kalomaze commited on
Commit
def9004
·
verified ·
1 Parent(s): d495ec2

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MistralForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 131072,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 40,
17
+ "num_key_value_heads": 8,
18
+ "pad_token_id": 10,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.51.0",
25
+ "unsloth_version": "2024.9",
26
+ "use_cache": false,
27
+ "vocab_size": 131072
28
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "max_length": 1024000,
7
+ "pad_token_id": 10,
8
+ "transformers_version": "4.51.0"
9
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step294
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:586cc7d13a1b477a182836e8110d76fb88240697d4df99289addb689b2c93ce6
3
+ size 4865522496
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72c3ed28bc71762404059386f37f59de1aa879113d336a1b83b49bd66dc04f8f
3
+ size 4907529424
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0567f636bb370118367a48f392bf7437f8177e8a8b6861b6880b6ec614115b76
3
+ size 4907529456
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5af47265dccbd48173cc7095260122fadc3ed6d5637f3322fb555744d9cce783
3
+ size 4907529456
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b17e6e824de9951b17e99b8d1c4b87ecec44bddc6a5017ae3431cab552355d2f
3
+ size 4907496272
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 24495564800
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00005-of-00005.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
368
+ "model.norm.weight": "model-00005-of-00005.safetensors"
369
+ }
370
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e735ed11597ed40a2b6854e0229902e1a21fedc0a0dbc608ca905fae57d5b06b
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ba3815fc0953b1b7f08cea092dfc0a62c4bbc2a2c68780d3f4dd0b5e22582a7
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:647ac15563fcad903adbb616e9b2c36b237a3ed5939d088620212da969930f6c
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93e3733c5b180986b7efbec17b663bf5231343d187374d184768fcd913797167
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9820ea4fec1b01f3da091290c3e8b5ddb86a3a3fa17285c248b64910c2d0b4f0
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7413035def085e41776a629afc94fc24fe5a955f1ad83b32f9b370ab60f9a18d
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91e3953bcbf4089415abffbd914fbbe4580121f6c843eabbf70624c5ed144814
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:369fde7bff4dfc0d6b9cf773cf9b0352696083f84763999e05a631ee6d52c5e3
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:827fe785a5aaf8655c5af1fd25111d6fc8b47e8673ff93408ec1613e782550d2
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc07f4f61632a89d8248b43f25649d6cc45200f8709e9d9bcd0414b00a4064e2
3
+ size 17078342
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,2156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 37,
7
+ "global_step": 294,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.003401360544217687,
14
+ "grad_norm": 106.7094005171616,
15
+ "learning_rate": 0.0,
16
+ "loss": 2.9268,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.003401360544217687,
21
+ "eval_loss": 2.5302913188934326,
22
+ "eval_runtime": 3.7953,
23
+ "eval_samples_per_second": 14.492,
24
+ "eval_steps_per_second": 1.054,
25
+ "step": 1
26
+ },
27
+ {
28
+ "epoch": 0.006802721088435374,
29
+ "grad_norm": 57.97506009705182,
30
+ "learning_rate": 6.89655172413793e-08,
31
+ "loss": 2.0122,
32
+ "step": 2
33
+ },
34
+ {
35
+ "epoch": 0.01020408163265306,
36
+ "grad_norm": 116.23413141145363,
37
+ "learning_rate": 1.379310344827586e-07,
38
+ "loss": 2.6743,
39
+ "step": 3
40
+ },
41
+ {
42
+ "epoch": 0.013605442176870748,
43
+ "grad_norm": 21.262801374024775,
44
+ "learning_rate": 2.0689655172413793e-07,
45
+ "loss": 2.0743,
46
+ "step": 4
47
+ },
48
+ {
49
+ "epoch": 0.017006802721088437,
50
+ "grad_norm": 59.319984755304056,
51
+ "learning_rate": 2.758620689655172e-07,
52
+ "loss": 2.2775,
53
+ "step": 5
54
+ },
55
+ {
56
+ "epoch": 0.02040816326530612,
57
+ "grad_norm": 159.51320885432614,
58
+ "learning_rate": 3.4482758620689656e-07,
59
+ "loss": 2.1337,
60
+ "step": 6
61
+ },
62
+ {
63
+ "epoch": 0.023809523809523808,
64
+ "grad_norm": 87.93970940325055,
65
+ "learning_rate": 4.1379310344827586e-07,
66
+ "loss": 1.9061,
67
+ "step": 7
68
+ },
69
+ {
70
+ "epoch": 0.027210884353741496,
71
+ "grad_norm": 61.133777808660895,
72
+ "learning_rate": 4.827586206896552e-07,
73
+ "loss": 1.8118,
74
+ "step": 8
75
+ },
76
+ {
77
+ "epoch": 0.030612244897959183,
78
+ "grad_norm": 48.65887299035499,
79
+ "learning_rate": 5.517241379310344e-07,
80
+ "loss": 3.4095,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.034013605442176874,
85
+ "grad_norm": 30.592687909719288,
86
+ "learning_rate": 6.206896551724138e-07,
87
+ "loss": 2.2398,
88
+ "step": 10
89
+ },
90
+ {
91
+ "epoch": 0.03741496598639456,
92
+ "grad_norm": 74.15295766799099,
93
+ "learning_rate": 6.896551724137931e-07,
94
+ "loss": 3.4425,
95
+ "step": 11
96
+ },
97
+ {
98
+ "epoch": 0.04081632653061224,
99
+ "grad_norm": 34.94892634385338,
100
+ "learning_rate": 7.586206896551724e-07,
101
+ "loss": 2.5405,
102
+ "step": 12
103
+ },
104
+ {
105
+ "epoch": 0.04421768707482993,
106
+ "grad_norm": 26.538521745061775,
107
+ "learning_rate": 8.275862068965517e-07,
108
+ "loss": 1.9614,
109
+ "step": 13
110
+ },
111
+ {
112
+ "epoch": 0.047619047619047616,
113
+ "grad_norm": 52.23979896259082,
114
+ "learning_rate": 8.96551724137931e-07,
115
+ "loss": 2.9785,
116
+ "step": 14
117
+ },
118
+ {
119
+ "epoch": 0.05102040816326531,
120
+ "grad_norm": 30.812143999051266,
121
+ "learning_rate": 9.655172413793103e-07,
122
+ "loss": 2.0185,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.05442176870748299,
127
+ "grad_norm": 41.48478088374125,
128
+ "learning_rate": 1.0344827586206896e-06,
129
+ "loss": 2.1126,
130
+ "step": 16
131
+ },
132
+ {
133
+ "epoch": 0.05782312925170068,
134
+ "grad_norm": 29.347588210089675,
135
+ "learning_rate": 1.1034482758620688e-06,
136
+ "loss": 2.2078,
137
+ "step": 17
138
+ },
139
+ {
140
+ "epoch": 0.061224489795918366,
141
+ "grad_norm": 28.947554594850924,
142
+ "learning_rate": 1.172413793103448e-06,
143
+ "loss": 2.442,
144
+ "step": 18
145
+ },
146
+ {
147
+ "epoch": 0.06462585034013606,
148
+ "grad_norm": 32.28592513881342,
149
+ "learning_rate": 1.2413793103448275e-06,
150
+ "loss": 2.8683,
151
+ "step": 19
152
+ },
153
+ {
154
+ "epoch": 0.06802721088435375,
155
+ "grad_norm": 38.97631997775744,
156
+ "learning_rate": 1.3103448275862068e-06,
157
+ "loss": 2.4376,
158
+ "step": 20
159
+ },
160
+ {
161
+ "epoch": 0.07142857142857142,
162
+ "grad_norm": 43.775478156068516,
163
+ "learning_rate": 1.3793103448275862e-06,
164
+ "loss": 2.4167,
165
+ "step": 21
166
+ },
167
+ {
168
+ "epoch": 0.07482993197278912,
169
+ "grad_norm": 30.904260805899465,
170
+ "learning_rate": 1.4482758620689655e-06,
171
+ "loss": 2.6971,
172
+ "step": 22
173
+ },
174
+ {
175
+ "epoch": 0.0782312925170068,
176
+ "grad_norm": 48.202871069183985,
177
+ "learning_rate": 1.5172413793103447e-06,
178
+ "loss": 2.5093,
179
+ "step": 23
180
+ },
181
+ {
182
+ "epoch": 0.08163265306122448,
183
+ "grad_norm": 55.067186300198706,
184
+ "learning_rate": 1.5862068965517242e-06,
185
