Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- config.json +28 -0
- generation_config.json +9 -0
- latest +1 -0
- model-00001-of-00005.safetensors +3 -0
- model-00002-of-00005.safetensors +3 -0
- model-00003-of-00005.safetensors +3 -0
- model-00004-of-00005.safetensors +3 -0
- model-00005-of-00005.safetensors +3 -0
- model.safetensors.index.json +370 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +30 -0
- tokenizer.json +3 -0
- tokenizer_config.json +0 -0
- trainer_state.json +2156 -0
- training_args.bin +3 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"MistralForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 1,
|
| 7 |
+
"eos_token_id": 2,
|
| 8 |
+
"head_dim": 128,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 5120,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 14336,
|
| 13 |
+
"max_position_embeddings": 131072,
|
| 14 |
+
"model_type": "mistral",
|
| 15 |
+
"num_attention_heads": 32,
|
| 16 |
+
"num_hidden_layers": 40,
|
| 17 |
+
"num_key_value_heads": 8,
|
| 18 |
+
"pad_token_id": 10,
|
| 19 |
+
"rms_norm_eps": 1e-05,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": null,
|
| 22 |
+
"tie_word_embeddings": false,
|
| 23 |
+
"torch_dtype": "bfloat16",
|
| 24 |
+
"transformers_version": "4.51.0",
|
| 25 |
+
"unsloth_version": "2024.9",
|
| 26 |
+
"use_cache": false,
|
| 27 |
+
"vocab_size": 131072
|
| 28 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": 2,
|
| 6 |
+
"max_length": 1024000,
|
| 7 |
+
"pad_token_id": 10,
|
| 8 |
+
"transformers_version": "4.51.0"
|
| 9 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step294
|
model-00001-of-00005.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:586cc7d13a1b477a182836e8110d76fb88240697d4df99289addb689b2c93ce6
|
| 3 |
+
size 4865522496
|
model-00002-of-00005.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:72c3ed28bc71762404059386f37f59de1aa879113d336a1b83b49bd66dc04f8f
|
| 3 |
+
size 4907529424
|
model-00003-of-00005.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0567f636bb370118367a48f392bf7437f8177e8a8b6861b6880b6ec614115b76
|
| 3 |
+
size 4907529456
|
model-00004-of-00005.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5af47265dccbd48173cc7095260122fadc3ed6d5637f3322fb555744d9cce783
|
| 3 |
+
size 4907529456
|
model-00005-of-00005.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b17e6e824de9951b17e99b8d1c4b87ecec44bddc6a5017ae3431cab552355d2f
|
| 3 |
+
size 4907496272
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 24495564800
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00005-of-00005.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00005.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
| 242 |
+
"model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
| 244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
| 245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
| 246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
| 247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
| 248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
| 249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
| 250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
| 251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
| 253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
| 254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
| 255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
| 257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
| 258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
| 259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
| 260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
| 262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
| 263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
| 264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
| 266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
| 267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
| 268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
| 269 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
| 271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
| 272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
| 273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
| 275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
| 276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
| 277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
| 278 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
| 280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
| 281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
| 282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
| 284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
| 285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
| 286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
| 287 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
| 289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
| 290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
| 291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
| 293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
| 294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
| 295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
| 296 |
+
"model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
| 298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
| 299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
| 300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
| 302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
| 303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
| 304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
| 305 |
+
"model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
| 307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
| 308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
| 309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
| 310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
| 311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
| 312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
| 313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
| 314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
| 315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
| 316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
| 317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
| 318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
| 319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
| 320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
| 321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
| 322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
| 323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
| 324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
| 325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
| 326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
| 327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
| 328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
| 329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
| 330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
| 331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
| 332 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
| 334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
| 335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
| 336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
| 338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
| 339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
| 340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
| 341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
| 343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
| 344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
| 345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
| 347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
| 348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
| 349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
| 350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
| 352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
| 353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
| 354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
| 356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
| 357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
| 358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
| 359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
| 361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
| 362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
| 363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
| 364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
| 365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
