| tags: | |
| - ultralyticsplus | |
| - yolov8 | |
| - ultralytics | |
| - yolo | |
| - vision | |
| - image-classification | |
| - pytorch | |
| - awesome-yolov8-models | |
| library_name: ultralytics | |
| library_version: 8.0.20 | |
| inference: false | |
| datasets: | |
| - keremberke/indoor-scene-classification | |
| model-index: | |
| - name: keremberke/yolov8m-scene-classification | |
| results: | |
| - task: | |
| type: image-classification | |
| dataset: | |
| type: keremberke/indoor-scene-classification | |
| name: indoor-scene-classification | |
| split: validation | |
| metrics: | |
| - type: accuracy | |
| value: 0.02439 # min: 0.0 - max: 1.0 | |
| name: top1 accuracy | |
| - type: accuracy | |
| value: 0.08216 # min: 0.0 - max: 1.0 | |
| name: top5 accuracy | |
| <div align="center"> | |
| <img width="640" alt="keremberke/yolov8m-scene-classification" src="https://huggingface.co/keremberke/yolov8m-scene-classification/resolve/main/thumbnail.jpg"> | |
| </div> | |
| ### Supported Labels | |
| ``` | |
| ['airport_inside', 'artstudio', 'auditorium', 'bakery', 'bookstore', 'bowling', 'buffet', 'casino', 'children_room', 'church_inside', 'classroom', 'cloister', 'closet', 'clothingstore', 'computerroom', 'concert_hall', 'corridor', 'deli', 'dentaloffice', 'dining_room', 'elevator', 'fastfood_restaurant', 'florist', 'gameroom', 'garage', 'greenhouse', 'grocerystore', 'gym', 'hairsalon', 'hospitalroom', 'inside_bus', 'inside_subway', 'jewelleryshop', 'kindergarden', 'kitchen', 'laboratorywet', 'laundromat', 'library', 'livingroom', 'lobby', 'locker_room', 'mall', 'meeting_room', 'movietheater', 'museum', 'nursery', 'office', 'operating_room', 'pantry', 'poolinside', 'prisoncell', 'restaurant', 'restaurant_kitchen', 'shoeshop', 'stairscase', 'studiomusic', 'subway', 'toystore', 'trainstation', 'tv_studio', 'videostore', 'waitingroom', 'warehouse', 'winecellar'] | |
| ``` | |
| ### How to use | |
| - Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus): | |
| ```bash | |
| pip install ultralyticsplus==0.0.21 | |
| ``` | |
| - Load model and perform prediction: | |
| ```python | |
| from ultralyticsplus import YOLO, postprocess_classify_output | |
| # load model | |
| model = YOLO('keremberke/yolov8m-scene-classification') | |
| # set model parameters | |
| model.overrides['conf'] = 0.25 # model confidence threshold | |
| # set image | |
| image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' | |
| # perform inference | |
| results = model.predict(image) | |
| # observe results | |
| print(results[0].probs) # [0.1, 0.2, 0.3, 0.4] | |
| processed_result = postprocess_classify_output(model, result=results[0]) | |
| print(processed_result) # {"cat": 0.4, "dog": 0.6} | |
| ``` | |
| **More models available at: [awesome-yolov8-models](https://yolov8.xyz)** |