+ "loss": 2.0053,
186
+ "step": 24
187
+ },
188
+ {
189
+ "epoch": 0.08503401360544217,
190
+ "grad_norm": 38.486811757681096,
191
+ "learning_rate": 1.6551724137931035e-06,
192
+ "loss": 2.2475,
193
+ "step": 25
194
+ },
195
+ {
196
+ "epoch": 0.08843537414965986,
197
+ "grad_norm": 90.78568630900098,
198
+ "learning_rate": 1.7241379310344825e-06,
199
+ "loss": 3.8342,
200
+ "step": 26
201
+ },
202
+ {
203
+ "epoch": 0.09183673469387756,
204
+ "grad_norm": 23.32050516158788,
205
+ "learning_rate": 1.793103448275862e-06,
206
+ "loss": 2.2496,
207
+ "step": 27
208
+ },
209
+ {
210
+ "epoch": 0.09523809523809523,
211
+ "grad_norm": 25.01047005218693,
212
+ "learning_rate": 1.8620689655172412e-06,
213
+ "loss": 2.6991,
214
+ "step": 28
215
+ },
216
+ {
217
+ "epoch": 0.09863945578231292,
218
+ "grad_norm": 27.40209208002175,
219
+ "learning_rate": 1.9310344827586207e-06,
220
+ "loss": 2.7017,
221
+ "step": 29
222
+ },
223
+ {
224
+ "epoch": 0.10204081632653061,
225
+ "grad_norm": 16.372774250078056,
226
+ "learning_rate": 2e-06,
227
+ "loss": 2.1315,
228
+ "step": 30
229
+ },
230
+ {
231
+ "epoch": 0.1054421768707483,
232
+ "grad_norm": 34.32100924763162,
233
+ "learning_rate": 1.999984207714351e-06,
234
+ "loss": 2.4298,
235
+ "step": 31
236
+ },
237
+ {
238
+ "epoch": 0.10884353741496598,
239
+ "grad_norm": 49.15042168439896,
240
+ "learning_rate": 1.9999368313561964e-06,
241
+ "loss": 3.1687,
242
+ "step": 32
243
+ },
244
+ {
245
+ "epoch": 0.11224489795918367,
246
+ "grad_norm": 27.553221322487154,
247
+ "learning_rate": 1.9998578724218984e-06,
248
+ "loss": 2.307,
249
+ "step": 33
250
+ },
251
+ {
252
+ "epoch": 0.11564625850340136,
253
+ "grad_norm": 25.29898708562965,
254
+ "learning_rate": 1.999747333405341e-06,
255
+ "loss": 2.6711,
256
+ "step": 34
257
+ },
258
+ {
259
+ "epoch": 0.11904761904761904,
260
+ "grad_norm": 35.13639034121329,
261
+ "learning_rate": 1.9996052177978517e-06,
262
+ "loss": 2.2923,
263
+ "step": 35
264
+ },
265
+ {
266
+ "epoch": 0.12244897959183673,
267
+ "grad_norm": 61.904951168823246,
268
+ "learning_rate": 1.999431530088091e-06,
269
+ "loss": 3.0837,
270
+ "step": 36
271
+ },
272
+ {
273
+ "epoch": 0.12585034013605442,
274
+ "grad_norm": 43.72931173152359,
275
+ "learning_rate": 1.9992262757619108e-06,
276
+ "loss": 2.9055,
277
+ "step": 37
278
+ },
279
+ {
280
+ "epoch": 0.12585034013605442,
281
+ "eval_loss": 2.2881884574890137,
282
+ "eval_runtime": 3.7387,
283
+ "eval_samples_per_second": 14.711,
284
+ "eval_steps_per_second": 1.07,
285
+ "step": 37
286
+ },
287
+ {
288
+ "epoch": 0.1292517006802721,
289
+ "grad_norm": 75.128224809043,
290
+ "learning_rate": 1.9989894613021807e-06,
291
+ "loss": 3.9717,
292
+ "step": 38
293
+ },
294
+ {
295
+ "epoch": 0.1326530612244898,
296
+ "grad_norm": 6.423556290490496,
297
+ "learning_rate": 1.998721094188584e-06,
298
+ "loss": 1.6634,
299
+ "step": 39
300
+ },
301
+ {
302
+ "epoch": 0.1360544217687075,
303
+ "grad_norm": 8.952452652609857,
304
+ "learning_rate": 1.9984211828973816e-06,
305
+ "loss": 2.1183,
306
+ "step": 40
307
+ },
308
+ {
309
+ "epoch": 0.13945578231292516,
310
+ "grad_norm": 12.837161899787583,
311
+ "learning_rate": 1.998089736901142e-06,
312
+ "loss": 2.1306,
313
+ "step": 41
314
+ },
315
+ {
316
+ "epoch": 0.14285714285714285,
317
+ "grad_norm": 7.2779063942957825,
318
+ "learning_rate": 1.9977267666684456e-06,
319
+ "loss": 1.9831,
320
+ "step": 42
321
+ },
322
+ {
323
+ "epoch": 0.14625850340136054,
324
+ "grad_norm": 30.288569770228293,
325
+ "learning_rate": 1.9973322836635515e-06,
326
+ "loss": 2.1869,
327
+ "step": 43
328
+ },
329
+ {
330
+ "epoch": 0.14965986394557823,
331
+ "grad_norm": 11.672608976353168,
332
+ "learning_rate": 1.996906300346036e-06,
333
+ "loss": 1.9566,
334
+ "step": 44
335
+ },
336
+ {
337
+ "epoch": 0.15306122448979592,
338
+ "grad_norm": 14.837719065187358,
339
+ "learning_rate": 1.9964488301704e-06,
340
+ "loss": 2.2152,
341
+ "step": 45
342
+ },
343
+ {
344
+ "epoch": 0.1564625850340136,
345
+ "grad_norm": 18.558600033713702,
346
+ "learning_rate": 1.9959598875856427e-06,
347
+ "loss": 2.06,
348
+ "step": 46
349
+ },
350
+ {
351
+ "epoch": 0.1598639455782313,
352
+ "grad_norm": 17.161073648503006,
353
+ "learning_rate": 1.995439488034806e-06,
354
+ "loss": 2.0463,
355
+ "step": 47
356
+ },
357
+ {
358
+ "epoch": 0.16326530612244897,
359
+ "grad_norm": 10.944090642041195,
360
+ "learning_rate": 1.994887647954486e-06,
361
+ "loss": 1.9676,
362
+ "step": 48
363
+ },
364
+ {
365
+ "epoch": 0.16666666666666666,
366
+ "grad_norm": 30.260773919516463,
367
+ "learning_rate": 1.9943043847743164e-06,
368
+ "loss": 2.4235,
369
+ "step": 49
370
+ },
371
+ {
372
+ "epoch": 0.17006802721088435,
373
+ "grad_norm": 17.95874457178673,
374
+ "learning_rate": 1.9936897169164135e-06,
375
+ "loss": 2.4211,
376
+ "step": 50
377
+ },
378
+ {
379
+ "epoch": 0.17346938775510204,
380
+ "grad_norm": 29.32804844947439,
381
+ "learning_rate": 1.993043663794799e-06,
382
+ "loss": 2.2786,
383
+ "step": 51
384
+ },
385
+ {
386
+ "epoch": 0.17687074829931973,
387
+ "grad_norm": 31.224760731119037,
388
+ "learning_rate": 1.9923662458147826e-06,
389
+ "loss": 2.8374,
390
+ "step": 52
391
+ },
392
+ {
393
+ "epoch": 0.18027210884353742,
394
+ "grad_norm": 4.5045539325043205,
395
+ "learning_rate": 1.9916574843723217e-06,
396
+ "loss": 1.6301,
397
+ "step": 53
398
+ },
399
+ {
400
+ "epoch": 0.1836734693877551,
401
+ "grad_norm": 10.827050277516674,
402
+ "learning_rate": 1.9909174018533427e-06,
403
+ "loss": 2.0554,
404
+ "step": 54
405
+ },
406
+ {
407
+ "epoch": 0.1870748299319728,
408
+ "grad_norm": 17.063187262605883,
409
+ "learning_rate": 1.990146021633034e-06,
410
+ "loss": 2.4202,
411
+ "step": 55
412
+ },
413
+ {
414
+ "epoch": 0.19047619047619047,
415
+ "grad_norm": 3.946679947433292,
416
+ "learning_rate": 1.98934336807511e-06,
417
+ "loss": 1.7808,
418
+ "step": 56
419
+ },
420
+ {
421
+ "epoch": 0.19387755102040816,
422
+ "grad_norm": 8.431222224384186,
423
+ "learning_rate": 1.9885094665310388e-06,
424
+ "loss": 1.7766,
425
+ "step": 57
426
+ },
427
+ {
428
+ "epoch": 0.19727891156462585,
429
+ "grad_norm": 32.28667139462841,
430
+ "learning_rate": 1.9876443433392433e-06,
431
+ "loss": 2.2299,
432
+ "step": 58
433
+ },
434
+ {
435
+ "epoch": 0.20068027210884354,
436
+ "grad_norm": 11.950555724182584,
437
+ "learning_rate": 1.986748025824268e-06,
438
+ "loss": 1.928,
439
+ "step": 59
440
+ },
441
+ {
442
+ "epoch": 0.20408163265306123,
443
+ "grad_norm": 3.6059136679066977,
444
+ "learning_rate": 1.985820542295918e-06,
445
+ "loss": 1.7761,
446
+ "step": 60
447
+ },
448
+ {
449
+ "epoch": 0.20748299319727892,
450
+ "grad_norm": 41.40947345983446,
451
+ "learning_rate": 1.984861922048363e-06,
452
+ "loss": 2.6704,
453
+ "step": 61
454
+ },
455
+ {
456
+ "epoch": 0.2108843537414966,
457
+ "grad_norm": 30.634237938465816,
458
+ "learning_rate": 1.983872195359212e-06,
459
+ "loss": 2.7336,
460
+ "step": 62
461
+ },
462
+ {
463
+ "epoch": 0.21428571428571427,
464
+ "grad_norm": 3.760013022701194,
465
+ "learning_rate": 1.9828513934885587e-06,
466
+ "loss": 1.8831,
467
+ "step": 63
468
+ },
469
+ {
470
+ "epoch": 0.21768707482993196,
471
+ "grad_norm": 37.34059674722221,
472
+ "learning_rate": 1.981799548677993e-06,
473
+ "loss": 2.27,
474
+ "step": 64
475
+ },
476
+ {
477