| 366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
| 367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
| 368 |
+
"model.norm.weight": "model-00005-of-00005.safetensors"
|
| 369 |
+
}
|
| 370 |
+
}
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e735ed11597ed40a2b6854e0229902e1a21fedc0a0dbc608ca905fae57d5b06b
|
| 3 |
+
size 15984
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2ba3815fc0953b1b7f08cea092dfc0a62c4bbc2a2c68780d3f4dd0b5e22582a7
|
| 3 |
+
size 15984
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:647ac15563fcad903adbb616e9b2c36b237a3ed5939d088620212da969930f6c
|
| 3 |
+
size 15984
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:93e3733c5b180986b7efbec17b663bf5231343d187374d184768fcd913797167
|
| 3 |
+
size 15984
|
rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9820ea4fec1b01f3da091290c3e8b5ddb86a3a3fa17285c248b64910c2d0b4f0
|
| 3 |
+
size 15984
|
rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7413035def085e41776a629afc94fc24fe5a955f1ad83b32f9b370ab60f9a18d
|
| 3 |
+
size 15984
|
rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:91e3953bcbf4089415abffbd914fbbe4580121f6c843eabbf70624c5ed144814
|
| 3 |
+
size 15984
|
rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:369fde7bff4dfc0d6b9cf773cf9b0352696083f84763999e05a631ee6d52c5e3
|
| 3 |
+
size 15984
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:827fe785a5aaf8655c5af1fd25111d6fc8b47e8673ff93408ec1613e782550d2
|
| 3 |
+
size 1064
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|im_end|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<pad>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<unk>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bc07f4f61632a89d8248b43f25649d6cc45200f8709e9d9bcd0414b00a4064e2
|
| 3 |
+
size 17078342
|
tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
trainer_state.json
ADDED
|
@@ -0,0 +1,2156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 1.0,
|
| 6 |
+
"eval_steps": 37,
|
| 7 |
+
"global_step": 294,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.003401360544217687,
|
| 14 |
+
"grad_norm": 106.7094005171616,
|
| 15 |
+
"learning_rate": 0.0,
|
| 16 |
+
"loss": 2.9268,
|
| 17 |
+
"step": 1
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"epoch": 0.003401360544217687,
|
| 21 |
+
"eval_loss": 2.5302913188934326,
|
| 22 |
+
"eval_runtime": 3.7953,
|
| 23 |
+
"eval_samples_per_second": 14.492,
|
| 24 |
+
"eval_steps_per_second": 1.054,
|
| 25 |
+
"step": 1
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"epoch": 0.006802721088435374,
|
| 29 |
+
"grad_norm": 57.97506009705182,
|
| 30 |
+
"learning_rate": 6.89655172413793e-08,
|
| 31 |
+
"loss": 2.0122,
|
| 32 |
+
"step": 2
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"epoch": 0.01020408163265306,
|
| 36 |
+
"grad_norm": 116.23413141145363,
|
| 37 |
+
"learning_rate": 1.379310344827586e-07,
|
| 38 |
+
"loss": 2.6743,
|
| 39 |
+
"step": 3
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"epoch": 0.013605442176870748,
|
| 43 |
+
"grad_norm": 21.262801374024775,
|
| 44 |
+
"learning_rate": 2.0689655172413793e-07,
|
| 45 |
+
"loss": 2.0743,
|
| 46 |
+
"step": 4
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"epoch": 0.017006802721088437,
|
| 50 |
+
"grad_norm": 59.319984755304056,
|
| 51 |
+
"learning_rate": 2.758620689655172e-07,
|
| 52 |
+
"loss": 2.2775,
|
| 53 |
+
"step": 5
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"epoch": 0.02040816326530612,
|
| 57 |
+
"grad_norm": 159.51320885432614,
|
| 58 |
+
"learning_rate": 3.4482758620689656e-07,
|
| 59 |
+
"loss": 2.1337,
|
| 60 |
+
"step": 6
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"epoch": 0.023809523809523808,
|
| 64 |
+
"grad_norm": 87.93970940325055,
|
| 65 |
+
"learning_rate": 4.1379310344827586e-07,
|
| 66 |
+
"loss": 1.9061,
|
| 67 |
+
"step": 7
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"epoch": 0.027210884353741496,
|
| 71 |
+
"grad_norm": 61.133777808660895,
|
| 72 |
+
"learning_rate": 4.827586206896552e-07,
|
| 73 |
+
"loss": 1.8118,
|
| 74 |
+
"step": 8
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"epoch": 0.030612244897959183,
|
| 78 |
+
"grad_norm": 48.65887299035499,
|
| 79 |
+
"learning_rate": 5.517241379310344e-07,
|
| 80 |
+
"loss": 3.4095,
|
| 81 |
+
"step": 9
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 0.034013605442176874,
|
| 85 |
+
"grad_norm": 30.592687909719288,
|
| 86 |
+
"learning_rate": 6.206896551724138e-07,
|
| 87 |
+
"loss": 2.2398,
|
| 88 |
+
"step": 10
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"epoch": 0.03741496598639456,
|
| 92 |
+
"grad_norm": 74.15295766799099,
|
| 93 |
+
"learning_rate": 6.896551724137931e-07,
|
| 94 |
+
"loss": 3.4425,
|
| 95 |
+
"step": 11
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"epoch": 0.04081632653061224,
|
| 99 |
+
"grad_norm": 34.94892634385338,
|
| 100 |
+
"learning_rate": 7.586206896551724e-07,
|
| 101 |
+
"loss": 2.5405,
|
| 102 |
+
"step": 12
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"epoch": 0.04421768707482993,
|
| 106 |
+
"grad_norm": 26.538521745061775,
|
| 107 |
+
"learning_rate": 8.275862068965517e-07,
|
| 108 |
+
"loss": 1.9614,
|
| 109 |
+
"step": 13
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"epoch": 0.047619047619047616,
|
| 113 |
+
"grad_norm": 52.23979896259082,
|
| 114 |
+
"learning_rate": 8.96551724137931e-07,
|
| 115 |
+
"loss": 2.9785,
|
| 116 |
+
"step": 14
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"epoch": 0.05102040816326531,
|
| 120 |
+
"grad_norm": 30.812143999051266,
|
| 121 |
+
"learning_rate": 9.655172413793103e-07,
|
| 122 |
+
"loss": 2.0185,
|
| 123 |
+
"step": 15
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"epoch": 0.05442176870748299,
|
| 127 |
+
"grad_norm": 41.48478088374125,
|
| 128 |
+
"learning_rate": 1.0344827586206896e-06,
|
| 129 |
+
"loss": 2.1126,
|
| 130 |
+
"step": 16
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"epoch": 0.05782312925170068,
|
| 134 |
+
"grad_norm": 29.347588210089675,
|
| 135 |
+
"learning_rate": 1.1034482758620688e-06,
|
| 136 |
+
"loss": 2.2078,
|
| 137 |
+
"step": 17
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"epoch": 0.061224489795918366,
|
| 141 |
+
"grad_norm": 28.947554594850924,
|
| 142 |
+
"learning_rate": 1.172413793103448e-06,
|
| 143 |
+
"loss": 2.442,
|
| 144 |
+
"step": 18
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"epoch": 0.06462585034013606,
|
| 148 |
+
"grad_norm": 32.28592513881342,
|
| 149 |
+
"learning_rate": 1.2413793103448275e-06,
|
| 150 |
+
"loss": 2.8683,
|
| 151 |
+
"step": 19
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"epoch": 0.06802721088435375,
|
| 155 |
+
"grad_norm": 38.97631997775744,
|
| 156 |
+
"learning_rate": 1.3103448275862068e-06,
|
| 157 |
+
"loss": 2.4376,
|
| 158 |
+
"step": 20
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 0.07142857142857142,
|
| 162 |
+
"grad_norm": 43.775478156068516,
|
| 163 |
+
"learning_rate": 1.3793103448275862e-06,
|
| 164 |
+
"loss": 2.4167,
|
| 165 |
+
"step": 21
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"epoch": 0.07482993197278912,
|
| 169 |
+
"grad_norm": 30.904260805899465,
|
| 170 |
+
"learning_rate": 1.4482758620689655e-06,
|
| 171 |
+
"loss": 2.6971,
|
| 172 |
+
"step": 22
|
| 173 |
+
},
|
| 174 |
+
{
|
| 175 |
+
"epoch": 0.0782312925170068,
|
| 176 |
+
"grad_norm": 48.202871069183985,
|
| 177 |
+
"learning_rate": 1.5172413793103447e-06,
|
| 178 |
+
"loss": 2.5093,
|
| 179 |
+
"step": 23
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"epoch": 0.08163265306122448,
|
| 183 |
+
"grad_norm": 55.067186300198706,
|
| 184 |
+
"learning_rate": 1.5862068965517242e-06,
|
| 185 |
+
"loss": 2.0053,
|
| 186 |
+
"step": 24
|
| 187 |
+
},
|
| 188 |
+
{
|
| 189 |
+
"epoch": 0.08503401360544217,
|
| 190 |
+
"grad_norm": 38.486811757681096,
|
| 191 |
+
"learning_rate": 1.6551724137931035e-06,
|
| 192 |
+
"loss": 2.2475,
|
| 193 |
+
"step": 25
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"epoch": 0.08843537414965986,
|
| 197 |
+
"grad_norm": 90.78568630900098,
|
| 198 |
+
"learning_rate": 1.7241379310344825e-06,
|
| 199 |
+
"loss": 3.8342,
|
| 200 |
+
"step": 26
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"epoch": 0.09183673469387756,
|
| 204 |
+
"grad_norm": 23.32050516158788,
|
| 205 |
+
"learning_rate": 1.793103448275862e-06,
|
| 206 |
+
"loss": 2.2496,
|
| 207 |
+
"step": 27
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"epoch": 0.09523809523809523,
|
| 211 |
+
"grad_norm": 25.01047005218693,
|
| 212 |
+
"learning_rate": 1.8620689655172412e-06,
|
| 213 |
+
"loss": 2.6991,
|
| 214 |
+
"step": 28
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"epoch": 0.09863945578231292,
|
| 218 |
+
"grad_norm": 27.40209208002175,
|
| 219 |
+
