers), (
                f"Cannot keep {num_decoder_layers} layers. "
                f"Pre-trained model only has {len(self.decoder.model.layers)} layers."
            )
            # Keep **top** layers when tying weights
            self.decoder_layer_idxs = list(range(len(self.encoder.model.layers)))[
                -num_decoder_layers:
            ]

        else:
            if reinit_decoder:
                assert num_decoder_layers > 0
                decoder_config = AutoConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    trust_remote_code=True,
                    num_hidden_layers=num_decoder_layers,
                    attn_implementation=attn_backend,
                    **llm_init_kwargs,
                )
                self.decoder = AutoModelForCausalLM(decoder_config)
            else:
                self.decoder = AutoModelForCausalLM.from_pretrained(
                    pretrained_model_name_or_path,
                    trust_remote_code=True,
                    attn_implementation=attn_backend,
                    **llm_init_kwargs,
                )
                assert num_decoder_layers <= len(self.decoder.model.layers), (
                    f"Cannot keep {num_decoder_layers} layers. "
                    f"Pre-trained model only has {len(self.decoder.layers)} layers."
                )
                if keep_top_decoder_layers:
                    self.decoder.model.layers = self.decoder.model.layers[
                        -num_decoder_layers:
                    ]
                else:
                    self.decoder.model.layers = self.decoder.model.layers[
                        :num_decoder_layers
                    ]
            del self.decoder.model.embed_tokens
            # Even for frozen encoder, ensure embedding tokens are trainable
            self.encoder.model.embed_tokens.requires_grad_(True)
            unused_self_attn_params = ["o_proj", "q_norm", "q_proj"]
            unused_layernorm_params = ["input_layernorm", "post_attention_layernorm"]
            for unused_param in unused_self_attn_params:
                if hasattr(self.encoder.model.layers[-1].self_attn, unused_param):
                    getattr(
                        self.encoder.model.layers[-1].self_attn, unused_param
                    ).requires_grad_(False)
            self.encoder.model.layers[-1].mlp.requires_grad_(False)
            self.encoder.model.norm.requires_grad_(False)
            for unused_param in unused_layernorm_params:
                if hasattr(self.encoder.model.layers[-1], unused_param):
                    getattr(self.encoder.model.layers[-1], unused_param).requires_grad_(
                        False
                    )
            # if in the original LM, the lm_head is weight-tied to embedding,
            # point decoder lm_head to encoder's (instead of initializing separately)
            if (
                self.encoder.lm_head.weight.data_ptr()
                == self.encoder.model.embed_tokens.weight.data_ptr()
            ):
                self.decoder.lm_head = self.encoder.lm_head
            else:
                del self.encoder.lm_head
            if use_gradient_checkpointing:
                self.decoder.gradient_checkpointing_enable()
        self.max_length = max_length

    def freeze_encoder(self):
        for p in self.encoder.model.parameters():
            p.requires_grad = False

    def unfreeze_encoder(self):
        for p in self.encoder.model.parameters():
            p.requires_grad = True

    # noinspection PyUnusedLocal
    def forward(
        self,
        # Decoder inputs
        input_ids: torch.LongTensor,
        attention_mask: Optional[Union[torch.FloatTensor, BlockMask]] = None,
        position_ids: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        past_key_values: Optional[DynamicCache] = None,
        encoder_last_hidden_state: Optional[torch.FloatTensor] = None,  # Not used
        # Encoder inputs
        encoder_input_ids: Optional[torch.LongTensor] = None,
        encoder_attention_mask: Optional[Union[torch.FloatTensor, BlockMask]] = None,
        encoder_position_ids: Optional[torch.LongTensor] = None,
        encoder_cache_position: Optional[torch.LongTensor] = None,
        encoder_past_key_values: Optional[DynamicCache] = None,  # Not used
        # Additional args
        fix_cache_length: bool = True,  # Not used; compatibility with other backbones
        return_updated_cache: bool = False,
        **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
    ) -> Union[CausalLMOutputWithPast, BaseModelOutputWithPast]:
        # Encode clean tokens
        if encoder_input_ids is not None:
            if self.use_encoder_causal_mask:
                encoder_attention_mask = None  # None --> enforces use of causal mask
            if encoder_cache_position is None and encoder_position_ids is not None:
                encoder_cache_position = encoder_position_ids[0]
            past_key_values = self.encoder.model(
                input_ids=encoder_input_ids,
                attention_mask=encoder_attention_mask,
                position_ids=encoder_position_ids,
                use_cache=True,
                past_key_values=past_key_values,
                cache_position=encoder_cache_position,
            ).past_key_values
            if return_updated_cache:
                # encoder_output.past_key_values now contains latest encoder input
                return BaseModelOutputWithPast(
                    past_key_values=past_key_values,
                )

        # Run decoder with xattn to clean token hidden states
        decoder_hidden_states = self.encoder.model.embed_tokens(input_ids)
        if cache_position is None:
            if position_ids is not None:
                cache_position = position_ids[0]
            else:  # During training / validation position_ids are not provided
                cache_position = torch.arange(
                    decoder_hidden_states.shape[1],
                    device=decoder_hidden_states.device,
                )
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)
        decoder_position_embeddings = self.decoder.model.rotary_emb(
            decoder_hidden_states, position_ids
        )

        if hasattr(self.decoder.model, "_update_causal_mask"):  # bc on transformers
            # noinspection PyProtectedMember
            attention_mask = self.decoder.model._update_causal_mask(
                attention_mask=attention_mask,
                input_tensor=decoder_hidden_states,
                cache_position=cache_position,
                past_key_values=past_key_values,
                output_attentions=False,
            )
        for decoder_layer in self.decoder.model.layers:
            layer_idx = decoder_layer.self_attn.layer_idx
            if (
                self.tie_encoder_decoder_weights
                and layer_idx not in self.decoder_layer_idxs
            ):
                continue
            # past_key_values gets updated in-place.
            # Record previous length to truncate after each layer forward
            if past_key_values is not None and len(past_key_values) > layer_idx:
                prev_cache_len = past_key_values[layer_idx][0].shape[-2]  # type: ignore
            else:
                prev_cache_len = 0

            decoder_hidden_states = decoder_layer(
                hidden_states=decoder_hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=False,
                use_cache=True,
                cache_position=position_ids[0],
                position_embeddings=decoder_position_embeddings,
                **flash_attn_kwargs,
            )[0]  # Shape: (input_ids.shape[0], input_ids.shape[1], hidden_dim)

            if past_key_values is not None:
                # DynamicCache extends along sequence dimension by default;
                # truncate back to original cache len + encoder output length
                past_key_values.key_cache[layer_idx] = past_key_values.key_cache[
                    layer_idx
                ][..., :prev_cache_len, :]
                past_key_values.value_cache[layer_idx] = past_key_values.value_cache[
                    layer_idx
                ][..., :prev_cache_len, :]
        decoder_hidden_states = self.decoder.model.norm(decoder_hidden_states)
        logits = self.decoder.lm_head(decoder_hidden_states)
        return CausalLMOutputWithPast(
            logits=logits,
            past_key_values=past_key_values,
        )