+ "epoch": 0.22108843537414966,
478
+ "grad_norm": 11.009700618421736,
479
+ "learning_rate": 1.980716694149581e-06,
480
+ "loss": 1.9265,
481
+ "step": 65
482
+ },
483
+ {
484
+ "epoch": 0.22448979591836735,
485
+ "grad_norm": 17.609147027884987,
486
+ "learning_rate": 1.9796028641048194e-06,
487
+ "loss": 2.3411,
488
+ "step": 66
489
+ },
490
+ {
491
+ "epoch": 0.22789115646258504,
492
+ "grad_norm": 17.432142291951372,
493
+ "learning_rate": 1.978458093723553e-06,
494
+ "loss": 2.2213,
495
+ "step": 67
496
+ },
497
+ {
498
+ "epoch": 0.23129251700680273,
499
+ "grad_norm": 14.11664326231067,
500
+ "learning_rate": 1.9772824191628632e-06,
501
+ "loss": 2.0831,
502
+ "step": 68
503
+ },
504
+ {
505
+ "epoch": 0.23469387755102042,
506
+ "grad_norm": 37.456025944063875,
507
+ "learning_rate": 1.9760758775559273e-06,
508
+ "loss": 2.7494,
509
+ "step": 69
510
+ },
511
+ {
512
+ "epoch": 0.23809523809523808,
513
+ "grad_norm": 16.30994509129653,
514
+ "learning_rate": 1.974838507010844e-06,
515
+ "loss": 2.118,
516
+ "step": 70
517
+ },
518
+ {
519
+ "epoch": 0.24149659863945577,
520
+ "grad_norm": 25.92468917111241,
521
+ "learning_rate": 1.9735703466094324e-06,
522
+ "loss": 2.1656,
523
+ "step": 71
524
+ },
525
+ {
526
+ "epoch": 0.24489795918367346,
527
+ "grad_norm": 17.23253832018251,
528
+ "learning_rate": 1.972271436405994e-06,
529
+ "loss": 2.0787,
530
+ "step": 72
531
+ },
532
+ {
533
+ "epoch": 0.24829931972789115,
534
+ "grad_norm": 6.286286593272188,
535
+ "learning_rate": 1.970941817426052e-06,
536
+ "loss": 1.7458,
537
+ "step": 73
538
+ },
539
+ {
540
+ "epoch": 0.25170068027210885,
541
+ "grad_norm": 20.87004487229478,
542
+ "learning_rate": 1.969581531665051e-06,
543
+ "loss": 2.364,
544
+ "step": 74
545
+ },
546
+ {
547
+ "epoch": 0.25170068027210885,
548
+ "eval_loss": 2.240875482559204,
549
+ "eval_runtime": 3.7328,
550
+ "eval_samples_per_second": 14.734,
551
+ "eval_steps_per_second": 1.072,
552
+ "step": 74
553
+ },
554
+ {
555
+ "epoch": 0.25510204081632654,
556
+ "grad_norm": 22.83815781491435,
557
+ "learning_rate": 1.968190622087034e-06,
558
+ "loss": 2.2176,
559
+ "step": 75
560
+ },
561
+ {
562
+ "epoch": 0.2585034013605442,
563
+ "grad_norm": 39.2204163613504,
564
+ "learning_rate": 1.9667691326232835e-06,
565
+ "loss": 2.605,
566
+ "step": 76
567
+ },
568
+ {
569
+ "epoch": 0.2619047619047619,
570
+ "grad_norm": 9.599486970591897,
571
+ "learning_rate": 1.965317108170935e-06,
572
+ "loss": 2.1652,
573
+ "step": 77
574
+ },
575
+ {
576
+ "epoch": 0.2653061224489796,
577
+ "grad_norm": 3.7571781853463175,
578
+ "learning_rate": 1.9638345945915586e-06,
579
+ "loss": 1.6055,
580
+ "step": 78
581
+ },
582
+ {
583
+ "epoch": 0.2687074829931973,
584
+ "grad_norm": 7.064670527473922,
585
+ "learning_rate": 1.962321638709709e-06,
586
+ "loss": 1.9937,
587
+ "step": 79
588
+ },
589
+ {
590
+ "epoch": 0.272108843537415,
591
+ "grad_norm": 28.207901160479654,
592
+ "learning_rate": 1.9607782883114506e-06,
593
+ "loss": 2.2552,
594
+ "step": 80
595
+ },
596
+ {
597
+ "epoch": 0.2755102040816326,
598
+ "grad_norm": 15.991872570963396,
599
+ "learning_rate": 1.959204592142843e-06,
600
+ "loss": 2.1559,
601
+ "step": 81
602
+ },
603
+ {
604
+ "epoch": 0.2789115646258503,
605
+ "grad_norm": 13.401822104278665,
606
+ "learning_rate": 1.957600599908406e-06,
607
+ "loss": 2.1652,
608
+ "step": 82
609
+ },
610
+ {
611
+ "epoch": 0.282312925170068,
612
+ "grad_norm": 14.708704691038701,
613
+ "learning_rate": 1.9559663622695455e-06,
614
+ "loss": 1.9673,
615
+ "step": 83
616
+ },
617
+ {
618
+ "epoch": 0.2857142857142857,
619
+ "grad_norm": 3.3458550475032105,
620
+ "learning_rate": 1.954301930842958e-06,
621
+ "loss": 1.6917,
622
+ "step": 84
623
+ },
624
+ {
625
+ "epoch": 0.2891156462585034,
626
+ "grad_norm": 3.479853146114766,
627
+ "learning_rate": 1.9526073581989955e-06,
628
+ "loss": 1.624,
629
+ "step": 85
630
+ },
631
+ {
632
+ "epoch": 0.2925170068027211,
633
+ "grad_norm": 25.10854427551898,
634
+ "learning_rate": 1.950882697860009e-06,
635
+ "loss": 2.3626,
636
+ "step": 86
637
+ },
638
+ {
639
+ "epoch": 0.29591836734693877,
640
+ "grad_norm": 14.389114459997433,
641
+ "learning_rate": 1.9491280042986562e-06,
642
+ "loss": 2.0549,
643
+ "step": 87
644
+ },
645
+ {
646
+ "epoch": 0.29931972789115646,
647
+ "grad_norm": 17.72897272235088,
648
+ "learning_rate": 1.9473433329361802e-06,
649
+ "loss": 2.4525,
650
+ "step": 88
651
+ },
652
+ {
653
+ "epoch": 0.30272108843537415,
654
+ "grad_norm": 8.212788560084723,
655
+ "learning_rate": 1.945528740140662e-06,
656
+ "loss": 2.1368,
657
+ "step": 89
658
+ },
659
+ {
660
+ "epoch": 0.30612244897959184,
661
+ "grad_norm": 26.76274867022125,
662
+ "learning_rate": 1.943684283225236e-06,
663
+ "loss": 2.3735,
664
+ "step": 90
665
+ },
666
+ {
667
+ "epoch": 0.30952380952380953,
668
+ "grad_norm": 23.71630229663243,
669
+ "learning_rate": 1.941810020446284e-06,
670
+ "loss": 2.6005,
671
+ "step": 91
672
+ },
673
+ {
674
+ "epoch": 0.3129251700680272,
675
+ "grad_norm": 22.889738702248234,
676
+ "learning_rate": 1.9399060110015917e-06,
677
+ "loss": 2.6924,
678
+ "step": 92
679
+ },
680
+ {
681
+ "epoch": 0.3163265306122449,
682
+ "grad_norm": 32.54631787971477,
683
+ "learning_rate": 1.9379723150284814e-06,
684
+ "loss": 2.5301,
685
+ "step": 93
686
+ },
687
+ {
688
+ "epoch": 0.3197278911564626,
689
+ "grad_norm": 3.6877224549117344,
690
+ "learning_rate": 1.936008993601912e-06,
691
+ "loss": 1.6556,
692
+ "step": 94
693
+ },
694
+ {
695
+ "epoch": 0.3231292517006803,
696
+ "grad_norm": 33.682920637388364,
697
+ "learning_rate": 1.934016108732548e-06,
698
+ "loss": 2.3709,
699
+ "step": 95
700
+ },
701
+ {
702
+ "epoch": 0.32653061224489793,
703
+ "grad_norm": 19.342157148675135,
704
+ "learning_rate": 1.9319937233648045e-06,
705
+ "loss": 1.8713,
706
+ "step": 96
707
+ },
708
+ {
709
+ "epoch": 0.3299319727891156,
710
+ "grad_norm": 36.9446891807536,
711
+ "learning_rate": 1.929941901374856e-06,
712
+ "loss": 3.1666,
713
+ "step": 97
714
+ },
715
+ {
716
+ "epoch": 0.3333333333333333,
717
+ "grad_norm": 12.769242612326224,
718
+ "learning_rate": 1.9278607075686205e-06,
719
+ "loss": 2.2024,
720
+ "step": 98
721
+ },
722
+ {
723
+ "epoch": 0.336734693877551,
724
+ "grad_norm": 7.569149644914372,
725
+ "learning_rate": 1.9257502076797123e-06,
726
+ "loss": 1.8434,
727
+ "step": 99
728
+ },
729
+ {
730
+ "epoch": 0.3401360544217687,
731
+ "grad_norm": 18.672166864254265,
732
+ "learning_rate": 1.9236104683673653e-06,
733
+ "loss": 2.6262,
734
+ "step": 100
735
+ },
736
+ {
737
+ "epoch": 0.3435374149659864,
738
+ "grad_norm": 7.251393661314555,
739
+ "learning_rate": 1.9214415572143284e-06,
740
+ "loss": 1.8447,
741
+ "step": 101
742
+ },
743
+ {
744
+ "epoch": 0.3469387755102041,
745
+ "grad_norm": 25.8588617341962,
746
+ "learning_rate": 1.919243542724731e-06,
747
+ "loss": 2.3528,
748
+ "step": 102
749
+ },
750
+ {
751
+ "epoch": 0.35034013605442177,
752
+ "grad_norm": 21.00339285362203,
753
+ "learning_rate": 1.917016494321918e-06,
754
+ "loss": 2.462,
755
+ "step": 103
756
+ },
757
+ {
758
+ "epoch": 0.35374149659863946,
759
+ "grad_norm": 19.533037226832878,
760
+ "learning_rate": 1.9147604823462585e-06,
761
+ "loss": 2.3057,
762
+ "step": 104
763
+ },
764
+ {
765
+ "epoch": 0.35714285714285715,
766