"learning_rate": 1.9310344827586207e-06,
|
| 220 |
+
"loss": 2.7017,
|
| 221 |
+
"step": 29
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"epoch": 0.10204081632653061,
|
| 225 |
+
"grad_norm": 16.372774250078056,
|
| 226 |
+
"learning_rate": 2e-06,
|
| 227 |
+
"loss": 2.1315,
|
| 228 |
+
"step": 30
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"epoch": 0.1054421768707483,
|
| 232 |
+
"grad_norm": 34.32100924763162,
|
| 233 |
+
"learning_rate": 1.999984207714351e-06,
|
| 234 |
+
"loss": 2.4298,
|
| 235 |
+
"step": 31
|
| 236 |
+
},
|
| 237 |
+
{
|
| 238 |
+
"epoch": 0.10884353741496598,
|
| 239 |
+
"grad_norm": 49.15042168439896,
|
| 240 |
+
"learning_rate": 1.9999368313561964e-06,
|
| 241 |
+
"loss": 3.1687,
|
| 242 |
+
"step": 32
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"epoch": 0.11224489795918367,
|
| 246 |
+
"grad_norm": 27.553221322487154,
|
| 247 |
+
"learning_rate": 1.9998578724218984e-06,
|
| 248 |
+
"loss": 2.307,
|
| 249 |
+
"step": 33
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"epoch": 0.11564625850340136,
|
| 253 |
+
"grad_norm": 25.29898708562965,
|
| 254 |
+
"learning_rate": 1.999747333405341e-06,
|
| 255 |
+
"loss": 2.6711,
|
| 256 |
+
"step": 34
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"epoch": 0.11904761904761904,
|
| 260 |
+
"grad_norm": 35.13639034121329,
|
| 261 |
+
"learning_rate": 1.9996052177978517e-06,
|
| 262 |
+
"loss": 2.2923,
|
| 263 |
+
"step": 35
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"epoch": 0.12244897959183673,
|
| 267 |
+
"grad_norm": 61.904951168823246,
|
| 268 |
+
"learning_rate": 1.999431530088091e-06,
|
| 269 |
+
"loss": 3.0837,
|
| 270 |
+
"step": 36
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"epoch": 0.12585034013605442,
|
| 274 |
+
"grad_norm": 43.72931173152359,
|
| 275 |
+
"learning_rate": 1.9992262757619108e-06,
|
| 276 |
+
"loss": 2.9055,
|
| 277 |
+
"step": 37
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"epoch": 0.12585034013605442,
|
| 281 |
+
"eval_loss": 2.2881884574890137,
|
| 282 |
+
"eval_runtime": 3.7387,
|
| 283 |
+
"eval_samples_per_second": 14.711,
|
| 284 |
+
"eval_steps_per_second": 1.07,
|
| 285 |
+
"step": 37
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"epoch": 0.1292517006802721,
|
| 289 |
+
"grad_norm": 75.128224809043,
|
| 290 |
+
"learning_rate": 1.9989894613021807e-06,
|
| 291 |
+
"loss": 3.9717,
|
| 292 |
+
"step": 38
|
| 293 |
+
},
|
| 294 |
+
{
|
| 295 |
+
"epoch": 0.1326530612244898,
|
| 296 |
+
"grad_norm": 6.423556290490496,
|
| 297 |
+
"learning_rate": 1.998721094188584e-06,
|
| 298 |
+
"loss": 1.6634,
|
| 299 |
+
"step": 39
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"epoch": 0.1360544217687075,
|
| 303 |
+
"grad_norm": 8.952452652609857,
|
| 304 |
+
"learning_rate": 1.9984211828973816e-06,
|
| 305 |
+
"loss": 2.1183,
|
| 306 |
+
"step": 40
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"epoch": 0.13945578231292516,
|
| 310 |
+
"grad_norm": 12.837161899787583,
|
| 311 |
+
"learning_rate": 1.998089736901142e-06,
|
| 312 |
+
"loss": 2.1306,
|
| 313 |
+
"step": 41
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"epoch": 0.14285714285714285,
|
| 317 |
+
"grad_norm": 7.2779063942957825,
|
| 318 |
+
"learning_rate": 1.9977267666684456e-06,
|
| 319 |
+
"loss": 1.9831,
|
| 320 |
+
"step": 42
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"epoch": 0.14625850340136054,
|
| 324 |
+
"grad_norm": 30.288569770228293,
|
| 325 |
+
"learning_rate": 1.9973322836635515e-06,
|
| 326 |
+
"loss": 2.1869,
|
| 327 |
+
"step": 43
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"epoch": 0.14965986394557823,
|
| 331 |
+
"grad_norm": 11.672608976353168,
|
| 332 |
+
"learning_rate": 1.996906300346036e-06,
|
| 333 |
+
"loss": 1.9566,
|
| 334 |
+
"step": 44
|
| 335 |
+
},
|
| 336 |
+
{
|
| 337 |
+
"epoch": 0.15306122448979592,
|
| 338 |
+
"grad_norm": 14.837719065187358,
|
| 339 |
+
"learning_rate": 1.9964488301704e-06,
|
| 340 |
+
"loss": 2.2152,
|
| 341 |
+
"step": 45
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"epoch": 0.1564625850340136,
|
| 345 |
+
"grad_norm": 18.558600033713702,
|
| 346 |
+
"learning_rate": 1.9959598875856427e-06,
|
| 347 |
+
"loss": 2.06,
|
| 348 |
+
"step": 46
|
| 349 |
+
},
|
| 350 |
+
{
|
| 351 |
+
"epoch": 0.1598639455782313,
|
| 352 |
+
"grad_norm": 17.161073648503006,
|
| 353 |
+
"learning_rate": 1.995439488034806e-06,
|
| 354 |
+
"loss": 2.0463,
|
| 355 |
+
"step": 47
|
| 356 |
+
},
|
| 357 |
+
{
|
| 358 |
+
"epoch": 0.16326530612244897,
|
| 359 |
+
"grad_norm": 10.944090642041195,
|
| 360 |
+
"learning_rate": 1.994887647954486e-06,
|
| 361 |
+
"loss": 1.9676,
|
| 362 |
+
"step": 48
|
| 363 |
+
},
|
| 364 |
+
{
|
| 365 |
+
"epoch": 0.16666666666666666,
|
| 366 |
+
"grad_norm": 30.260773919516463,
|
| 367 |
+
"learning_rate": 1.9943043847743164e-06,
|
| 368 |
+
"loss": 2.4235,
|
| 369 |
+
"step": 49
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"epoch": 0.17006802721088435,
|
| 373 |
+
"grad_norm": 17.95874457178673,
|
| 374 |
+
"learning_rate": 1.9936897169164135e-06,
|
| 375 |
+
"loss": 2.4211,
|
| 376 |
+
"step": 50
|
| 377 |
+
},
|
| 378 |
+
{
|
| 379 |
+
"epoch": 0.17346938775510204,
|
| 380 |
+
"grad_norm": 29.32804844947439,
|
| 381 |
+
"learning_rate": 1.993043663794799e-06,
|
| 382 |
+
"loss": 2.2786,
|
| 383 |
+
"step": 51
|
| 384 |
+
},
|
| 385 |
+
{
|
| 386 |
+
"epoch": 0.17687074829931973,
|
| 387 |
+
"grad_norm": 31.224760731119037,
|
| 388 |
+
"learning_rate": 1.9923662458147826e-06,
|
| 389 |
+
"loss": 2.8374,
|
| 390 |
+
"step": 52
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"epoch": 0.18027210884353742,
|
| 394 |
+
"grad_norm": 4.5045539325043205,
|
| 395 |
+
"learning_rate": 1.9916574843723217e-06,
|
| 396 |
+
"loss": 1.6301,
|
| 397 |
+
"step": 53
|
| 398 |
+
},
|
| 399 |
+
{
|
| 400 |
+
"epoch": 0.1836734693877551,
|
| 401 |
+
"grad_norm": 10.827050277516674,
|
| 402 |
+
"learning_rate": 1.9909174018533427e-06,
|
| 403 |
+
"loss": 2.0554,
|
| 404 |
+
"step": 54
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"epoch": 0.1870748299319728,
|
| 408 |
+
"grad_norm": 17.063187262605883,
|
| 409 |
+
"learning_rate": 1.990146021633034e-06,
|
| 410 |
+
"loss": 2.4202,
|
| 411 |
+
"step": 55
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"epoch": 0.19047619047619047,
|
| 415 |
+
"grad_norm": 3.946679947433292,
|
| 416 |
+
"learning_rate": 1.98934336807511e-06,
|
| 417 |
+
"loss": 1.7808,
|
| 418 |
+
"step": 56
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"epoch": 0.19387755102040816,
|
| 422 |
+
"grad_norm": 8.431222224384186,
|
| 423 |
+
"learning_rate": 1.9885094665310388e-06,
|
| 424 |
+
"loss": 1.7766,
|
| 425 |
+
"step": 57
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"epoch": 0.19727891156462585,
|
| 429 |
+
"grad_norm": 32.28667139462841,
|
| 430 |
+
"learning_rate": 1.9876443433392433e-06,
|
| 431 |
+
"loss": 2.2299,
|
| 432 |
+
"step": 58
|
| 433 |
+
},
|
| 434 |
+
{
|
| 435 |
+
"epoch": 0.20068027210884354,
|
| 436 |
+
"grad_norm": 11.950555724182584,
|
| 437 |
+
"learning_rate": 1.986748025824268e-06,
|
| 438 |
+
"loss": 1.928,
|
| 439 |
+
"step": 59
|
| 440 |
+
},
|
| 441 |
+
{
|
| 442 |
+
"epoch": 0.20408163265306123,
|
| 443 |
+
"grad_norm": 3.6059136679066977,
|
| 444 |
+
"learning_rate": 1.985820542295918e-06,
|
| 445 |
+
"loss": 1.7761,
|
| 446 |
+
"step": 60
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"epoch": 0.20748299319727892,
|
| 450 |
+
"grad_norm": 41.40947345983446,
|
| 451 |
+
"learning_rate": 1.984861922048363e-06,
|
| 452 |
+
"loss": 2.6704,
|
| 453 |
+
"step": 61
|
| 454 |
+
},
|
| 455 |
+
{
|
| 456 |
+
"epoch": 0.2108843537414966,
|
| 457 |
+
"grad_norm": 30.634237938465816,
|
| 458 |
+
"learning_rate": 1.983872195359212e-06,
|
| 459 |
+
"loss": 2.7336,
|
| 460 |
+
"step": 62
|
| 461 |
+
},
|
| 462 |
+
{
|
| 463 |
+
"epoch": 0.21428571428571427,
|
| 464 |
+
"grad_norm": 3.760013022701194,
|
| 465 |
+
"learning_rate": 1.9828513934885587e-06,
|
| 466 |
+
"loss": 1.8831,
|
| 467 |
+
"step": 63
|
| 468 |
+
},
|
| 469 |
+
{
|
| 470 |
+
"epoch": 0.21768707482993196,
|
| 471 |
+
"grad_norm": 37.34059674722221,
|
| 472 |
+
"learning_rate": 1.981799548677993e-06,
|
| 473 |
+
"loss": 2.27,
|
| 474 |
+
"step": 64
|
| 475 |
+
},
|
| 476 |
+
{
|
| 477 |
+
"epoch": 0.22108843537414966,
|
| 478 |
+
"grad_norm": 11.009700618421736,
|
| 479 |
+
"learning_rate": 1.980716694149581e-06,
|
| 480 |
+
"loss": 1.9265,
|
| 481 |
+
"step": 65
|
| 482 |
+
},
|
| 483 |
+
{
|
| 484 |
+
"epoch": 0.22448979591836735,
|
| 485 |
+
"grad_norm": 17.609147027884987,
|
| 486 |
+
"learning_rate": 1.9796028641048194e-06,
|
| 487 |
+
"loss": 2.3411,
|
| 488 |
+
"step": 66
|
| 489 |
+
},
|
| 490 |
+
{
|
| 491 |
+
"epoch": 0.22789115646258504,
|
| 492 |
+
"grad_norm": 17.432142291951372,
|
| 493 |
