--- library_name: transformers language: - eng license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - kavyamanohar/supreme-court-speech metrics: - wer model-index: - name: kavyamanohar/whisper-supreme-court-asr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Supreme Court Hearing Corpus - Subset type: kavyamanohar/supreme-court-speech args: 'split: test' metrics: - name: Wer type: wer value: 69.86706056129985 --- # kavyamanohar/whisper-supreme-court-asr This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Supreme Court Hearing Corpus - Subset dataset. It achieves the following results on the evaluation set: - Loss: 1.8703 - Wer: 69.8671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.8763 | 5.5714 | 100 | 1.8904 | 162.7770 | | 0.7801 | 11.1143 | 200 | 1.5403 | 55.0222 | | 0.0716 | 16.6857 | 300 | 1.5505 | 56.7947 | | 0.0118 | 22.2286 | 400 | 1.6573 | 56.8685 | | 0.0076 | 27.8 | 500 | 1.7218 | 83.3087 | | 0.0014 | 33.3429 | 600 | 1.7909 | 79.2467 | | 0.0005 | 38.9143 | 700 | 1.8290 | 67.8730 | | 0.0003 | 44.4571 | 800 | 1.8555 | 69.4239 | | 0.0002 | 50.0 | 900 | 1.8669 | 69.7932 | | 0.0002 | 55.5714 | 1000 | 1.8703 | 69.8671 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0