+ "grad_norm": 3.1087327492999286,
767
+ "learning_rate": 1.9124755780529243e-06,
768
+ "loss": 1.6935,
769
+ "step": 105
770
+ },
771
+ {
772
+ "epoch": 0.36054421768707484,
773
+ "grad_norm": 35.707396347148176,
774
+ "learning_rate": 1.910161853609637e-06,
775
+ "loss": 2.3652,
776
+ "step": 106
777
+ },
778
+ {
779
+ "epoch": 0.36394557823129253,
780
+ "grad_norm": 16.694934440145225,
781
+ "learning_rate": 1.9078193820943916e-06,
782
+ "loss": 2.6014,
783
+ "step": 107
784
+ },
785
+ {
786
+ "epoch": 0.3673469387755102,
787
+ "grad_norm": 12.946146725042743,
788
+ "learning_rate": 1.9054482374931466e-06,
789
+ "loss": 1.9379,
790
+ "step": 108
791
+ },
792
+ {
793
+ "epoch": 0.3707482993197279,
794
+ "grad_norm": 8.740650008889842,
795
+ "learning_rate": 1.9030484946974878e-06,
796
+ "loss": 1.9414,
797
+ "step": 109
798
+ },
799
+ {
800
+ "epoch": 0.3741496598639456,
801
+ "grad_norm": 23.13581690576701,
802
+ "learning_rate": 1.9006202295022629e-06,
803
+ "loss": 2.4563,
804
+ "step": 110
805
+ },
806
+ {
807
+ "epoch": 0.37755102040816324,
808
+ "grad_norm": 10.00026809536462,
809
+ "learning_rate": 1.8981635186031869e-06,
810
+ "loss": 1.8384,
811
+ "step": 111
812
+ },
813
+ {
814
+ "epoch": 0.37755102040816324,
815
+ "eval_loss": 2.2185332775115967,
816
+ "eval_runtime": 3.7603,
817
+ "eval_samples_per_second": 14.626,
818
+ "eval_steps_per_second": 1.064,
819
+ "step": 111
820
+ },
821
+ {
822
+ "epoch": 0.38095238095238093,
823
+ "grad_norm": 26.376801704138895,
824
+ "learning_rate": 1.89567843959442e-06,
825
+ "loss": 3.095,
826
+ "step": 112
827
+ },
828
+ {
829
+ "epoch": 0.3843537414965986,
830
+ "grad_norm": 31.801160647661863,
831
+ "learning_rate": 1.8931650709661176e-06,
832
+ "loss": 2.4186,
833
+ "step": 113
834
+ },
835
+ {
836
+ "epoch": 0.3877551020408163,
837
+ "grad_norm": 3.7202396333724406,
838
+ "learning_rate": 1.8906234921019504e-06,
839
+ "loss": 1.8483,
840
+ "step": 114
841
+ },
842
+ {
843
+ "epoch": 0.391156462585034,
844
+ "grad_norm": 20.22060079238643,
845
+ "learning_rate": 1.8880537832765975e-06,
846
+ "loss": 2.1247,
847
+ "step": 115
848
+ },
849
+ {
850
+ "epoch": 0.3945578231292517,
851
+ "grad_norm": 29.233218070907714,
852
+ "learning_rate": 1.8854560256532098e-06,
853
+ "loss": 2.3962,
854
+ "step": 116
855
+ },
856
+ {
857
+ "epoch": 0.3979591836734694,
858
+ "grad_norm": 12.311196195760077,
859
+ "learning_rate": 1.882830301280849e-06,
860
+ "loss": 1.9291,
861
+ "step": 117
862
+ },
863
+ {
864
+ "epoch": 0.4013605442176871,
865
+ "grad_norm": 24.022251844658836,
866
+ "learning_rate": 1.880176693091893e-06,
867
+ "loss": 2.0967,
868
+ "step": 118
869
+ },
870
+ {
871
+ "epoch": 0.40476190476190477,
872
+ "grad_norm": 15.5145598820515,
873
+ "learning_rate": 1.8774952848994193e-06,
874
+ "loss": 2.0164,
875
+ "step": 119
876
+ },
877
+ {
878
+ "epoch": 0.40816326530612246,
879
+ "grad_norm": 18.669552144287866,
880
+ "learning_rate": 1.874786161394556e-06,
881
+ "loss": 1.9074,
882
+ "step": 120
883
+ },
884
+ {
885
+ "epoch": 0.41156462585034015,
886
+ "grad_norm": 20.221669243742017,
887
+ "learning_rate": 1.8720494081438077e-06,
888
+ "loss": 2.0693,
889
+ "step": 121
890
+ },
891
+ {
892
+ "epoch": 0.41496598639455784,
893
+ "grad_norm": 40.16853982486705,
894
+ "learning_rate": 1.8692851115863521e-06,
895
+ "loss": 2.7133,
896
+ "step": 122
897
+ },
898
+ {
899
+ "epoch": 0.41836734693877553,
900
+ "grad_norm": 28.130765299643805,
901
+ "learning_rate": 1.8664933590313116e-06,
902
+ "loss": 2.3678,
903
+ "step": 123
904
+ },
905
+ {
906
+ "epoch": 0.4217687074829932,
907
+ "grad_norm": 3.285521259165442,
908
+ "learning_rate": 1.8636742386549936e-06,
909
+ "loss": 1.643,
910
+ "step": 124
911
+ },
912
+ {
913
+ "epoch": 0.42517006802721086,
914
+ "grad_norm": 14.918765530830019,
915
+ "learning_rate": 1.8608278394981065e-06,
916
+ "loss": 2.2832,
917
+ "step": 125
918
+ },
919
+ {
920
+ "epoch": 0.42857142857142855,
921
+ "grad_norm": 3.221047286582191,
922
+ "learning_rate": 1.8579542514629471e-06,
923
+ "loss": 1.7598,
924
+ "step": 126
925
+ },
926
+ {
927
+ "epoch": 0.43197278911564624,
928
+ "grad_norm": 30.02563146393063,
929
+ "learning_rate": 1.8550535653105621e-06,
930
+ "loss": 2.2684,
931
+ "step": 127
932
+ },
933
+ {
934
+ "epoch": 0.43537414965986393,
935
+ "grad_norm": 14.894051195947721,
936
+ "learning_rate": 1.8521258726578802e-06,
937
+ "loss": 2.2898,
938
+ "step": 128
939
+ },
940
+ {
941
+ "epoch": 0.4387755102040816,
942
+ "grad_norm": 31.346174242632404,
943
+ "learning_rate": 1.849171265974818e-06,
944
+ "loss": 2.4443,
945
+ "step": 129
946
+ },
947
+ {
948
+ "epoch": 0.4421768707482993,
949
+ "grad_norm": 18.396976082720574,
950
+ "learning_rate": 1.846189838581362e-06,
951
+ "loss": 2.4081,
952
+ "step": 130
953
+ },
954
+ {
955
+ "epoch": 0.445578231292517,
956
+ "grad_norm": 11.300098238275778,
957
+ "learning_rate": 1.843181684644617e-06,
958
+ "loss": 1.9707,
959
+ "step": 131
960
+ },
961
+ {
962
+ "epoch": 0.4489795918367347,
963
+ "grad_norm": 9.311622064720812,
964
+ "learning_rate": 1.8401468991758364e-06,
965
+ "loss": 2.0055,
966
+ "step": 132
967
+ },
968
+ {
969
+ "epoch": 0.4523809523809524,
970
+ "grad_norm": 17.268118260619143,
971
+ "learning_rate": 1.837085578027418e-06,
972
+ "loss": 2.1029,
973
+ "step": 133
974
+ },
975
+ {
976
+ "epoch": 0.4557823129251701,
977
+ "grad_norm": 13.534018757700077,
978
+ "learning_rate": 1.833997817889878e-06,
979
+ "loss": 1.6714,
980
+ "step": 134
981
+ },
982
+ {
983
+ "epoch": 0.45918367346938777,
984
+ "grad_norm": 25.67291091851184,
985
+ "learning_rate": 1.8308837162887962e-06,
986
+ "loss": 2.0809,
987
+ "step": 135
988
+ },
989
+ {
990
+ "epoch": 0.46258503401360546,
991
+ "grad_norm": 16.78554391811326,
992
+ "learning_rate": 1.827743371581737e-06,
993
+ "loss": 2.095,
994
+ "step": 136
995
+ },
996
+ {
997
+ "epoch": 0.46598639455782315,
998
+ "grad_norm": 7.0895304724541175,
999
+ "learning_rate": 1.8245768829551415e-06,
1000
+ "loss": 2.0924,
1001
+ "step": 137
1002
+ },
1003
+ {
1004
+ "epoch": 0.46938775510204084,
1005
+ "grad_norm": 28.325113542255774,
1006
+ "learning_rate": 1.8213843504211956e-06,
1007
+ "loss": 2.2312,
1008
+ "step": 138
1009
+ },
1010
+ {
1011
+ "epoch": 0.47278911564625853,
1012
+ "grad_norm": 19.627621449351967,
1013
+ "learning_rate": 1.8181658748146709e-06,
1014
+ "loss": 2.1092,
1015
+ "step": 139
1016
+ },
1017
+ {
1018
+ "epoch": 0.47619047619047616,
1019
+ "grad_norm": 3.253642214201976,
1020
+ "learning_rate": 1.8149215577897394e-06,
1021
+ "loss": 1.8119,
1022
+ "step": 140
1023
+ },
1024
+ {
1025
+ "epoch": 0.47959183673469385,
1026
+ "grad_norm": 22.194249754011054,
1027
+ "learning_rate": 1.8116515018167635e-06,
1028
+ "loss": 1.8086,
1029
+ "step": 141
1030
+ },
1031
+ {
1032
+ "epoch": 0.48299319727891155,
1033
+ "grad_norm": 3.291628206622755,
1034
+ "learning_rate": 1.8083558101790595e-06,
1035
+ "loss": 1.6961,
1036
+ "step": 142
1037
+ },
1038
+ {
1039
+ "epoch": 0.48639455782312924,
1040
+ "grad_norm": 30.333797331495706,
1041
+ "learning_rate": 1.8050345869696346e-06,
1042
+ "loss": 2.4649,
1043
+ "step": 143
1044
+ },
1045
+ {
1046
+ "epoch": 0.4897959183673469,
1047
+ "grad_norm": 35.46381155966904,
1048
+ "learning_rate": 1.8016879370879004e-06,
1049
+ "loss": 2.375,
1050
+ "step": 144
1051
+ },