+
"learning_rate": 1.978458093723553e-06,
|
| 494 |
+
"loss": 2.2213,
|
| 495 |
+
"step": 67
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"epoch": 0.23129251700680273,
|
| 499 |
+
"grad_norm": 14.11664326231067,
|
| 500 |
+
"learning_rate": 1.9772824191628632e-06,
|
| 501 |
+
"loss": 2.0831,
|
| 502 |
+
"step": 68
|
| 503 |
+
},
|
| 504 |
+
{
|
| 505 |
+
"epoch": 0.23469387755102042,
|
| 506 |
+
"grad_norm": 37.456025944063875,
|
| 507 |
+
"learning_rate": 1.9760758775559273e-06,
|
| 508 |
+
"loss": 2.7494,
|
| 509 |
+
"step": 69
|
| 510 |
+
},
|
| 511 |
+
{
|
| 512 |
+
"epoch": 0.23809523809523808,
|
| 513 |
+
"grad_norm": 16.30994509129653,
|
| 514 |
+
"learning_rate": 1.974838507010844e-06,
|
| 515 |
+
"loss": 2.118,
|
| 516 |
+
"step": 70
|
| 517 |
+
},
|
| 518 |
+
{
|
| 519 |
+
"epoch": 0.24149659863945577,
|
| 520 |
+
"grad_norm": 25.92468917111241,
|
| 521 |
+
"learning_rate": 1.9735703466094324e-06,
|
| 522 |
+
"loss": 2.1656,
|
| 523 |
+
"step": 71
|
| 524 |
+
},
|
| 525 |
+
{
|
| 526 |
+
"epoch": 0.24489795918367346,
|
| 527 |
+
"grad_norm": 17.23253832018251,
|
| 528 |
+
"learning_rate": 1.972271436405994e-06,
|
| 529 |
+
"loss": 2.0787,
|
| 530 |
+
"step": 72
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"epoch": 0.24829931972789115,
|
| 534 |
+
"grad_norm": 6.286286593272188,
|
| 535 |
+
"learning_rate": 1.970941817426052e-06,
|
| 536 |
+
"loss": 1.7458,
|
| 537 |
+
"step": 73
|
| 538 |
+
},
|
| 539 |
+
{
|
| 540 |
+
"epoch": 0.25170068027210885,
|
| 541 |
+
"grad_norm": 20.87004487229478,
|
| 542 |
+
"learning_rate": 1.969581531665051e-06,
|
| 543 |
+
"loss": 2.364,
|
| 544 |
+
"step": 74
|
| 545 |
+
},
|
| 546 |
+
{
|
| 547 |
+
"epoch": 0.25170068027210885,
|
| 548 |
+
"eval_loss": 2.240875482559204,
|
| 549 |
+
"eval_runtime": 3.7328,
|
| 550 |
+
"eval_samples_per_second": 14.734,
|
| 551 |
+
"eval_steps_per_second": 1.072,
|
| 552 |
+
"step": 74
|
| 553 |
+
},
|
| 554 |
+
{
|
| 555 |
+
"epoch": 0.25510204081632654,
|
| 556 |
+
"grad_norm": 22.83815781491435,
|
| 557 |
+
"learning_rate": 1.968190622087034e-06,
|
| 558 |
+
"loss": 2.2176,
|
| 559 |
+
"step": 75
|
| 560 |
+
},
|
| 561 |
+
{
|
| 562 |
+
"epoch": 0.2585034013605442,
|
| 563 |
+
"grad_norm": 39.2204163613504,
|
| 564 |
+
"learning_rate": 1.9667691326232835e-06,
|
| 565 |
+
"loss": 2.605,
|
| 566 |
+
"step": 76
|
| 567 |
+
},
|
| 568 |
+
{
|
| 569 |
+
"epoch": 0.2619047619047619,
|
| 570 |
+
"grad_norm": 9.599486970591897,
|
| 571 |
+
"learning_rate": 1.965317108170935e-06,
|
| 572 |
+
"loss": 2.1652,
|
| 573 |
+
"step": 77
|
| 574 |
+
},
|
| 575 |
+
{
|
| 576 |
+
"epoch": 0.2653061224489796,
|
| 577 |
+
"grad_norm": 3.7571781853463175,
|
| 578 |
+
"learning_rate": 1.9638345945915586e-06,
|
| 579 |
+
"loss": 1.6055,
|
| 580 |
+
"step": 78
|
| 581 |
+
},
|
| 582 |
+
{
|
| 583 |
+
"epoch": 0.2687074829931973,
|
| 584 |
+
"grad_norm": 7.064670527473922,
|
| 585 |
+
"learning_rate": 1.962321638709709e-06,
|
| 586 |
+
"loss": 1.9937,
|
| 587 |
+
"step": 79
|
| 588 |
+
},
|
| 589 |
+
{
|
| 590 |
+
"epoch": 0.272108843537415,
|
| 591 |
+
"grad_norm": 28.207901160479654,
|
| 592 |
+
"learning_rate": 1.9607782883114506e-06,
|
| 593 |
+
"loss": 2.2552,
|
| 594 |
+
"step": 80
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"epoch": 0.2755102040816326,
|
| 598 |
+
"grad_norm": 15.991872570963396,
|
| 599 |
+
"learning_rate": 1.959204592142843e-06,
|
| 600 |
+
"loss": 2.1559,
|
| 601 |
+
"step": 81
|
| 602 |
+
},
|
| 603 |
+
{
|
| 604 |
+
"epoch": 0.2789115646258503,
|
| 605 |
+
"grad_norm": 13.401822104278665,
|
| 606 |
+
"learning_rate": 1.957600599908406e-06,
|
| 607 |
+
"loss": 2.1652,
|
| 608 |
+
"step": 82
|
| 609 |
+
},
|
| 610 |
+
{
|
| 611 |
+
"epoch": 0.282312925170068,
|
| 612 |
+
"grad_norm": 14.708704691038701,
|
| 613 |
+
"learning_rate": 1.9559663622695455e-06,
|
| 614 |
+
"loss": 1.9673,
|
| 615 |
+
"step": 83
|
| 616 |
+
},
|
| 617 |
+
{
|
| 618 |
+
"epoch": 0.2857142857142857,
|
| 619 |
+
"grad_norm": 3.3458550475032105,
|
| 620 |
+
"learning_rate": 1.954301930842958e-06,
|
| 621 |
+
"loss": 1.6917,
|
| 622 |
+
"step": 84
|
| 623 |
+
},
|
| 624 |
+
{
|
| 625 |
+
"epoch": 0.2891156462585034,
|
| 626 |
+
"grad_norm": 3.479853146114766,
|
| 627 |
+
"learning_rate": 1.9526073581989955e-06,
|
| 628 |
+
"loss": 1.624,
|
| 629 |
+
"step": 85
|
| 630 |
+
},
|
| 631 |
+
{
|
| 632 |
+
"epoch": 0.2925170068027211,
|
| 633 |
+
"grad_norm": 25.10854427551898,
|
| 634 |
+
"learning_rate": 1.950882697860009e-06,
|
| 635 |
+
"loss": 2.3626,
|
| 636 |
+
"step": 86
|
| 637 |
+
},
|
| 638 |
+
{
|
| 639 |
+
"epoch": 0.29591836734693877,
|
| 640 |
+
"grad_norm": 14.389114459997433,
|
| 641 |
+
"learning_rate": 1.9491280042986562e-06,
|
| 642 |
+
"loss": 2.0549,
|
| 643 |
+
"step": 87
|
| 644 |
+
},
|
| 645 |
+
{
|
| 646 |
+
"epoch": 0.29931972789115646,
|
| 647 |
+
"grad_norm": 17.72897272235088,
|
| 648 |
+
"learning_rate": 1.9473433329361802e-06,
|
| 649 |
+
"loss": 2.4525,
|
| 650 |
+
"step": 88
|
| 651 |
+
},
|
| 652 |
+
{
|
| 653 |
+
"epoch": 0.30272108843537415,
|
| 654 |
+
"grad_norm": 8.212788560084723,
|
| 655 |
+
"learning_rate": 1.945528740140662e-06,
|
| 656 |
+
"loss": 2.1368,
|
| 657 |
+
"step": 89
|
| 658 |
+
},
|
| 659 |
+
{
|
| 660 |
+
"epoch": 0.30612244897959184,
|
| 661 |
+
"grad_norm": 26.76274867022125,
|
| 662 |
+
"learning_rate": 1.943684283225236e-06,
|
| 663 |
+
"loss": 2.3735,
|
| 664 |
+
"step": 90
|
| 665 |
+
},
|
| 666 |
+
{
|
| 667 |
+
"epoch": 0.30952380952380953,
|
| 668 |
+
"grad_norm": 23.71630229663243,
|
| 669 |
+
"learning_rate": 1.941810020446284e-06,
|
| 670 |
+
"loss": 2.6005,
|
| 671 |
+
"step": 91
|
| 672 |
+
},
|
| 673 |
+
{
|
| 674 |
+
"epoch": 0.3129251700680272,
|
| 675 |
+
"grad_norm": 22.889738702248234,
|
| 676 |
+
"learning_rate": 1.9399060110015917e-06,
|
| 677 |
+
"loss": 2.6924,
|
| 678 |
+
"step": 92
|
| 679 |
+
},
|
| 680 |
+
{
|
| 681 |
+
"epoch": 0.3163265306122449,
|
| 682 |
+
"grad_norm": 32.54631787971477,
|
| 683 |
+
"learning_rate": 1.9379723150284814e-06,
|
| 684 |
+
"loss": 2.5301,
|
| 685 |
+
"step": 93
|
| 686 |
+
},
|
| 687 |
+
{
|
| 688 |
+
"epoch": 0.3197278911564626,
|
| 689 |
+
"grad_norm": 3.6877224549117344,
|
| 690 |
+
"learning_rate": 1.936008993601912e-06,
|
| 691 |
+
"loss": 1.6556,
|
| 692 |
+
"step": 94
|
| 693 |
+
},
|
| 694 |
+
{
|
| 695 |
+
"epoch": 0.3231292517006803,
|
| 696 |
+
"grad_norm": 33.682920637388364,
|
| 697 |
+
"learning_rate": 1.934016108732548e-06,
|
| 698 |
+
"loss": 2.3709,
|
| 699 |
+
"step": 95
|
| 700 |
+
},
|
| 701 |
+
{
|
| 702 |
+
"epoch": 0.32653061224489793,
|
| 703 |
+
"grad_norm": 19.342157148675135,
|
| 704 |
+
"learning_rate": 1.9319937233648045e-06,
|
| 705 |
+
"loss": 1.8713,
|
| 706 |
+
"step": 96
|
| 707 |
+
},
|
| 708 |
+
{
|
| 709 |
+
"epoch": 0.3299319727891156,
|
| 710 |
+
"grad_norm": 36.9446891807536,
|
| 711 |
+
"learning_rate": 1.929941901374856e-06,
|
| 712 |
+
"loss": 3.1666,
|
| 713 |
+
"step": 97
|
| 714 |
+
},
|
| 715 |
+
{
|
| 716 |
+
"epoch": 0.3333333333333333,
|
| 717 |
+
"grad_norm": 12.769242612326224,
|
| 718 |
+
"learning_rate": 1.9278607075686205e-06,
|
| 719 |
+
"loss": 2.2024,
|
| 720 |
+
"step": 98
|
| 721 |
+
},
|
| 722 |
+
{
|
| 723 |
+
"epoch": 0.336734693877551,
|
| 724 |
+
"grad_norm": 7.569149644914372,
|
| 725 |
+
"learning_rate": 1.9257502076797123e-06,
|
| 726 |
+
"loss": 1.8434,
|
| 727 |
+
"step": 99
|
| 728 |
+
},
|
| 729 |
+
{
|
| 730 |
+
"epoch": 0.3401360544217687,
|
| 731 |
+
"grad_norm": 18.672166864254265,
|
| 732 |
+
"learning_rate": 1.9236104683673653e-06,
|
| 733 |
+
"loss": 2.6262,
|
| 734 |
+
"step": 100
|
| 735 |
+
},
|
| 736 |
+
{
|
| 737 |
+
"epoch": 0.3435374149659864,
|
| 738 |
+
"grad_norm": 7.251393661314555,
|
| 739 |
+
"learning_rate": 1.9214415572143284e-06,
|
| 740 |
+
"loss": 1.8447,
|
| 741 |
+
"step": 101
|
| 742 |
+
},
|
| 743 |
+
{
|
| 744 |
+
"epoch": 0.3469387755102041,
|
| 745 |
+
"grad_norm": 25.8588617341962,
|
| 746 |
+
"learning_rate": 1.919243542724731e-06,
|
| 747 |
+
"loss": 2.3528,
|
| 748 |
+
"step": 102
|
| 749 |
+
},
|
| 750 |
+
{
|
| 751 |
+
"epoch": 0.35034013605442177,
|
| 752 |
+
"grad_norm": 21.00339285362203,
|
| 753 |
+
"learning_rate": 1.917016494321918e-06,
|
| 754 |
+
"loss": 2.462,
|
| 755 |
+
"step": 103
|
| 756 |
+
},
|
| 757 |
+
{
|
| 758 |
+
"epoch": 0.35374149659863946,
|
| 759 |
+
"grad_norm": 19.533037226832878,
|
| 760 |
+
"learning_rate": 1.9147604823462585e-06,
|
| 761 |
+
"loss": 2.3057,
|
| 762 |
+
"step": 104
|
| 763 |
+
},
|
| 764 |
+
{
|
| 765 |
+
"epoch": 0.35714285714285715,
|
| 766 |
+
"grad_norm": 3.1087327492999286,
|
| 767 |
+
"learning_rate": 1.9124755780529243e-06,
|
| 768 |
+
"loss": 1.6935,
|
| 769 |
+
"step": 105
|
| 770 |
+
},
|
| 771 |
+
{
|
| 772 |
+
"epoch": 0.36054421768707484,
|
| 773 |
+
"grad_norm": 35.707396347148176,