1052
+ {
1053
+ "epoch": 0.4931972789115646,
1054
+ "grad_norm": 10.065027530577671,
1055
+ "learning_rate": 1.798315966236358e-06,
1056
+ "loss": 1.7088,
1057
+ "step": 145
1058
+ },
1059
+ {
1060
+ "epoch": 0.4965986394557823,
1061
+ "grad_norm": 31.969238069641904,
1062
+ "learning_rate": 1.794918780917262e-06,
1063
+ "loss": 2.2722,
1064
+ "step": 146
1065
+ },
1066
+ {
1067
+ "epoch": 0.5,
1068
+ "grad_norm": 3.1706943713916287,
1069
+ "learning_rate": 1.791496488429254e-06,
1070
+ "loss": 1.5129,
1071
+ "step": 147
1072
+ },
1073
+ {
1074
+ "epoch": 0.5034013605442177,
1075
+ "grad_norm": 40.129409477941664,
1076
+ "learning_rate": 1.7880491968639751e-06,
1077
+ "loss": 2.8429,
1078
+ "step": 148
1079
+ },
1080
+ {
1081
+ "epoch": 0.5034013605442177,
1082
+ "eval_loss": 2.2053215503692627,
1083
+ "eval_runtime": 3.8702,
1084
+ "eval_samples_per_second": 14.211,
1085
+ "eval_steps_per_second": 1.034,
1086
+ "step": 148
1087
+ },
1088
+ {
1089
+ "epoch": 0.5068027210884354,
1090
+ "grad_norm": 26.985890370710862,
1091
+ "learning_rate": 1.7845770151026513e-06,
1092
+ "loss": 2.3221,
1093
+ "step": 149
1094
+ },
1095
+ {
1096
+ "epoch": 0.5102040816326531,
1097
+ "grad_norm": 34.746114296368646,
1098
+ "learning_rate": 1.7810800528126553e-06,
1099
+ "loss": 2.3499,
1100
+ "step": 150
1101
+ },
1102
+ {
1103
+ "epoch": 0.5136054421768708,
1104
+ "grad_norm": 3.902076154967714,
1105
+ "learning_rate": 1.7775584204440416e-06,
1106
+ "loss": 1.7411,
1107
+ "step": 151
1108
+ },
1109
+ {
1110
+ "epoch": 0.5170068027210885,
1111
+ "grad_norm": 27.80193827038684,
1112
+ "learning_rate": 1.7740122292260594e-06,
1113
+ "loss": 2.2895,
1114
+ "step": 152
1115
+ },
1116
+ {
1117
+ "epoch": 0.5204081632653061,
1118
+ "grad_norm": 3.4114906810600685,
1119
+ "learning_rate": 1.7704415911636375e-06,
1120
+ "loss": 1.5119,
1121
+ "step": 153
1122
+ },
1123
+ {
1124
+ "epoch": 0.5238095238095238,
1125
+ "grad_norm": 9.505522369554297,
1126
+ "learning_rate": 1.7668466190338483e-06,
1127
+ "loss": 1.844,
1128
+ "step": 154
1129
+ },
1130
+ {
1131
+ "epoch": 0.5272108843537415,
1132
+ "grad_norm": 36.46998151934392,
1133
+ "learning_rate": 1.7632274263823457e-06,
1134
+ "loss": 2.4713,
1135
+ "step": 155
1136
+ },
1137
+ {
1138
+ "epoch": 0.5306122448979592,
1139
+ "grad_norm": 17.765108257489125,
1140
+ "learning_rate": 1.759584127519778e-06,
1141
+ "loss": 2.2811,
1142
+ "step": 156
1143
+ },
1144
+ {
1145
+ "epoch": 0.5340136054421769,
1146
+ "grad_norm": 14.148223114236801,
1147
+ "learning_rate": 1.7559168375181775e-06,
1148
+ "loss": 1.8442,
1149
+ "step": 157
1150
+ },
1151
+ {
1152
+ "epoch": 0.5374149659863946,
1153
+ "grad_norm": 9.76402372234183,
1154
+ "learning_rate": 1.7522256722073273e-06,
1155
+ "loss": 1.8945,
1156
+ "step": 158
1157
+ },
1158
+ {
1159
+ "epoch": 0.5408163265306123,
1160
+ "grad_norm": 16.450896799860217,
1161
+ "learning_rate": 1.748510748171101e-06,
1162
+ "loss": 1.9574,
1163
+ "step": 159
1164
+ },
1165
+ {
1166
+ "epoch": 0.54421768707483,
1167
+ "grad_norm": 3.912613042056259,
1168
+ "learning_rate": 1.7447721827437819e-06,
1169
+ "loss": 1.6032,
1170
+ "step": 160
1171
+ },
1172
+ {
1173
+ "epoch": 0.5476190476190477,
1174
+ "grad_norm": 33.305605159021646,
1175
+ "learning_rate": 1.7410100940063558e-06,
1176
+ "loss": 2.4057,
1177
+ "step": 161
1178
+ },
1179
+ {
1180
+ "epoch": 0.5510204081632653,
1181
+ "grad_norm": 38.319973023280475,
1182
+ "learning_rate": 1.7372246007827833e-06,
1183
+ "loss": 2.5925,
1184
+ "step": 162
1185
+ },
1186
+ {
1187
+ "epoch": 0.5544217687074829,
1188
+ "grad_norm": 17.216523524482163,
1189
+ "learning_rate": 1.7334158226362446e-06,
1190
+ "loss": 2.0324,
1191
+ "step": 163
1192
+ },
1193
+ {
1194
+ "epoch": 0.5578231292517006,
1195
+ "grad_norm": 4.9862323362748535,
1196
+ "learning_rate": 1.7295838798653649e-06,
1197
+ "loss": 1.7436,
1198
+ "step": 164
1199
+ },
1200
+ {
1201
+ "epoch": 0.5612244897959183,
1202
+ "grad_norm": 4.0759355613648625,
1203
+ "learning_rate": 1.7257288935004132e-06,
1204
+ "loss": 1.7034,
1205
+ "step": 165
1206
+ },
1207
+ {
1208
+ "epoch": 0.564625850340136,
1209
+ "grad_norm": 16.519960341878562,
1210
+ "learning_rate": 1.7218509852994822e-06,
1211
+ "loss": 2.115,
1212
+ "step": 166
1213
+ },
1214
+ {
1215
+ "epoch": 0.5680272108843537,
1216
+ "grad_norm": 17.37824200525593,
1217
+ "learning_rate": 1.7179502777446392e-06,
1218
+ "loss": 2.0609,
1219
+ "step": 167
1220
+ },
1221
+ {
1222
+ "epoch": 0.5714285714285714,
1223
+ "grad_norm": 39.604264809847564,
1224
+ "learning_rate": 1.7140268940380605e-06,
1225
+ "loss": 2.3861,
1226
+ "step": 168
1227
+ },
1228
+ {
1229
+ "epoch": 0.5748299319727891,
1230
+ "grad_norm": 17.489048911326037,
1231
+ "learning_rate": 1.7100809580981384e-06,
1232
+ "loss": 1.9979,
1233
+ "step": 169
1234
+ },
1235
+ {
1236
+ "epoch": 0.5782312925170068,
1237
+ "grad_norm": 6.642641185839537,
1238
+ "learning_rate": 1.7061125945555679e-06,
1239
+ "loss": 1.7533,
1240
+ "step": 170
1241
+ },
1242
+ {
1243
+ "epoch": 0.5816326530612245,
1244
+ "grad_norm": 41.437166409250736,
1245
+ "learning_rate": 1.70212192874941e-06,
1246
+ "loss": 2.8676,
1247
+ "step": 171
1248
+ },
1249
+ {
1250
+ "epoch": 0.5850340136054422,
1251
+ "grad_norm": 12.285090452877482,
1252
+ "learning_rate": 1.6981090867231336e-06,
1253
+ "loss": 1.8715,
1254
+ "step": 172
1255
+ },
1256
+ {
1257
+ "epoch": 0.5884353741496599,
1258
+ "grad_norm": 20.351266920257437,
1259
+ "learning_rate": 1.694074195220634e-06,
1260
+ "loss": 2.5238,
1261
+ "step": 173
1262
+ },
1263
+ {
1264
+ "epoch": 0.5918367346938775,
1265
+ "grad_norm": 13.128678816386138,
1266
+ "learning_rate": 1.6900173816822289e-06,
1267
+ "loss": 1.7191,
1268
+ "step": 174
1269
+ },
1270
+ {
1271
+ "epoch": 0.5952380952380952,
1272
+ "grad_norm": 3.1331026154409565,
1273
+ "learning_rate": 1.6859387742406358e-06,
1274
+ "loss": 1.7885,
1275
+ "step": 175
1276
+ },
1277
+ {
1278
+ "epoch": 0.5986394557823129,
1279
+ "grad_norm": 12.273944679120639,
1280
+ "learning_rate": 1.6818385017169212e-06,
1281
+ "loss": 1.9361,
1282
+ "step": 176
1283
+ },
1284
+ {
1285
+ "epoch": 0.6020408163265306,
1286
+ "grad_norm": 18.988287394873876,
1287
+ "learning_rate": 1.6777166936164354e-06,
1288
+ "loss": 2.118,
1289
+ "step": 177
1290
+ },
1291
+ {
1292
+ "epoch": 0.6054421768707483,
1293
+ "grad_norm": 13.330413347581118,
1294
+ "learning_rate": 1.6735734801247202e-06,
1295
+ "loss": 1.9923,
1296
+ "step": 178
1297
+ },
1298
+ {
1299
+ "epoch": 0.608843537414966,
1300
+ "grad_norm": 8.528660885149025,
1301
+ "learning_rate": 1.6694089921033976e-06,
1302
+ "loss": 1.6938,
1303
+ "step": 179
1304
+ },
1305
+ {
1306
+ "epoch": 0.6122448979591837,
1307
+ "grad_norm": 28.049589150374253,
1308
+ "learning_rate": 1.6652233610860364e-06,
1309
+ "loss": 2.4092,
1310
+ "step": 180
1311
+ },
1312
+ {
1313
+ "epoch": 0.6156462585034014,
1314
+ "grad_norm": 19.077236893577115,
1315
+ "learning_rate": 1.6610167192739978e-06,
1316
+ "loss": 2.3235,
1317
+ "step": 181
1318
+ },
1319
+ {
1320
+ "epoch": 0.6190476190476191,
1321
+ "grad_norm": 23.109888095114325,
1322
+ "learning_rate": 1.6567891995322603e-06,
1323
+ "loss": 2.2678,
1324
+ "step": 182
1325
+ },
1326
+ {
1327
+ "epoch": 0.6224489795918368,
1328
+ "grad_norm": 19.456776496200867,
1329
+ "learning_rate": 1.6525409353852221e-06,
1330
+ "loss": 2.2764,
1331
+ "step": 183
1332
+ },
1333
+ {
1334
+ "epoch": 0.6258503401360545,
1335
+ "grad_norm": 9.82404206796416,
1336
+ "learning_rate": 1.6482720610124856e-06,
1337
+ "loss": 1.8034,
1338
+ "step": 184
1339
+ },
1340
+ {
1341
+ "epoch": 0.6292517006802721,
1342
+ "grad_norm": 24.2061776724548,
1343
+ "learning_rate": 1.6439827112446173e-06,
1344
+ "loss": 2.161,
1345
+ "step": 185
1346
+ },
1347
+ {
1348
+ "epoch": 0.6292517006802721,
1349
+ "eval_loss": 2.194326400756836,
1350
+ "eval_runtime": 3.7428,
1351
+ "eval_samples_per_second": 14.695,
1352
+ "eval_steps_per_second": 1.069,
1353
+ "step": 185
1354
+ },
1355
+ {
1356
+ "epoch": 0.6326530612244898,
1357
+ "grad_norm": 30.469163171671003,
1358
+ "learning_rate": 1.6396730215588912e-06,
1359
+ "loss": 2.2773,
1360
+ "step": 186
1361
+ },
1362
+ {
1363
+ "epoch": 0.6360544217687075,
1364
+ "grad_norm": 3.646917584621385,
1365
+ "learning_rate": 1.6353431280750082e-06,
1366
+ "loss": 1.5989,
1367
+ "step": 187
1368
+ },
1369
+ {
1370
+ "epoch": 0.6394557823129252,
1371
+ "grad_norm": 30.30266588230692,
1372
+ "learning_rate": 1.6309931675507978e-06,
1373
+ "loss": 2.6169,
1374
+ "step": 188
1375
+ },
1376
+ {
1377
+ "epoch": 0.6428571428571429,
1378
+ "grad_norm": 14.371186117614542,
1379
+ "learning_rate": 1.6266232773778983e-06,
1380
+ "loss": 1.9241,
1381
+ "step": 189
1382
+ },
1383
+ {
1384
+ "epoch": 0.6462585034013606,
1385
+ "grad_norm": 18.71258411403636,
1386
+ "learning_rate": 1.6222335955774176e-06,
1387
+ "loss": 2.1737,
1388
+ "step": 190
1389
+ },
1390
+ {
1391
+ "epoch": 0.6496598639455783,
1392
+ "grad_norm": 3.2723339662931585,
1393
+ "learning_rate": 1.617824260795573e-06,
1394
+ "loss": 1.8075,
1395
+ "step": 191
1396
+ },
1397
+ {
1398
+ "epoch": 0.6530612244897959,
1399
+ "grad_norm": 16.496061968286824,
1400
+ "learning_rate": 1.6133954122993139e-06,
1401
+ "loss": 2.0147,
1402
+ "step": 192
1403
+ },
1404
+ {
1405
+ "epoch": 0.6564625850340136,
1406
+ "grad_norm": 3.2013079969624805,
1407
+ "learning_rate": 1.608947189971921e-06,
1408
+ "loss": 1.6798,
1409
+ "step": 193
1410
+ },
1411
+ {
1412
+ "epoch": 0.6598639455782312,
1413
+ "grad_norm": 20.981814890242124,
1414
+ "learning_rate": 1.6044797343085898e-06,
1415
+ "loss": 2.0425,
1416
+ "step": 194
1417
+ },
1418
+ {
1419
+ "epoch": 0.6632653061224489,
1420
+ "grad_norm": 50.879018823375965,
1421
+ "learning_rate": 1.599993186411992e-06,
1422
+ "loss": 3.8504,
1423
+ "step": 195
1424
+ },
1425
+ {
1426
+ "epoch": 0.6666666666666666,
1427
+ "grad_norm": 3.283241794235971,
1428
+ "learning_rate": 1.59548768798782e-06,
1429
+ "loss": 1.4971,
1430
+ "step": 196
1431
+ },
1432
+ {
1433
+ "epoch": 0.6700680272108843,
1434
+ "grad_norm": 12.706772022061763,
1435
+ "learning_rate": 1.5909633813403092e-06,
1436
+ "loss": 1.9318,
1437
+ "step": 197
1438
+ },
1439
+ {
1440
+ "epoch": 0.673469387755102,
1441
+ "grad_norm": 7.747043673117189,
1442
+ "learning_rate": 1.5864204093677463e-06,
1443
+ "loss": 1.8641,
1444
+ "step": 198
1445
+ },
1446
+ {
1447
+ "epoch": 0.6768707482993197,
1448
+ "grad_norm": 12.685665761738797,
1449
+ "learning_rate": 1.5818589155579529e-06,
1450
+ "loss": 2.0781,
1451
+ "step": 199
1452
+ },
1453
+ {
1454
+ "epoch": 0.6802721088435374,
1455
+ "grad_norm": 8.183695796856302,
1456
+ "learning_rate": 1.5772790439837555e-06,
1457
+ "loss": 2.1112,
1458
+ "step": 200
1459
+ },
1460
+ {
1461
+ "epoch": 0.6836734693877551,
1462
+ "grad_norm": 3.6436475976280605,
1463
+ "learning_rate": 1.572680939298435e-06,
1464
+ "loss": 1.504,
1465
+ "step": 201
1466
+ },
1467
+ {
1468
+ "epoch": 0.6870748299319728,
1469
+ "grad_norm": 7.765753459491514,
1470
+ "learning_rate": 1.5680647467311555e-06,
1471
+ "loss": 1.6113,
1472
+ "step": 202
1473
+ },
1474
+ {
1475
+ "epoch": 0.6904761904761905,
1476
+ "grad_norm": 27.059590789587673,
1477
+ "learning_rate": 1.563430612082382e-06,
1478
+ "loss": 2.3797,
1479
+ "step": 203
1480
+ },
1481
+ {
1482
+ "epoch": 0.6938775510204082,
1483
+ "grad_norm": 17.865181616406808,
1484
+ "learning_rate": 1.5587786817192687e-06,
1485
+ "loss": 2.2287,
1486
+ "step": 204
1487
+ },
1488
+ {
1489
+ "epoch": 0.6972789115646258,
1490
+ "grad_norm": 11.50437842198177,
1491
+ "learning_rate": 1.5541091025710434e-06,
1492
+ "loss": 2.2926,
1493
+ "step": 205
1494
+ },
1495
+ {
1496
+ "epoch": 0.7006802721088435,
1497
+ "grad_norm": 18.03962056520961,
1498
+ "learning_rate": 1.5494220221243607e-06,
1499
+ "loss": 2.3374,
1500
+ "step": 206
1501
+ },
1502
+ {
1503
+ "epoch": 0.7040816326530612,
1504
+ "grad_norm": 19.808732477248256,
1505
+ "learning_rate": 1.5447175884186478e-06,
1506
+ "loss": 2.3215,
1507
+ "step": 207
1508
+ },
1509
+ {
1510
+ "epoch": 0.7074829931972789,
1511
+ "grad_norm": 21.35228597761302,
1512
+ "learning_rate": 1.539995950041426e-06,
1513
+ "loss": 2.2378,
1514
+ "step": 208
1515
+ },
1516
+ {
1517
+ "epoch": 0.7108843537414966,
1518
+ "grad_norm": 14.090932946927257,
1519
+ "learning_rate": 1.5352572561236197e-06,
1520
+ "loss": 2.22,
1521
+ "step": 209
1522
+ },
1523
+ {
1524
+ "epoch": 0.7142857142857143,
1525
+ "grad_norm": 22.22875395969964,
1526
+ "learning_rate": 1.5305016563348443e-06,
1527
+ "loss": 2.44,
1528
+ "step": 210
1529
+ },
1530
+ {
1531
+ "epoch": 0.717687074829932,
1532
+ "grad_norm": 12.732771656478363,
1533
+ "learning_rate": 1.5257293008786807e-06,
1534
+ "loss": 2.0598,
1535
+ "step": 211
1536
+ },
1537
+ {
1538
+ "epoch": 0.7210884353741497,
1539
+ "grad_norm": 3.3024595151809777,
1540
+ "learning_rate": 1.5209403404879303e-06,
1541
+ "loss": 1.8514,
1542
+ "step": 212
1543
+ },
1544
+ {
1545
+ "epoch": 0.7244897959183674,
1546
+ "grad_norm": 31.041628605811148,
1547
+ "learning_rate": 1.5161349264198535e-06,
1548
+ "loss": 2.4225,
1549
+ "step": 213
1550
+ },
1551
+ {
1552
+ "epoch": 0.7278911564625851,
1553
+ "grad_norm": 11.866017531018645,
1554
+ "learning_rate": 1.511313210451394e-06,
1555
+ "loss": 1.9747,
1556
+ "step": 214
1557
+ },
1558
+ {
1559
+ "epoch": 0.7312925170068028,
1560
+ "grad_norm": 23.77867996796224,
1561
+ "learning_rate": 1.5064753448743832e-06,
1562
+ "loss": 2.0971,
1563
+ "step": 215
1564
+ },
1565
+ {
1566
+ "epoch": 0.7346938775510204,
1567
+ "grad_norm": 28.640512428374876,
1568
+ "learning_rate": 1.5016214824907314e-06,
1569
+ "loss": 2.2247,
1570
+ "step": 216
1571
+ },
1572
+ {
1573
+ "epoch": 0.7380952380952381,
1574
+ "grad_norm": 9.463317499162777,
1575
+ "learning_rate": 1.4967517766076015e-06,
1576
+ "loss": 1.9511,
1577
+ "step": 217
1578
+ },
1579
+ {
1580
+ "epoch": 0.7414965986394558,
1581
+ "grad_norm": 3.6132074342008336,
1582
+ "learning_rate": 1.4918663810325659e-06,
1583
+ "loss": 1.5643,
1584
+ "step": 218
1585
+ },
1586
+ {
1587
+ "epoch": 0.7448979591836735,
1588
+ "grad_norm": 12.274299577611806,
1589
+ "learning_rate": 1.4869654500687492e-06,
1590
+ "loss": 2.0865,
1591
+ "step": 219
1592
+ },
1593
+ {
1594
+ "epoch": 0.7482993197278912,
1595
+ "grad_norm": 9.577269499797044,
1596
+ "learning_rate": 1.4820491385099555e-06,
1597
+ "loss": 2.1494,
1598
+ "step": 220
1599
+ },
1600
+ {
1601
+ "epoch": 0.7517006802721088,
1602
+ "grad_norm": 13.665325186622818,
1603
+ "learning_rate": 1.477117601635777e-06,
1604
+ "loss": 2.0676,
1605
+ "step": 221
1606
+ },
1607
+ {