|
| 774 |
+
"learning_rate": 1.910161853609637e-06,
|
| 775 |
+
"loss": 2.3652,
|
| 776 |
+
"step": 106
|
| 777 |
+
},
|
| 778 |
+
{
|
| 779 |
+
"epoch": 0.36394557823129253,
|
| 780 |
+
"grad_norm": 16.694934440145225,
|
| 781 |
+
"learning_rate": 1.9078193820943916e-06,
|
| 782 |
+
"loss": 2.6014,
|
| 783 |
+
"step": 107
|
| 784 |
+
},
|
| 785 |
+
{
|
| 786 |
+
"epoch": 0.3673469387755102,
|
| 787 |
+
"grad_norm": 12.946146725042743,
|
| 788 |
+
"learning_rate": 1.9054482374931466e-06,
|
| 789 |
+
"loss": 1.9379,
|
| 790 |
+
"step": 108
|
| 791 |
+
},
|
| 792 |
+
{
|
| 793 |
+
"epoch": 0.3707482993197279,
|
| 794 |
+
"grad_norm": 8.740650008889842,
|
| 795 |
+
"learning_rate": 1.9030484946974878e-06,
|
| 796 |
+
"loss": 1.9414,
|
| 797 |
+
"step": 109
|
| 798 |
+
},
|
| 799 |
+
{
|
| 800 |
+
"epoch": 0.3741496598639456,
|
| 801 |
+
"grad_norm": 23.13581690576701,
|
| 802 |
+
"learning_rate": 1.9006202295022629e-06,
|
| 803 |
+
"loss": 2.4563,
|
| 804 |
+
"step": 110
|
| 805 |
+
},
|
| 806 |
+
{
|
| 807 |
+
"epoch": 0.37755102040816324,
|
| 808 |
+
"grad_norm": 10.00026809536462,
|
| 809 |
+
"learning_rate": 1.8981635186031869e-06,
|
| 810 |
+
"loss": 1.8384,
|
| 811 |
+
"step": 111
|
| 812 |
+
},
|
| 813 |
+
{
|
| 814 |
+
"epoch": 0.37755102040816324,
|
| 815 |
+
"eval_loss": 2.2185332775115967,
|
| 816 |
+
"eval_runtime": 3.7603,
|
| 817 |
+
"eval_samples_per_second": 14.626,
|
| 818 |
+
"eval_steps_per_second": 1.064,
|
| 819 |
+
"step": 111
|
| 820 |
+
},
|
| 821 |
+
{
|
| 822 |
+
"epoch": 0.38095238095238093,
|
| 823 |
+
"grad_norm": 26.376801704138895,
|
| 824 |
+
"learning_rate": 1.89567843959442e-06,
|
| 825 |
+
"loss": 3.095,
|
| 826 |
+
"step": 112
|
| 827 |
+
},
|
| 828 |
+
{
|
| 829 |
+
"epoch": 0.3843537414965986,
|
| 830 |
+
"grad_norm": 31.801160647661863,
|
| 831 |
+
"learning_rate": 1.8931650709661176e-06,
|
| 832 |
+
"loss": 2.4186,
|
| 833 |
+
"step": 113
|
| 834 |
+
},
|
| 835 |
+
{
|
| 836 |
+
"epoch": 0.3877551020408163,
|
| 837 |
+
"grad_norm": 3.7202396333724406,
|
| 838 |
+
"learning_rate": 1.8906234921019504e-06,
|
| 839 |
+
"loss": 1.8483,
|
| 840 |
+
"step": 114
|
| 841 |
+
},
|
| 842 |
+
{
|
| 843 |
+
"epoch": 0.391156462585034,
|
| 844 |
+
"grad_norm": 20.22060079238643,
|
| 845 |
+
"learning_rate": 1.8880537832765975e-06,
|
| 846 |
+
"loss": 2.1247,
|
| 847 |
+
"step": 115
|
| 848 |
+
},
|
| 849 |
+
{
|
| 850 |
+
"epoch": 0.3945578231292517,
|
| 851 |
+
"grad_norm": 29.233218070907714,
|
| 852 |
+
"learning_rate": 1.8854560256532098e-06,
|
| 853 |
+
"loss": 2.3962,
|
| 854 |
+
"step": 116
|
| 855 |
+
},
|
| 856 |
+
{
|
| 857 |
+
"epoch": 0.3979591836734694,
|
| 858 |
+
"grad_norm": 12.311196195760077,
|
| 859 |
+
"learning_rate": 1.882830301280849e-06,
|
| 860 |
+
"loss": 1.9291,
|
| 861 |
+
"step": 117
|
| 862 |
+
},
|
| 863 |
+
{
|
| 864 |
+
"epoch": 0.4013605442176871,
|
| 865 |
+
"grad_norm": 24.022251844658836,
|
| 866 |
+
"learning_rate": 1.880176693091893e-06,
|
| 867 |
+
"loss": 2.0967,
|
| 868 |
+
"step": 118
|
| 869 |
+
},
|
| 870 |
+
{
|
| 871 |
+
"epoch": 0.40476190476190477,
|
| 872 |
+
"grad_norm": 15.5145598820515,
|
| 873 |
+
"learning_rate": 1.8774952848994193e-06,
|
| 874 |
+
"loss": 2.0164,
|
| 875 |
+
"step": 119
|
| 876 |
+
},
|
| 877 |
+
{
|
| 878 |
+
"epoch": 0.40816326530612246,
|
| 879 |
+
"grad_norm": 18.669552144287866,
|
| 880 |
+
"learning_rate": 1.874786161394556e-06,
|
| 881 |
+
"loss": 1.9074,
|
| 882 |
+
"step": 120
|
| 883 |
+
},
|
| 884 |
+
{
|
| 885 |
+
"epoch": 0.41156462585034015,
|
| 886 |
+
"grad_norm": 20.221669243742017,
|
| 887 |
+
"learning_rate": 1.8720494081438077e-06,
|
| 888 |
+
"loss": 2.0693,
|
| 889 |
+
"step": 121
|
| 890 |
+
},
|
| 891 |
+
{
|
| 892 |
+
"epoch": 0.41496598639455784,
|
| 893 |
+
"grad_norm": 40.16853982486705,
|
| 894 |
+
"learning_rate": 1.8692851115863521e-06,
|
| 895 |
+
"loss": 2.7133,
|
| 896 |
+
"step": 122
|
| 897 |
+
},
|
| 898 |
+
{
|
| 899 |
+
"epoch": 0.41836734693877553,
|
| 900 |
+
"grad_norm": 28.130765299643805,
|
| 901 |
+
"learning_rate": 1.8664933590313116e-06,
|
| 902 |
+
"loss": 2.3678,
|
| 903 |
+
"step": 123
|
| 904 |
+
},
|
| 905 |
+
{
|
| 906 |
+
"epoch": 0.4217687074829932,
|
| 907 |
+
"grad_norm": 3.285521259165442,
|
| 908 |
+
"learning_rate": 1.8636742386549936e-06,
|
| 909 |
+
"loss": 1.643,
|
| 910 |
+
"step": 124
|
| 911 |
+
},
|
| 912 |
+
{
|
| 913 |
+
"epoch": 0.42517006802721086,
|
| 914 |
+
"grad_norm": 14.918765530830019,
|
| 915 |
+
"learning_rate": 1.8608278394981065e-06,
|
| 916 |
+
"loss": 2.2832,
|
| 917 |
+
"step": 125
|
| 918 |
+
},
|
| 919 |
+
{
|
| 920 |
+
"epoch": 0.42857142857142855,
|
| 921 |
+
"grad_norm": 3.221047286582191,
|
| 922 |
+
"learning_rate": 1.8579542514629471e-06,
|
| 923 |
+
"loss": 1.7598,
|
| 924 |
+
"step": 126
|
| 925 |
+
},
|
| 926 |
+
{
|
| 927 |
+
"epoch": 0.43197278911564624,
|
| 928 |
+
"grad_norm": 30.02563146393063,
|
| 929 |
+
"learning_rate": 1.8550535653105621e-06,
|
| 930 |
+
"loss": 2.2684,
|
| 931 |
+
"step": 127
|
| 932 |
+
},
|
| 933 |
+
{
|
| 934 |
+
"epoch": 0.43537414965986393,
|
| 935 |
+
"grad_norm": 14.894051195947721,
|
| 936 |
+
"learning_rate": 1.8521258726578802e-06,
|
| 937 |
+
"loss": 2.2898,
|
| 938 |
+
"step": 128
|
| 939 |
+
},
|
| 940 |
+
{
|
| 941 |
+
"epoch": 0.4387755102040816,
|
| 942 |
+
"grad_norm": 31.346174242632404,
|
| 943 |
+
"learning_rate": 1.849171265974818e-06,
|
| 944 |
+
"loss": 2.4443,
|
| 945 |
+
"step": 129
|
| 946 |
+
},
|
| 947 |
+
{
|
| 948 |
+
"epoch": 0.4421768707482993,
|
| 949 |
+
"grad_norm": 18.396976082720574,
|
| 950 |
+
"learning_rate": 1.846189838581362e-06,
|
| 951 |
+
"loss": 2.4081,
|
| 952 |
+
"step": 130
|
| 953 |
+
},
|
| 954 |
+
{
|
| 955 |
+
"epoch": 0.445578231292517,
|
| 956 |
+
"grad_norm": 11.300098238275778,
|
| 957 |
+
"learning_rate": 1.843181684644617e-06,
|
| 958 |
+
"loss": 1.9707,
|
| 959 |
+
"step": 131
|
| 960 |
+
},
|
| 961 |
+
{
|
| 962 |
+
"epoch": 0.4489795918367347,
|
| 963 |
+
"grad_norm": 9.311622064720812,
|
| 964 |
+
"learning_rate": 1.8401468991758364e-06,
|
| 965 |
+
"loss": 2.0055,
|
| 966 |
+
"step": 132
|
| 967 |
+
},
|
| 968 |
+
{
|
| 969 |
+
"epoch": 0.4523809523809524,
|
| 970 |
+
"grad_norm": 17.268118260619143,
|
| 971 |
+
"learning_rate": 1.837085578027418e-06,
|
| 972 |
+
"loss": 2.1029,
|
| 973 |
+
"step": 133
|
| 974 |
+
},
|
| 975 |
+
{
|
| 976 |
+
"epoch": 0.4557823129251701,
|
| 977 |
+
"grad_norm": 13.534018757700077,
|
| 978 |
+
"learning_rate": 1.833997817889878e-06,
|
| 979 |
+
"loss": 1.6714,
|
| 980 |
+
"step": 134
|
| 981 |
+
},
|
| 982 |
+
{
|
| 983 |
+
"epoch": 0.45918367346938777,
|
| 984 |
+
"grad_norm": 25.67291091851184,
|
| 985 |
+
"learning_rate": 1.8308837162887962e-06,
|
| 986 |
+
"loss": 2.0809,
|
| 987 |
+
"step": 135
|
| 988 |
+
},
|
| 989 |
+
{
|
| 990 |
+
"epoch": 0.46258503401360546,
|
| 991 |
+
"grad_norm": 16.78554391811326,
|
| 992 |
+
"learning_rate": 1.827743371581737e-06,
|
| 993 |
+
"loss": 2.095,
|
| 994 |
+
"step": 136
|
| 995 |
+
},
|
| 996 |
+
{
|
| 997 |
+
"epoch": 0.46598639455782315,
|
| 998 |
+
"grad_norm": 7.0895304724541175,
|
| 999 |
+
"learning_rate": 1.8245768829551415e-06,
|
| 1000 |
+
"loss": 2.0924,
|
| 1001 |
+
"step": 137
|
| 1002 |
+
},
|
| 1003 |
+
{
|
| 1004 |
+
"epoch": 0.46938775510204084,
|
| 1005 |
+
"grad_norm": 28.325113542255774,
|
| 1006 |
+
"learning_rate": 1.8213843504211956e-06,
|
| 1007 |
+
"loss": 2.2312,
|
| 1008 |
+
"step": 138
|
| 1009 |
+
},
|
| 1010 |
+
{
|
| 1011 |
+
"epoch": 0.47278911564625853,
|
| 1012 |
+
"grad_norm": 19.627621449351967,
|
| 1013 |
+
"learning_rate": 1.8181658748146709e-06,
|
| 1014 |
+
"loss": 2.1092,
|
| 1015 |
+
"step": 139
|
| 1016 |
+
},
|
| 1017 |
+
{
|
| 1018 |
+
"epoch": 0.47619047619047616,
|
| 1019 |
+
"grad_norm": 3.253642214201976,
|
| 1020 |
+
"learning_rate": 1.8149215577897394e-06,
|
| 1021 |
+
"loss": 1.8119,
|
| 1022 |
+
"step": 140
|
| 1023 |
+
},
|
| 1024 |
+
{
|
| 1025 |
+
"epoch": 0.47959183673469385,
|
| 1026 |
+
"grad_norm": 22.194249754011054,
|
| 1027 |
+
"learning_rate": 1.8116515018167635e-06,
|
| 1028 |
+
"loss": 1.8086,
|
| 1029 |
+
"step": 141
|
| 1030 |
+
},
|
| 1031 |
+
{
|
| 1032 |
+
"epoch": 0.48299319727891155,
|
| 1033 |
+
"grad_norm": 3.291628206622755,
|
| 1034 |
+
"learning_rate": 1.8083558101790595e-06,
|
| 1035 |
+
"loss": 1.6961,
|
| 1036 |
+
"step": 142
|
| 1037 |
+
},
|
| 1038 |
+
{
|
| 1039 |
+
"epoch": 0.48639455782312924,
|
| 1040 |
+
"grad_norm": 30.333797331495706,
|
| 1041 |
+
"learning_rate": 1.8050345869696346e-06,
|
| 1042 |
+
"loss": 2.4649,
|
| 1043 |
+
"step": 143
|
| 1044 |
+
},
|
| 1045 |
+
{
|
| 1046 |
+
"epoch": 0.4897959183673469,
|
| 1047 |
+
"grad_norm": 35.46381155966904,
|
| 1048 |
+
"learning_rate": 1.8016879370879004e-06,
|
| 1049 |
+
"loss": 2.375,
|
| 1050 |
+
"step": 144
|
| 1051 |
+
},
|
| 1052 |
+