1608
+ "epoch": 0.7551020408163265,
1609
+ "grad_norm": 12.044556166373619,
1610
+ "learning_rate": 1.4721709952066923e-06,
1611
+ "loss": 1.7408,
1612
+ "step": 222
1613
+ },
1614
+ {
1615
+ "epoch": 0.7551020408163265,
1616
+ "eval_loss": 2.1867611408233643,
1617
+ "eval_runtime": 3.7388,
1618
+ "eval_samples_per_second": 14.711,
1619
+ "eval_steps_per_second": 1.07,
1620
+ "step": 222
1621
+ },
1622
+ {
1623
+ "epoch": 0.7585034013605442,
1624
+ "grad_norm": 32.0866216128451,
1625
+ "learning_rate": 1.4672094754591449e-06,
1626
+ "loss": 2.6444,
1627
+ "step": 223
1628
+ },
1629
+ {
1630
+ "epoch": 0.7619047619047619,
1631
+ "grad_norm": 26.272890838528287,
1632
+ "learning_rate": 1.4622331991006082e-06,
1633
+ "loss": 2.0286,
1634
+ "step": 224
1635
+ },
1636
+ {
1637
+ "epoch": 0.7653061224489796,
1638
+ "grad_norm": 10.948966043777636,
1639
+ "learning_rate": 1.4572423233046385e-06,
1640
+ "loss": 1.8924,
1641
+ "step": 225
1642
+ },
1643
+ {
1644
+ "epoch": 0.7687074829931972,
1645
+ "grad_norm": 10.041220633719293,
1646
+ "learning_rate": 1.4522370057059079e-06,
1647
+ "loss": 1.8589,
1648
+ "step": 226
1649
+ },
1650
+ {
1651
+ "epoch": 0.7721088435374149,
1652
+ "grad_norm": 19.90849856575333,
1653
+ "learning_rate": 1.447217404395227e-06,
1654
+ "loss": 2.4632,
1655
+ "step": 227
1656
+ },
1657
+ {
1658
+ "epoch": 0.7755102040816326,
1659
+ "grad_norm": 3.3718807752757134,
1660
+ "learning_rate": 1.4421836779145511e-06,
1661
+ "loss": 1.7402,
1662
+ "step": 228
1663
+ },
1664
+ {
1665
+ "epoch": 0.7789115646258503,
1666
+ "grad_norm": 33.99543346002537,
1667
+ "learning_rate": 1.4371359852519734e-06,
1668
+ "loss": 2.9081,
1669
+ "step": 229
1670
+ },
1671
+ {
1672
+ "epoch": 0.782312925170068,
1673
+ "grad_norm": 12.446391408704297,
1674
+ "learning_rate": 1.4320744858367024e-06,
1675
+ "loss": 2.0828,
1676
+ "step": 230
1677
+ },
1678
+ {
1679
+ "epoch": 0.7857142857142857,
1680
+ "grad_norm": 26.19952152880794,
1681
+ "learning_rate": 1.4269993395340277e-06,
1682
+ "loss": 2.2178,
1683
+ "step": 231
1684
+ },
1685
+ {
1686
+ "epoch": 0.7891156462585034,
1687
+ "grad_norm": 36.07799078718175,
1688
+ "learning_rate": 1.4219107066402692e-06,
1689
+ "loss": 2.6926,
1690
+ "step": 232
1691
+ },
1692
+ {
1693
+ "epoch": 0.7925170068027211,
1694
+ "grad_norm": 11.216785179837261,
1695
+ "learning_rate": 1.4168087478777152e-06,
1696
+ "loss": 2.0393,
1697
+ "step": 233
1698
+ },
1699
+ {
1700
+ "epoch": 0.7959183673469388,
1701
+ "grad_norm": 17.659830496744974,
1702
+ "learning_rate": 1.4116936243895466e-06,
1703
+ "loss": 2.1082,
1704
+ "step": 234
1705
+ },
1706
+ {
1707
+ "epoch": 0.7993197278911565,
1708
+ "grad_norm": 17.001892765923902,
1709
+ "learning_rate": 1.406565497734745e-06,
1710
+ "loss": 1.9051,
1711
+ "step": 235
1712
+ },
1713
+ {
1714
+ "epoch": 0.8027210884353742,
1715
+ "grad_norm": 31.896056687773818,
1716
+ "learning_rate": 1.4014245298829935e-06,
1717
+ "loss": 2.702,
1718
+ "step": 236
1719
+ },
1720
+ {
1721
+ "epoch": 0.8061224489795918,
1722
+ "grad_norm": 6.972810630357569,
1723
+ "learning_rate": 1.3962708832095568e-06,
1724
+ "loss": 1.9466,
1725
+ "step": 237
1726
+ },
1727
+ {
1728
+ "epoch": 0.8095238095238095,
1729
+ "grad_norm": 17.689383441039308,
1730
+ "learning_rate": 1.3911047204901558e-06,
1731
+ "loss": 2.3425,
1732
+ "step": 238
1733
+ },
1734
+ {
1735
+ "epoch": 0.8129251700680272,
1736
+ "grad_norm": 16.46834046227904,
1737
+ "learning_rate": 1.385926204895826e-06,
1738
+ "loss": 2.1545,
1739
+ "step": 239
1740
+ },
1741
+ {
1742
+ "epoch": 0.8163265306122449,
1743
+ "grad_norm": 21.69161139742313,
1744
+ "learning_rate": 1.3807354999877614e-06,
1745
+ "loss": 2.3222,
1746
+ "step": 240
1747
+ },
1748
+ {
1749
+ "epoch": 0.8197278911564626,
1750
+ "grad_norm": 3.411794366451801,
1751
+ "learning_rate": 1.3755327697121522e-06,
1752
+ "loss": 1.6492,
1753
+ "step": 241
1754
+ },
1755
+ {
1756
+ "epoch": 0.8231292517006803,
1757
+ "grad_norm": 13.113564486849809,
1758
+ "learning_rate": 1.3703181783950031e-06,
1759
+ "loss": 2.0212,
1760
+ "step": 242
1761
+ },
1762
+ {
1763
+ "epoch": 0.826530612244898,
1764
+ "grad_norm": 14.798483657902382,
1765
+ "learning_rate": 1.3650918907369452e-06,
1766
+ "loss": 2.1974,
1767
+ "step": 243
1768
+ },
1769
+ {
1770
+ "epoch": 0.8299319727891157,
1771
+ "grad_norm": 10.19780084250851,
1772
+ "learning_rate": 1.3598540718080345e-06,
1773
+ "loss": 1.8543,
1774
+ "step": 244
1775
+ },
1776
+ {
1777
+ "epoch": 0.8333333333333334,
1778
+ "grad_norm": 30.023251305313995,
1779
+ "learning_rate": 1.3546048870425354e-06,
1780
+ "loss": 2.2387,
1781
+ "step": 245
1782
+ },
1783
+ {
1784
+ "epoch": 0.8367346938775511,
1785
+ "grad_norm": 22.321684071392564,
1786
+ "learning_rate": 1.3493445022336994e-06,
1787
+ "loss": 2.4305,
1788
+ "step": 246
1789
+ },
1790
+ {
1791
+ "epoch": 0.8401360544217688,
1792
+ "grad_norm": 34.98925650288134,
1793
+ "learning_rate": 1.3440730835285247e-06,
1794
+ "loss": 2.4364,
1795
+ "step": 247
1796
+ },
1797
+ {
1798
+ "epoch": 0.8435374149659864,
1799
+ "grad_norm": 3.161092974878791,
1800
+ "learning_rate": 1.3387907974225116e-06,
1801
+ "loss": 1.4885,
1802
+ "step": 248
1803
+ },
1804
+ {
1805
+ "epoch": 0.8469387755102041,
1806
+ "grad_norm": 50.11899935337027,
1807
+ "learning_rate": 1.3334978107544024e-06,
1808
+ "loss": 2.3332,
1809
+ "step": 249
1810
+ },
1811
+ {
1812
+ "epoch": 0.8503401360544217,
1813
+ "grad_norm": 15.05206270554561,
1814
+ "learning_rate": 1.3281942907009112e-06,
1815
+ "loss": 2.2131,
1816
+ "step": 250
1817
+ },
1818
+ {
1819
+ "epoch": 0.8537414965986394,
1820
+ "grad_norm": 24.869549840961,
1821
+ "learning_rate": 1.3228804047714462e-06,
1822
+ "loss": 2.2264,
1823
+ "step": 251
1824
+ },
1825
+ {
1826
+ "epoch": 0.8571428571428571,
1827
+ "grad_norm": 16.049594008906414,
1828
+ "learning_rate": 1.317556320802816e-06,
1829
+ "loss": 1.7228,
1830
+ "step": 252
1831
+ },
1832
+ {
1833
+ "epoch": 0.8605442176870748,
1834
+ "grad_norm": 14.258214783846427,
1835
+ "learning_rate": 1.31222220695393e-06,
1836
+ "loss": 1.999,
1837
+ "step": 253
1838
+ },
1839
+ {
1840
+ "epoch": 0.8639455782312925,
1841
+ "grad_norm": 3.3063413494205474,
1842
+ "learning_rate": 1.3068782317004874e-06,
1843
+ "loss": 1.4607,
1844
+ "step": 254
1845
+ },
1846
+ {
1847
+ "epoch": 0.8673469387755102,
1848
+ "grad_norm": 8.831787955552995,
1849
+ "learning_rate": 1.3015245638296563e-06,
1850
+ "loss": 2.1192,
1851
+ "step": 255
1852
+ },
1853
+ {
1854
+ "epoch": 0.8707482993197279,
1855
+ "grad_norm": 3.121872417027736,
1856
+ "learning_rate": 1.296161372434741e-06,
1857
+ "loss": 1.5467,
1858
+ "step": 256
1859
+ },
1860
+ {
1861
+ "epoch": 0.8741496598639455,
1862
+ "grad_norm": 33.22351218100941,
1863
+ "learning_rate": 1.2907888269098416e-06,
1864
+ "loss": 2.3588,
1865
+ "step": 257
1866
+ },
1867
+ {
1868
+ "epoch": 0.8775510204081632,
1869
+ "grad_norm": 3.188560179185641,
1870
+ "learning_rate": 1.2854070969445064e-06,
1871
+ "loss": 1.5405,
1872
+ "step": 258
1873
+ },
1874
+ {
1875
+ "epoch": 0.8809523809523809,
1876
+ "grad_norm": 21.318069352021737,
1877
+ "learning_rate": 1.2800163525183688e-06,
1878
+ "loss": 2.2063,
1879
+ "step": 259
1880
+ },
1881
+ {
1882
+ "epoch": 0.8809523809523809,
1883
+ "eval_loss": 2.1820290088653564,
1884