{
|
| 1053 |
+
"epoch": 0.4931972789115646,
|
| 1054 |
+
"grad_norm": 10.065027530577671,
|
| 1055 |
+
"learning_rate": 1.798315966236358e-06,
|
| 1056 |
+
"loss": 1.7088,
|
| 1057 |
+
"step": 145
|
| 1058 |
+
},
|
| 1059 |
+
{
|
| 1060 |
+
"epoch": 0.4965986394557823,
|
| 1061 |
+
"grad_norm": 31.969238069641904,
|
| 1062 |
+
"learning_rate": 1.794918780917262e-06,
|
| 1063 |
+
"loss": 2.2722,
|
| 1064 |
+
"step": 146
|
| 1065 |
+
},
|
| 1066 |
+
{
|
| 1067 |
+
"epoch": 0.5,
|
| 1068 |
+
"grad_norm": 3.1706943713916287,
|
| 1069 |
+
"learning_rate": 1.791496488429254e-06,
|
| 1070 |
+
"loss": 1.5129,
|
| 1071 |
+
"step": 147
|
| 1072 |
+
},
|
| 1073 |
+
{
|
| 1074 |
+
"epoch": 0.5034013605442177,
|
| 1075 |
+
"grad_norm": 40.129409477941664,
|
| 1076 |
+
"learning_rate": 1.7880491968639751e-06,
|
| 1077 |
+
"loss": 2.8429,
|
| 1078 |
+
"step": 148
|
| 1079 |
+
},
|
| 1080 |
+
{
|
| 1081 |
+
"epoch": 0.5034013605442177,
|
| 1082 |
+
"eval_loss": 2.2053215503692627,
|
| 1083 |
+
"eval_runtime": 3.8702,
|
| 1084 |
+
"eval_samples_per_second": 14.211,
|
| 1085 |
+
"eval_steps_per_second": 1.034,
|
| 1086 |
+
"step": 148
|
| 1087 |
+
},
|
| 1088 |
+
{
|
| 1089 |
+
"epoch": 0.5068027210884354,
|
| 1090 |
+
"grad_norm": 26.985890370710862,
|
| 1091 |
+
"learning_rate": 1.7845770151026513e-06,
|
| 1092 |
+
"loss": 2.3221,
|
| 1093 |
+
"step": 149
|
| 1094 |
+
},
|
| 1095 |
+
{
|
| 1096 |
+
"epoch": 0.5102040816326531,
|
| 1097 |
+
"grad_norm": 34.746114296368646,
|
| 1098 |
+
"learning_rate": 1.7810800528126553e-06,
|
| 1099 |
+
"loss": 2.3499,
|
| 1100 |
+
"step": 150
|
| 1101 |
+
},
|
| 1102 |
+
{
|
| 1103 |
+
"epoch": 0.5136054421768708,
|
| 1104 |
+
"grad_norm": 3.902076154967714,
|
| 1105 |
+
"learning_rate": 1.7775584204440416e-06,
|
| 1106 |
+
"loss": 1.7411,
|
| 1107 |
+
"step": 151
|
| 1108 |
+
},
|
| 1109 |
+
{
|
| 1110 |
+
"epoch": 0.5170068027210885,
|
| 1111 |
+
"grad_norm": 27.80193827038684,
|
| 1112 |
+
"learning_rate": 1.7740122292260594e-06,
|
| 1113 |
+
"loss": 2.2895,
|
| 1114 |
+
"step": 152
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"epoch": 0.5204081632653061,
|
| 1118 |
+
"grad_norm": 3.4114906810600685,
|
| 1119 |
+
"learning_rate": 1.7704415911636375e-06,
|
| 1120 |
+
"loss": 1.5119,
|
| 1121 |
+
"step": 153
|
| 1122 |
+
},
|
| 1123 |
+
{
|
| 1124 |
+
"epoch": 0.5238095238095238,
|
| 1125 |
+
"grad_norm": 9.505522369554297,
|
| 1126 |
+
"learning_rate": 1.7668466190338483e-06,
|
| 1127 |
+
"loss": 1.844,
|
| 1128 |
+
"step": 154
|
| 1129 |
+
},
|
| 1130 |
+
{
|
| 1131 |
+
"epoch": 0.5272108843537415,
|
| 1132 |
+
"grad_norm": 36.46998151934392,
|
| 1133 |
+
"learning_rate": 1.7632274263823457e-06,
|
| 1134 |
+
"loss": 2.4713,
|
| 1135 |
+
"step": 155
|
| 1136 |
+
},
|
| 1137 |
+
{
|
| 1138 |
+
"epoch": 0.5306122448979592,
|
| 1139 |
+
"grad_norm": 17.765108257489125,
|
| 1140 |
+
"learning_rate": 1.759584127519778e-06,
|
| 1141 |
+
"loss": 2.2811,
|
| 1142 |
+
"step": 156
|
| 1143 |
+
},
|
| 1144 |
+
{
|
| 1145 |
+
"epoch": 0.5340136054421769,
|
| 1146 |
+
"grad_norm": 14.148223114236801,
|
| 1147 |
+
"learning_rate": 1.7559168375181775e-06,
|
| 1148 |
+
"loss": 1.8442,
|
| 1149 |
+
"step": 157
|
| 1150 |
+
},
|
| 1151 |
+
{
|
| 1152 |
+
"epoch": 0.5374149659863946,
|
| 1153 |
+
"grad_norm": 9.76402372234183,
|
| 1154 |
+
"learning_rate": 1.7522256722073273e-06,
|
| 1155 |
+
"loss": 1.8945,
|
| 1156 |
+
"step": 158
|
| 1157 |
+
},
|
| 1158 |
+
{
|
| 1159 |
+
"epoch": 0.5408163265306123,
|
| 1160 |
+
"grad_norm": 16.450896799860217,
|
| 1161 |
+
"learning_rate": 1.748510748171101e-06,
|
| 1162 |
+
"loss": 1.9574,
|
| 1163 |
+
"step": 159
|
| 1164 |
+
},
|
| 1165 |
+
{
|
| 1166 |
+
"epoch": 0.54421768707483,
|
| 1167 |
+
"grad_norm": 3.912613042056259,
|
| 1168 |
+
"learning_rate": 1.7447721827437819e-06,
|
| 1169 |
+
"loss": 1.6032,
|
| 1170 |
+
"step": 160
|
| 1171 |
+
},
|
| 1172 |
+
{
|
| 1173 |
+
"epoch": 0.5476190476190477,
|
| 1174 |
+
"grad_norm": 33.305605159021646,
|
| 1175 |
+
"learning_rate": 1.7410100940063558e-06,
|
| 1176 |
+
"loss": 2.4057,
|
| 1177 |
+
"step": 161
|
| 1178 |
+
},
|
| 1179 |
+
{
|
| 1180 |
+
"epoch": 0.5510204081632653,
|
| 1181 |
+
"grad_norm": 38.319973023280475,
|
| 1182 |
+
"learning_rate": 1.7372246007827833e-06,
|
| 1183 |
+
"loss": 2.5925,
|
| 1184 |
+
"step": 162
|
| 1185 |
+
},
|
| 1186 |
+
{
|
| 1187 |
+
"epoch": 0.5544217687074829,
|
| 1188 |
+
"grad_norm": 17.216523524482163,
|
| 1189 |
+
"learning_rate": 1.7334158226362446e-06,
|
| 1190 |
+
"loss": 2.0324,
|
| 1191 |
+
"step": 163
|
| 1192 |
+
},
|
| 1193 |
+
{
|
| 1194 |
+
"epoch": 0.5578231292517006,
|
| 1195 |
+
"grad_norm": 4.9862323362748535,
|
| 1196 |
+
"learning_rate": 1.7295838798653649e-06,
|
| 1197 |
+
"loss": 1.7436,
|
| 1198 |
+
"step": 164
|
| 1199 |
+
},
|
| 1200 |
+
{
|
| 1201 |
+
"epoch": 0.5612244897959183,
|
| 1202 |
+
"grad_norm": 4.0759355613648625,
|
| 1203 |
+
"learning_rate": 1.7257288935004132e-06,
|
| 1204 |
+
"loss": 1.7034,
|
| 1205 |
+
"step": 165
|
| 1206 |
+
},
|
| 1207 |
+
{
|
| 1208 |
+
"epoch": 0.564625850340136,
|
| 1209 |
+
"grad_norm": 16.519960341878562,
|
| 1210 |
+
"learning_rate": 1.7218509852994822e-06,
|
| 1211 |
+
"loss": 2.115,
|
| 1212 |
+
"step": 166
|
| 1213 |
+
},
|
| 1214 |
+
{
|
| 1215 |
+
"epoch": 0.5680272108843537,
|
| 1216 |
+
"grad_norm": 17.37824200525593,
|
| 1217 |
+
"learning_rate": 1.7179502777446392e-06,
|
| 1218 |
+
"loss": 2.0609,
|
| 1219 |
+
"step": 167
|
| 1220 |
+
},
|
| 1221 |
+
{
|
| 1222 |
+
"epoch": 0.5714285714285714,
|
| 1223 |
+
"grad_norm": 39.604264809847564,
|
| 1224 |
+
"learning_rate": 1.7140268940380605e-06,
|
| 1225 |
+
"loss": 2.3861,
|
| 1226 |
+
"step": 168
|
| 1227 |
+
},
|
| 1228 |
+
{
|
| 1229 |
+
"epoch": 0.5748299319727891,
|
| 1230 |
+
"grad_norm": 17.489048911326037,
|
| 1231 |
+
"learning_rate": 1.7100809580981384e-06,
|
| 1232 |
+
"loss": 1.9979,
|
| 1233 |
+
"step": 169
|
| 1234 |
+
},
|
| 1235 |
+
{
|
| 1236 |
+
"epoch": 0.5782312925170068,
|
| 1237 |
+
"grad_norm": 6.642641185839537,
|
| 1238 |
+
"learning_rate": 1.7061125945555679e-06,
|
| 1239 |
+
"loss": 1.7533,
|
| 1240 |
+
"step": 170
|
| 1241 |
+
},
|
| 1242 |
+
{
|
| 1243 |
+
"epoch": 0.5816326530612245,
|
| 1244 |
+
"grad_norm": 41.437166409250736,
|
| 1245 |
+
"learning_rate": 1.70212192874941e-06,
|
| 1246 |
+
"loss": 2.8676,
|
| 1247 |
+
"step": 171
|
| 1248 |
+
},
|
| 1249 |
+
{
|
| 1250 |
+
"epoch": 0.5850340136054422,
|
| 1251 |
+
"grad_norm": 12.285090452877482,
|
| 1252 |
+
"learning_rate": 1.6981090867231336e-06,
|
| 1253 |
+
"loss": 1.8715,
|
| 1254 |
+
"step": 172
|
| 1255 |
+
},
|
| 1256 |
+
{
|
| 1257 |
+
"epoch": 0.5884353741496599,
|
| 1258 |
+
"grad_norm": 20.351266920257437,
|
| 1259 |
+
"learning_rate": 1.694074195220634e-06,
|
| 1260 |
+
"loss": 2.5238,
|
| 1261 |
+
"step": 173
|
| 1262 |
+
},
|
| 1263 |
+
{
|
| 1264 |
+
"epoch": 0.5918367346938775,
|
| 1265 |
+
"grad_norm": 13.128678816386138,
|
| 1266 |
+
"learning_rate": 1.6900173816822289e-06,
|
| 1267 |
+
"loss": 1.7191,
|
| 1268 |
+
"step": 174
|
| 1269 |
+
},
|
| 1270 |
+
{
|
| 1271 |
+
"epoch": 0.5952380952380952,
|
| 1272 |
+
"grad_norm": 3.1331026154409565,
|
| 1273 |
+
"learning_rate": 1.6859387742406358e-06,
|
| 1274 |
+
"loss": 1.7885,
|
| 1275 |
+
"step": 175
|
| 1276 |
+
},
|
| 1277 |
+
{
|
| 1278 |
+
"epoch": 0.5986394557823129,
|
| 1279 |
+
"grad_norm": 12.273944679120639,
|
| 1280 |
+
"learning_rate": 1.6818385017169212e-06,
|
| 1281 |
+
"loss": 1.9361,
|
| 1282 |
+
"step": 176
|
| 1283 |
+
},
|
| 1284 |
+
{
|
| 1285 |
+
"epoch": 0.6020408163265306,
|
| 1286 |
+
"grad_norm": 18.988287394873876,
|
| 1287 |
+
"learning_rate": 1.6777166936164354e-06,
|
| 1288 |
+
"loss": 2.118,
|
| 1289 |
+
"step": 177
|
| 1290 |
+
},
|
| 1291 |
+
{
|
| 1292 |
+
"epoch": 0.6054421768707483,
|
| 1293 |
+
"grad_norm": 13.330413347581118,
|
| 1294 |
+
"learning_rate": 1.6735734801247202e-06,
|
| 1295 |
+
"loss": 1.9923,
|
| 1296 |
+
"step": 178
|
| 1297 |
+
},
|
| 1298 |
+
{
|
| 1299 |
+
"epoch": 0.608843537414966,
|
| 1300 |
+
"grad_norm": 8.528660885149025,
|
| 1301 |
+
"learning_rate": 1.6694089921033976e-06,
|
| 1302 |
+
"loss": 1.6938,
|
| 1303 |
+
"step": 179
|
| 1304 |
+
},
|
| 1305 |
+
{
|
| 1306 |
+
"epoch": 0.6122448979591837,
|
| 1307 |
+
"grad_norm": 28.049589150374253,
|
| 1308 |
+
"learning_rate": 1.6652233610860364e-06,
|
| 1309 |
+
"loss": 2.4092,
|
| 1310 |
+
"step": 180
|
| 1311 |
+
},
|
| 1312 |
+
{
|
| 1313 |
+
"epoch": 0.6156462585034014,
|
| 1314 |
+
"grad_norm": 19.077236893577115,
|
| 1315 |
+
"learning_rate": 1.6610167192739978e-06,
|
| 1316 |
+
"loss": 2.3235,
|
| 1317 |
+
"step": 181
|
| 1318 |
+
},
|
| 1319 |
+
{
|
| 1320 |
+
"epoch": 0.6190476190476191,
|
| 1321 |
+
"grad_norm": 23.109888095114325,
|
| 1322 |
+
"learning_rate": 1.6567891995322603e-06,
|
| 1323 |
+
"loss": 2.2678,
|
| 1324 |
+
"step": 182
|
| 1325 |
+
},
|
| 1326 |
+
{
|
| 1327 |
+
"epoch": 0.6224489795918368,
|
| 1328 |
+
"grad_norm": 19.456776496200867,
|
| 1329 |
+
"learning_rate": 1.6525409353852221e-06,
|
| 1330 |
+
"loss": 2.2764,
|
| 1331 |
+
"step": 183
|
| 1332 |
+
},
|
| 1333 |
+
{
|
| 1334 |
+
"epoch": 0.6258503401360545,
|
| 1335 |
+
"grad_norm": 9.82404206796416,
|
| 1336 |
+
"learning_rate": 1.6482720610124856e-06,
|
| 1337 |
+
"loss": 1.8034,
|
| 1338 |
+
"step": 184
|
| 1339 |
+
},
|
| 1340 |
+
{
|
| 1341 |
+
"epoch": 0.6292517006802721,
|
| 1342 |
+
"grad_norm": 24.2061776724548,
|
| 1343 |
+
"learning_rate": 1.6439827112446173e-06,
|
| 1344 |
+
"loss": 2.161,
|
| 1345 |
+
"step": 185
|
| 1346 |
+
},
|
| 1347 |
+
{
|
| 1348 |
+
"epoch": 0.6292517006802721,
|
| 1349 |
+
"eval_loss": 2.194326400756836,
|
| 1350 |
+
"eval_runtime": 3.7428,
|
| 1351 |
+
"eval_samples_per_second": 14.695,
|
| 1352 |
+
"eval_steps_per_second": 1.069,
|
| 1353 |
+
"step": 185
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"epoch": 0.6326530612244898,
|
| 1357 |
+
"grad_norm": 30.469163171671003,
|
| 1358 |
+
"learning_rate": 1.6396730215588912e-06,
|
| 1359 |
+
"loss": 2.2773,
|
| 1360 |
+
"step": 186
|
| 1361 |
+
},
|
| 1362 |
+
{
|
| 1363 |
+
"epoch": 0.6360544217687075,
|
| 1364 |
+
"grad_norm": 3.646917584621385,
|
| 1365 |
+
"learning_rate": 1.6353431280750082e-06,
|
| 1366 |
+
"loss": 1.5989,
|
| 1367 |
+
"step": 187
|
| 1368 |
+
},
|
| 1369 |
+
{
|
| 1370 |
+
"epoch": 0.6394557823129252,
|
| 1371 |
+
"grad_norm": 30.30266588230692,
|
| 1372 |
+
"learning_rate": 1.6309931675507978e-06,
|
| 1373 |
+
"loss": 2.6169,
|
| 1374 |
+
"step": 188
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"epoch": 0.6428571428571429,
|
| 1378 |
+
"grad_norm": 14.371186117614542,
|
| 1379 |
+
"learning_rate": 1.6266232773778983e-06,
|
| 1380 |
+
"loss": 1.9241,
|
| 1381 |
+
"step": 189
|
| 1382 |
+
},
|
| 1383 |
+
{
|
| 1384 |
+
"epoch": 0.6462585034013606,
|
| 1385 |
+
"grad_norm": 18.71258411403636,
|
| 1386 |
+
"learning_rate": 1.6222335955774176e-06,
|
| 1387 |
+
"loss": 2.1737,
|
| 1388 |
+
"step": 190
|
| 1389 |
+
},
|
| 1390 |
+
{
|
| 1391 |
+
"epoch": 0.6496598639455783,
|
| 1392 |
+
"grad_norm": 3.2723339662931585,
|
| 1393 |
+
"learning_rate": 1.617824260795573e-06,
|
| 1394 |
+
"loss": 1.8075,
|
| 1395 |
+
"step": 191
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"epoch": 0.6530612244897959,
|
| 1399 |
+
"grad_norm": 16.496061968286824,
|
| 1400 |
+
"learning_rate": 1.6133954122993139e-06,
|
| 1401 |
+
"loss": 2.0147,
|
| 1402 |
+
"step": 192
|
| 1403 |
+
},
|
| 1404 |
+
{
|
| 1405 |
+
"epoch": 0.6564625850340136,
|
| 1406 |
+
"grad_norm": 3.2013079969624805,
|
| 1407 |
+
"learning_rate": 1.608947189971921e-06,
|
| 1408 |
+
"loss": 1.6798,
|
| 1409 |
+
"step": 193
|
| 1410 |
+
},
|
| 1411 |
+
{
|
| 1412 |
+
"epoch": 0.6598639455782312,
|
| 1413 |
+
"grad_norm": 20.981814890242124,
|
| 1414 |
+
"learning_rate": 1.6044797343085898e-06,
|
| 1415 |
+
"loss": 2.0425,
|
| 1416 |
+
"step": 194
|
| 1417 |
+
},
|
| 1418 |
+
{
|
| 1419 |
+
"epoch": 0.6632653061224489,
|
| 1420 |
+
"grad_norm": 50.879018823375965,
|
| 1421 |
+
"learning_rate": 1.599993186411992e-06,
|
| 1422 |
+
"loss": 3.8504,
|
| 1423 |
+
"step": 195
|
| 1424 |
+
},
|
| 1425 |
+
{
|
| 1426 |
+
"epoch": 0.6666666666666666,
|
| 1427 |
+
"grad_norm": 3.283241794235971,
|
| 1428 |
+
"learning_rate": 1.59548768798782e-06,
|
| 1429 |
+
"loss": 1.4971,
|
| 1430 |
+
"step": 196
|
| 1431 |
+
},
|
| 1432 |
+
{
|
| 1433 |
+
"epoch": 0.6700680272108843,
|
| 1434 |
+
"grad_norm": 12.706772022061763,
|
| 1435 |
+
"learning_rate": 1.5909633813403092e-06,
|
| 1436 |
+
"loss": 1.9318,
|
| 1437 |
+
"step": 197
|
| 1438 |
+
},
|
| 1439 |
+
{
|
| 1440 |
+
"epoch": 0.673469387755102,
|
| 1441 |
+
"grad_norm": 7.747043673117189,
|
| 1442 |
+
"learning_rate": 1.5864204093677463e-06,
|
| 1443 |
+
"loss": 1.8641,
|
| 1444 |
+
"step": 198
|
| 1445 |
+
},
|
| 1446 |
+
{
|
| 1447 |
+
"epoch": 0.6768707482993197,
|
| 1448 |
+
"grad_norm": 12.685665761738797,
|
| 1449 |
+
"learning_rate": 1.5818589155579529e-06,
|
| 1450 |
+
"loss": 2.0781,
|
| 1451 |
+
"step": 199
|
| 1452 |
+
},
|
| 1453 |
+
{
|
| 1454 |
+
"epoch": 0.6802721088435374,
|
| 1455 |
+
"grad_norm": 8.183695796856302,
|
| 1456 |
+
"learning_rate": 1.5772790439837555e-06,
|
| 1457 |
+
"loss": 2.1112,
|
| 1458 |
+
"step": 200
|
| 1459 |
+
},
|
| 1460 |
+
{
|
| 1461 |
+
"epoch": 0.6836734693877551,
|
| 1462 |
+
"grad_norm": 3.6436475976280605,
|
| 1463 |
+
"learning_rate": 1.572680939298435e-06,
|
| 1464 |
+
"loss": 1.504,
|
| 1465 |
+
"step": 201
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"epoch": 0.6870748299319728,
|
| 1469 |
+
"grad_norm": 7.765753459491514,
|
| 1470 |
+
"learning_rate": 1.5680647467311555e-06,
|
| 1471 |
+
"loss": 1.6113,
|
| 1472 |
+
"step": 202
|
| 1473 |
+
},
|
| 1474 |
+
{
|
| 1475 |
+
"epoch": 0.6904761904761905,
|
| 1476 |
+
"grad_norm": 27.059590789587673,
|
| 1477 |
+
"learning_rate": 1.563430612082382e-06,
|
| 1478 |
+
"loss": 2.3797,
|
| 1479 |
+
"step": 203
|
| 1480 |
+
},
|
| 1481 |
+
{
|
| 1482 |
+
"epoch": 0.6938775510204082,
|
| 1483 |
+
"grad_norm": 17.865181616406808,
|
| 1484 |
+
"learning_rate": 1.5587786817192687e-06,
|
| 1485 |
+
"loss": 2.2287,
|
| 1486 |
+
"step": 204
|
| 1487 |
+
},
|
| 1488 |
+
{
|
| 1489 |
+
"epoch": 0.6972789115646258,
|
| 1490 |
+
"grad_norm": 11.50437842198177,
|
| 1491 |
+
"learning_rate": 1.5541091025710434e-06,
|
| 1492 |
+
"loss": 2.2926,
|
| 1493 |
+
"step": 205
|
| 1494 |
+
},
|
| 1495 |
+
{
|
| 1496 |
+
"epoch": 0.7006802721088435,
|
| 1497 |
+
"grad_norm": 18.03962056520961,
|
| 1498 |
+
"learning_rate": 1.5494220221243607e-06,
|
| 1499 |
+
"loss": 2.3374,
|
| 1500 |
+
"step": 206
|
| 1501 |
+
},
|
| 1502 |
+
{
|
| 1503 |
+
"epoch": 0.7040816326530612,
|
| 1504 |
+
"grad_norm": 19.808732477248256,
|
| 1505 |
+
"learning_rate": 1.5447175884186478e-06,
|
| 1506 |
+
"loss": 2.3215,
|
| 1507 |
+
"step": 207
|
| 1508 |
+
},
|
| 1509 |
+
{
|
| 1510 |
+
"epoch": 0.7074829931972789,
|
| 1511 |
+
"grad_norm": 21.35228597761302,
|
| 1512 |
+
"learning_rate": 1.539995950041426e-06,
|
| 1513 |
+
"loss": 2.2378,
|
| 1514 |
+
"step": 208
|
| 1515 |
+
},
|
| 1516 |
+
{
|
| 1517 |
+
"epoch": 0.7108843537414966,
|
| 1518 |
+
"grad_norm": 14.090932946927257,
|
| 1519 |
+
"learning_rate": 1.5352572561236197e-06,
|
| 1520 |
+
"loss": 2.22,
|
| 1521 |
+
"step": 209
|
| 1522 |
+
},
|
| 1523 |
+
{
|
| 1524 |
+
"epoch": 0.7142857142857143,
|
| 1525 |
+
"grad_norm": 22.22875395969964,
|
| 1526 |
+
"learning_rate": 1.5305016563348443e-06,
|
| 1527 |
+
"loss": 2.44,
|
| 1528 |
+
"step": 210
|
| 1529 |
+
},
|
| 1530 |
+
{
|
| 1531 |
+
"epoch": 0.717687074829932,
|
| 1532 |
+
"grad_norm": 12.732771656478363,
|
| 1533 |
+
"learning_rate": 1.5257293008786807e-06,
|
| 1534 |
+
"loss": 2.0598,
|
| 1535 |
+
"step": 211
|
| 1536 |
+
},
|
| 1537 |
+
{
|
| 1538 |
+
"epoch": 0.7210884353741497,
|
| 1539 |
+
"grad_norm": 3.3024595151809777,
|
| 1540 |
+
"learning_rate": 1.5209403404879303e-06,
|
| 1541 |
+
"loss": 1.8514,
|
| 1542 |
+
"step": 212
|
| 1543 |
+
},
|
| 1544 |
+
{
|
| 1545 |
+
"epoch": 0.7244897959183674,
|
| 1546 |
+
"grad_norm": 31.041628605811148,
|
| 1547 |
+
"learning_rate": 1.5161349264198535e-06,
|
| 1548 |
+
"loss": 2.4225,
|
| 1549 |
+
"step": 213
|
| 1550 |
+
},
|
| 1551 |
+
{
|
| 1552 |
+
"epoch": 0.7278911564625851,
|
| 1553 |
+
"grad_norm": 11.866017531018645,
|
| 1554 |
+
"learning_rate": 1.511313210451394e-06,
|
| 1555 |
+
"loss": 1.9747,
|
| 1556 |
+
"step": 214
|
| 1557 |
+
},
|
| 1558 |
+
{
|
| 1559 |
+
"epoch": 0.7312925170068028,
|
| 1560 |
+
"grad_norm": 23.77867996796224,
|
| 1561 |
+
"learning_rate": 1.5064753448743832e-06,
|
| 1562 |
+
"loss": 2.0971,
|
| 1563 |
+
"step": 215
|
| 1564 |
+
},
|
| 1565 |
+
{
|
| 1566 |
+
"epoch": 0.7346938775510204,
|
| 1567 |
+
"grad_norm": 28.640512428374876,
|
| 1568 |
+
"learning_rate": 1.5016214824907314e-06,
|
| 1569 |
+
"loss": 2.2247,
|
| 1570 |
+
"step": 216
|
| 1571 |
+
},
|
| 1572 |
+
{
|
| 1573 |
+
"epoch": 0.7380952380952381,
|
| 1574 |
+
"grad_norm": 9.463317499162777,
|
| 1575 |
+
"learning_rate": 1.4967517766076015e-06,
|
| 1576 |
+
"loss": 1.9511,
|
| 1577 |
+
"step": 217
|
| 1578 |
+
},
|
| 1579 |
+
{
|
| 1580 |
+
"epoch": 0.7414965986394558,
|
| 1581 |
+
"grad_norm": 3.6132074342008336,
|
| 1582 |
+
"learning_rate": 1.4918663810325659e-06,
|
| 1583 |
+
"loss": 1.5643,
|
| 1584 |
+
"step": 218
|
| 1585 |
+
},
|
| 1586 |
+
{
|
| 1587 |
+
"epoch": 0.7448979591836735,
|
| 1588 |
+
"grad_norm": 12.274299577611806,
|
| 1589 |
+
"learning_rate": 1.4869654500687492e-06,
|
| 1590 |
+
"loss": 2.0865,
|
| 1591 |
+
"step": 219
|
| 1592 |
+
},
|
| 1593 |
+
{
|
| 1594 |
+
"epoch": 0.7482993197278912,
|
| 1595 |
+