+ "eval_runtime": 3.8534,
1885
+ "eval_samples_per_second": 14.273,
1886
+ "eval_steps_per_second": 1.038,
1887
+ "step": 259
1888
+ },
1889
+ {
1890
+ "epoch": 0.8843537414965986,
1891
+ "grad_norm": 8.243323927611506,
1892
+ "learning_rate": 1.2746167638957805e-06,
1893
+ "loss": 1.8474,
1894
+ "step": 260
1895
+ },
1896
+ {
1897
+ "epoch": 0.8877551020408163,
1898
+ "grad_norm": 28.909948439715215,
1899
+ "learning_rate": 1.2692085016204333e-06,
1900
+ "loss": 2.2626,
1901
+ "step": 261
1902
+ },
1903
+ {
1904
+ "epoch": 0.891156462585034,
1905
+ "grad_norm": 3.0722449835450116,
1906
+ "learning_rate": 1.2637917365099725e-06,
1907
+ "loss": 1.6435,
1908
+ "step": 262
1909
+ },
1910
+ {
1911
+ "epoch": 0.8945578231292517,
1912
+ "grad_norm": 29.871491992872432,
1913
+ "learning_rate": 1.2583666396506023e-06,
1914
+ "loss": 2.1498,
1915
+ "step": 263
1916
+ },
1917
+ {
1918
+ "epoch": 0.8979591836734694,
1919
+ "grad_norm": 2.977539901133042,
1920
+ "learning_rate": 1.2529333823916806e-06,
1921
+ "loss": 1.7024,
1922
+ "step": 264
1923
+ },
1924
+ {
1925
+ "epoch": 0.9013605442176871,
1926
+ "grad_norm": 16.47476152363902,
1927
+ "learning_rate": 1.2474921363403094e-06,
1928
+ "loss": 2.532,
1929
+ "step": 265
1930
+ },
1931
+ {
1932
+ "epoch": 0.9047619047619048,
1933
+ "grad_norm": 13.022051400004793,
1934
+ "learning_rate": 1.2420430733559124e-06,
1935
+ "loss": 1.8884,
1936
+ "step": 266
1937
+ },
1938
+ {
1939
+ "epoch": 0.9081632653061225,
1940
+ "grad_norm": 8.97804602434911,
1941
+ "learning_rate": 1.2365863655448075e-06,
1942
+ "loss": 1.7885,
1943
+ "step": 267
1944
+ },
1945
+ {
1946
+ "epoch": 0.9115646258503401,
1947
+ "grad_norm": 16.047174726202446,
1948
+ "learning_rate": 1.2311221852547721e-06,
1949
+ "loss": 2.3363,
1950
+ "step": 268
1951
+ },
1952
+ {
1953
+ "epoch": 0.9149659863945578,
1954
+ "grad_norm": 3.5763323384852765,
1955
+ "learning_rate": 1.2256507050695977e-06,
1956
+ "loss": 1.701,
1957
+ "step": 269
1958
+ },
1959
+ {
1960
+ "epoch": 0.9183673469387755,
1961
+ "grad_norm": 26.929796973835796,
1962
+ "learning_rate": 1.220172097803641e-06,
1963
+ "loss": 2.3601,
1964
+ "step": 270
1965
+ },
1966
+ {
1967
+ "epoch": 0.9217687074829932,
1968
+ "grad_norm": 22.50281840057178,
1969
+ "learning_rate": 1.2146865364963633e-06,
1970
+ "loss": 2.0693,
1971
+ "step": 271
1972
+ },
1973
+ {
1974
+ "epoch": 0.9251700680272109,
1975
+ "grad_norm": 11.62602578923058,
1976
+ "learning_rate": 1.2091941944068665e-06,
1977
+ "loss": 1.9123,
1978
+ "step": 272
1979
+ },
1980
+ {
1981
+ "epoch": 0.9285714285714286,
1982
+ "grad_norm": 16.841220035990798,
1983
+ "learning_rate": 1.2036952450084214e-06,
1984
+ "loss": 2.2163,
1985
+ "step": 273
1986
+ },
1987
+ {
1988
+ "epoch": 0.9319727891156463,
1989
+ "grad_norm": 18.055133543008612,
1990
+ "learning_rate": 1.1981898619829879e-06,
1991
+ "loss": 2.2485,
1992
+ "step": 274
1993
+ },
1994
+ {
1995
+ "epoch": 0.935374149659864,
1996
+ "grad_norm": 26.45820099458286,
1997
+ "learning_rate": 1.1926782192157273e-06,
1998
+ "loss": 2.1845,
1999
+ "step": 275
2000
+ },
2001
+ {
2002
+ "epoch": 0.9387755102040817,
2003
+ "grad_norm": 3.334955291200548,
2004
+ "learning_rate": 1.1871604907895148e-06,
2005
+ "loss": 1.7059,
2006
+ "step": 276
2007
+ },
2008
+ {
2009
+ "epoch": 0.9421768707482994,
2010
+ "grad_norm": 19.511242339983163,
2011
+ "learning_rate": 1.1816368509794364e-06,
2012
+ "loss": 2.3601,
2013
+ "step": 277
2014
+ },
2015
+ {
2016
+ "epoch": 0.9455782312925171,
2017
+ "grad_norm": 21.146925953072365,
2018
+ "learning_rate": 1.1761074742472882e-06,
2019
+ "loss": 1.9957,
2020
+ "step": 278
2021
+ },
2022
+ {
2023
+ "epoch": 0.9489795918367347,
2024
+ "grad_norm": 3.5535024021194452,
2025
+ "learning_rate": 1.1705725352360633e-06,
2026
+ "loss": 1.9249,
2027
+ "step": 279
2028
+ },
2029
+ {
2030
+ "epoch": 0.9523809523809523,
2031
+ "grad_norm": 13.348912305071467,
2032
+ "learning_rate": 1.165032208764438e-06,
2033
+ "loss": 2.0641,
2034
+ "step": 280
2035
+ },
2036
+ {
2037
+ "epoch": 0.95578231292517,
2038
+ "grad_norm": 12.61033318044152,
2039
+ "learning_rate": 1.1594866698212483e-06,
2040
+ "loss": 2.169,
2041
+ "step": 281
2042
+ },
2043
+ {
2044
+ "epoch": 0.9591836734693877,
2045
+ "grad_norm": 28.256325358544956,
2046
+ "learning_rate": 1.1539360935599644e-06,
2047
+ "loss": 2.0952,
2048
+ "step": 282
2049
+ },
2050
+ {
2051
+ "epoch": 0.9625850340136054,
2052
+ "grad_norm": 12.61302060729169,
2053
+ "learning_rate": 1.1483806552931582e-06,
2054
+ "loss": 1.9411,
2055
+ "step": 283
2056
+ },
2057
+ {
2058
+ "epoch": 0.9659863945578231,
2059
+ "grad_norm": 8.711391665501074,
2060
+ "learning_rate": 1.142820530486966e-06,
2061
+ "loss": 1.7633,
2062
+ "step": 284
2063
+ },
2064
+ {
2065
+ "epoch": 0.9693877551020408,
2066
+ "grad_norm": 35.95958496013491,
2067
+ "learning_rate": 1.1372558947555455e-06,
2068
+ "loss": 2.1904,
2069
+ "step": 285
2070
+ },
2071
+ {
2072
+ "epoch": 0.9727891156462585,
2073
+ "grad_norm": 3.429092657849847,
2074
+ "learning_rate": 1.131686923855531e-06,
2075
+ "loss": 1.8276,
2076
+ "step": 286
2077
+ },
2078
+ {
2079
+ "epoch": 0.9761904761904762,
2080
+ "grad_norm": 12.871658288368948,
2081
+ "learning_rate": 1.1261137936804811e-06,
2082
+ "loss": 2.0911,
2083
+ "step": 287
2084
+ },
2085
+ {
2086
+ "epoch": 0.9795918367346939,
2087
+ "grad_norm": 13.217001333800638,
2088
+ "learning_rate": 1.1205366802553228e-06,
2089
+ "loss": 1.9614,
2090
+ "step": 288
2091
+ },
2092
+ {
2093
+ "epoch": 0.9829931972789115,
2094
+ "grad_norm": 24.712172909538513,
2095
+ "learning_rate": 1.1149557597307934e-06,
2096
+ "loss": 2.0412,
2097
+ "step": 289
2098
+ },
2099
+ {
2100
+ "epoch": 0.9863945578231292,
2101
+ "grad_norm": 10.412944718560512,
2102
+ "learning_rate": 1.1093712083778746e-06,
2103
+ "loss": 1.7787,
2104
+ "step": 290
2105
+ },
2106
+ {
2107
+ "epoch": 0.9897959183673469,
2108
+ "grad_norm": 15.631851389191027,
2109
+ "learning_rate": 1.1037832025822265e-06,
2110
+ "loss": 2.3362,
2111
+ "step": 291
2112
+ },
2113
+ {
2114
+ "epoch": 0.9931972789115646,
2115
+ "grad_norm": 12.135256117907334,
2116
+ "learning_rate": 1.098191918838617e-06,
2117
+ "loss": 2.0212,
2118
+ "step": 292
2119
+ },
2120
+ {
2121
+ "epoch": 0.9965986394557823,
2122
+ "grad_norm": 13.057522322919077,
2123
+ "learning_rate": 1.0925975337453462e-06,
2124
+ "loss": 2.2842,
2125
+ "step": 293
2126
+ },
2127
+ {
2128
+ "epoch": 1.0,
2129
+ "grad_norm": 17.565324685523922,
2130
+ "learning_rate": 1.0870002239986686e-06,
2131
+ "loss": 2.5002,
2132
+ "step": 294
2133
+ }
2134
+ ],
2135
+ "logging_steps": 1,
2136
+ "max_steps": 588,
2137
+ "num_input_tokens_seen": 0,
2138
+ "num_train_epochs": 2,
2139
+ "save_steps": 294,
2140
+ "stateful_callbacks": {
2141
+ "TrainerControl": {
2142
+ "args": {
2143
+ "should_epoch_stop": false,
2144
+ "should_evaluate": false,
2145
+ "should_log": false,
2146
+ "should_save": true,
2147
+ "should_training_stop": false
2148
+ },
2149
+ "attributes": {}
2150
+ }
2151
+ },
2152
+ "total_flos": 95887829237760.0,
2153
+ "train_batch_size": 2,
2154
+ "trial_name": null,
2155
+ "trial_params": null
2156
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22a4947fe41739721780866b30349cfbf1192d28b19f4eacf333006a2df11a8c
3
+ size 8376
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)