"grad_norm": 9.577269499797044,
|
| 1596 |
+
"learning_rate": 1.4820491385099555e-06,
|
| 1597 |
+
"loss": 2.1494,
|
| 1598 |
+
"step": 220
|
| 1599 |
+
},
|
| 1600 |
+
{
|
| 1601 |
+
"epoch": 0.7517006802721088,
|
| 1602 |
+
"grad_norm": 13.665325186622818,
|
| 1603 |
+
"learning_rate": 1.477117601635777e-06,
|
| 1604 |
+
"loss": 2.0676,
|
| 1605 |
+
"step": 221
|
| 1606 |
+
},
|
| 1607 |
+
{
|
| 1608 |
+
"epoch": 0.7551020408163265,
|
| 1609 |
+
"grad_norm": 12.044556166373619,
|
| 1610 |
+
"learning_rate": 1.4721709952066923e-06,
|
| 1611 |
+
"loss": 1.7408,
|
| 1612 |
+
"step": 222
|
| 1613 |
+
},
|
| 1614 |
+
{
|
| 1615 |
+
"epoch": 0.7551020408163265,
|
| 1616 |
+
"eval_loss": 2.1867611408233643,
|
| 1617 |
+
"eval_runtime": 3.7388,
|
| 1618 |
+
"eval_samples_per_second": 14.711,
|
| 1619 |
+
"eval_steps_per_second": 1.07,
|
| 1620 |
+
"step": 222
|
| 1621 |
+
},
|
| 1622 |
+
{
|
| 1623 |
+
"epoch": 0.7585034013605442,
|
| 1624 |
+
"grad_norm": 32.0866216128451,
|
| 1625 |
+
"learning_rate": 1.4672094754591449e-06,
|
| 1626 |
+
"loss": 2.6444,
|
| 1627 |
+
"step": 223
|
| 1628 |
+
},
|
| 1629 |
+
{
|
| 1630 |
+
"epoch": 0.7619047619047619,
|
| 1631 |
+
"grad_norm": 26.272890838528287,
|
| 1632 |
+
"learning_rate": 1.4622331991006082e-06,
|
| 1633 |
+
"loss": 2.0286,
|
| 1634 |
+
"step": 224
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 0.7653061224489796,
|
| 1638 |
+
"grad_norm": 10.948966043777636,
|
| 1639 |
+
"learning_rate": 1.4572423233046385e-06,
|
| 1640 |
+
"loss": 1.8924,
|
| 1641 |
+
"step": 225
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 0.7687074829931972,
|
| 1645 |
+
"grad_norm": 10.041220633719293,
|
| 1646 |
+
"learning_rate": 1.4522370057059079e-06,
|
| 1647 |
+
"loss": 1.8589,
|
| 1648 |
+
"step": 226
|
| 1649 |
+
},
|
| 1650 |
+
{
|
| 1651 |
+
"epoch": 0.7721088435374149,
|
| 1652 |
+
"grad_norm": 19.90849856575333,
|
| 1653 |
+
"learning_rate": 1.447217404395227e-06,
|
| 1654 |
+
"loss": 2.4632,
|
| 1655 |
+
"step": 227
|
| 1656 |
+
},
|
| 1657 |
+
{
|
| 1658 |
+
"epoch": 0.7755102040816326,
|
| 1659 |
+
"grad_norm": 3.3718807752757134,
|
| 1660 |
+
"learning_rate": 1.4421836779145511e-06,
|
| 1661 |
+
"loss": 1.7402,
|
| 1662 |
+
"step": 228
|
| 1663 |
+
},
|
| 1664 |
+
{
|
| 1665 |
+
"epoch": 0.7789115646258503,
|
| 1666 |
+
"grad_norm": 33.99543346002537,
|
| 1667 |
+
"learning_rate": 1.4371359852519734e-06,
|
| 1668 |
+
"loss": 2.9081,
|
| 1669 |
+
"step": 229
|
| 1670 |
+
},
|
| 1671 |
+
{
|
| 1672 |
+
"epoch": 0.782312925170068,
|
| 1673 |
+
"grad_norm": 12.446391408704297,
|
| 1674 |
+
"learning_rate": 1.4320744858367024e-06,
|
| 1675 |
+
"loss": 2.0828,
|
| 1676 |
+
"step": 230
|
| 1677 |
+
},
|
| 1678 |
+
{
|
| 1679 |
+
"epoch": 0.7857142857142857,
|
| 1680 |
+
"grad_norm": 26.19952152880794,
|
| 1681 |
+
"learning_rate": 1.4269993395340277e-06,
|
| 1682 |
+
"loss": 2.2178,
|
| 1683 |
+
"step": 231
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"epoch": 0.7891156462585034,
|
| 1687 |
+
"grad_norm": 36.07799078718175,
|
| 1688 |
+
"learning_rate": 1.4219107066402692e-06,
|
| 1689 |
+
"loss": 2.6926,
|
| 1690 |
+
"step": 232
|
| 1691 |
+
},
|
| 1692 |
+
{
|
| 1693 |
+
"epoch": 0.7925170068027211,
|
| 1694 |
+
"grad_norm": 11.216785179837261,
|
| 1695 |
+
"learning_rate": 1.4168087478777152e-06,
|
| 1696 |
+
"loss": 2.0393,
|
| 1697 |
+
"step": 233
|
| 1698 |
+
},
|
| 1699 |
+
{
|
| 1700 |
+
"epoch": 0.7959183673469388,
|
| 1701 |
+
"grad_norm": 17.659830496744974,
|
| 1702 |
+
"learning_rate": 1.4116936243895466e-06,
|
| 1703 |
+
"loss": 2.1082,
|
| 1704 |
+
"step": 234
|
| 1705 |
+
},
|
| 1706 |
+
{
|
| 1707 |
+
"epoch": 0.7993197278911565,
|
| 1708 |
+
"grad_norm": 17.001892765923902,
|
| 1709 |
+
"learning_rate": 1.406565497734745e-06,
|
| 1710 |
+
"loss": 1.9051,
|
| 1711 |
+
"step": 235
|
| 1712 |
+
},
|
| 1713 |
+
{
|
| 1714 |
+
"epoch": 0.8027210884353742,
|
| 1715 |
+
"grad_norm": 31.896056687773818,
|
| 1716 |
+
"learning_rate": 1.4014245298829935e-06,
|
| 1717 |
+
"loss": 2.702,
|
| 1718 |
+
"step": 236
|
| 1719 |
+
},
|
| 1720 |
+
{
|
| 1721 |
+
"epoch": 0.8061224489795918,
|
| 1722 |
+
"grad_norm": 6.972810630357569,
|
| 1723 |
+
"learning_rate": 1.3962708832095568e-06,
|
| 1724 |
+
"loss": 1.9466,
|
| 1725 |
+
"step": 237
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"epoch": 0.8095238095238095,
|
| 1729 |
+
"grad_norm": 17.689383441039308,
|
| 1730 |
+
"learning_rate": 1.3911047204901558e-06,
|
| 1731 |
+
"loss": 2.3425,
|
| 1732 |
+
"step": 238
|
| 1733 |
+
},
|
| 1734 |
+
{
|
| 1735 |
+
"epoch": 0.8129251700680272,
|
| 1736 |
+
"grad_norm": 16.46834046227904,
|
| 1737 |
+
"learning_rate": 1.385926204895826e-06,
|
| 1738 |
+
"loss": 2.1545,
|
| 1739 |
+
"step": 239
|
| 1740 |
+
},
|
| 1741 |
+
{
|
| 1742 |
+
"epoch": 0.8163265306122449,
|
| 1743 |
+
"grad_norm": 21.69161139742313,
|
| 1744 |
+
"learning_rate": 1.3807354999877614e-06,
|
| 1745 |
+
"loss": 2.3222,
|
| 1746 |
+
"step": 240
|
| 1747 |
+
},
|
| 1748 |
+
{
|
| 1749 |
+
"epoch": 0.8197278911564626,
|
| 1750 |
+
"grad_norm": 3.411794366451801,
|
| 1751 |
+
"learning_rate": 1.3755327697121522e-06,
|
| 1752 |
+
"loss": 1.6492,
|
| 1753 |
+
"step": 241
|
| 1754 |
+
},
|
| 1755 |
+
{
|
| 1756 |
+
"epoch": 0.8231292517006803,
|
| 1757 |
+
"grad_norm": 13.113564486849809,
|
| 1758 |
+
"learning_rate": 1.3703181783950031e-06,
|
| 1759 |
+
"loss": 2.0212,
|
| 1760 |
+
"step": 242
|
| 1761 |
+
},
|
| 1762 |
+
{
|
| 1763 |
+
"epoch": 0.826530612244898,
|
| 1764 |
+
"grad_norm": 14.798483657902382,
|
| 1765 |
+
"learning_rate": 1.3650918907369452e-06,
|
| 1766 |
+
"loss": 2.1974,
|
| 1767 |
+
"step": 243
|
| 1768 |
+
},
|
| 1769 |
+
{
|
| 1770 |
+
"epoch": 0.8299319727891157,
|
| 1771 |
+
"grad_norm": 10.19780084250851,
|
| 1772 |
+
"learning_rate": 1.3598540718080345e-06,
|
| 1773 |
+
"loss": 1.8543,
|
| 1774 |
+
"step": 244
|
| 1775 |
+
},
|
| 1776 |
+
{
|
| 1777 |
+
"epoch": 0.8333333333333334,
|
| 1778 |
+
"grad_norm": 30.023251305313995,
|
| 1779 |
+
"learning_rate": 1.3546048870425354e-06,
|
| 1780 |
+
"loss": 2.2387,
|
| 1781 |
+
"step": 245
|
| 1782 |
+
},
|
| 1783 |
+
{
|
| 1784 |
+
"epoch": 0.8367346938775511,
|
| 1785 |
+
"grad_norm": 22.321684071392564,
|
| 1786 |
+
"learning_rate": 1.3493445022336994e-06,
|
| 1787 |
+
"loss": 2.4305,
|
| 1788 |
+
"step": 246
|
| 1789 |
+
},
|
| 1790 |
+
{
|
| 1791 |
+
"epoch": 0.8401360544217688,
|
| 1792 |
+
"grad_norm": 34.98925650288134,
|
| 1793 |
+
"learning_rate": 1.3440730835285247e-06,
|
| 1794 |
+
"loss": 2.4364,
|
| 1795 |
+
"step": 247
|
| 1796 |
+
},
|
| 1797 |
+
{
|
| 1798 |
+
"epoch": 0.8435374149659864,
|
| 1799 |
+
"grad_norm": 3.161092974878791,
|
| 1800 |
+
"learning_rate": 1.3387907974225116e-06,
|
| 1801 |
+
"loss": 1.4885,
|
| 1802 |
+
"step": 248
|
| 1803 |
+
},
|
| 1804 |
+
{
|
| 1805 |
+
"epoch": 0.8469387755102041,
|
| 1806 |
+
"grad_norm": 50.11899935337027,
|
| 1807 |
+
"learning_rate": 1.3334978107544024e-06,
|
| 1808 |
+
"loss": 2.3332,
|
| 1809 |
+
"step": 249
|
| 1810 |
+
},
|
| 1811 |
+
{
|
| 1812 |
+
"epoch": 0.8503401360544217,
|
| 1813 |
+
"grad_norm": 15.05206270554561,
|
| 1814 |
+
"learning_rate": 1.3281942907009112e-06,
|
| 1815 |
+
"loss": 2.2131,
|
| 1816 |
+
"step": 250
|
| 1817 |
+
},
|
| 1818 |
+
{
|
| 1819 |
+
"epoch": 0.8537414965986394,
|
| 1820 |
+
"grad_norm": 24.869549840961,
|
| 1821 |
+
"learning_rate": 1.3228804047714462e-06,
|
| 1822 |
+
"loss": 2.2264,
|
| 1823 |
+
"step": 251
|
| 1824 |
+
},
|
| 1825 |
+
{
|
| 1826 |
+
"epoch": 0.8571428571428571,
|
| 1827 |
+
"grad_norm": 16.049594008906414,
|
| 1828 |
+
"learning_rate": 1.317556320802816e-06,
|
| 1829 |
+
"loss": 1.7228,
|
| 1830 |
+
"step": 252
|
| 1831 |
+
},
|
| 1832 |
+
{
|
| 1833 |
+
"epoch": 0.8605442176870748,
|
| 1834 |
+
"grad_norm": 14.258214783846427,
|
| 1835 |
+
"learning_rate": 1.31222220695393e-06,
|
| 1836 |
+
"loss": 1.999,
|
| 1837 |
+
"step": 253
|
| 1838 |
+
},
|
| 1839 |
+
{
|
| 1840 |
+
"epoch": 0.8639455782312925,
|
| 1841 |
+
"grad_norm": 3.3063413494205474,
|
| 1842 |
+
"learning_rate": 1.3068782317004874e-06,
|
| 1843 |
+
"loss": 1.4607,
|
| 1844 |
+
"step": 254
|
| 1845 |
+
},
|
| 1846 |
+
{
|
| 1847 |
+
"epoch": 0.8673469387755102,
|
| 1848 |
+
"grad_norm": 8.831787955552995,
|
| 1849 |
+
"learning_rate": 1.3015245638296563e-06,
|
| 1850 |
+
"loss": 2.1192,
|
| 1851 |
+
"step": 255
|
| 1852 |
+
},
|
| 1853 |
+
{
|
| 1854 |
+
"epoch": 0.8707482993197279,
|
| 1855 |
+
"grad_norm": 3.121872417027736,
|
| 1856 |
+
"learning_rate": 1.296161372434741e-06,
|
| 1857 |
+
"loss": 1.5467,
|
| 1858 |
+
"step": 256
|
| 1859 |
+
},
|
| 1860 |
+
{
|
| 1861 |
+
"epoch": 0.8741496598639455,
|
| 1862 |
+
"grad_norm": 33.22351218100941,
|
| 1863 |
+
"learning_rate": 1.2907888269098416e-06,
|
| 1864 |
+
"loss": 2.3588,
|
| 1865 |
+
"step": 257
|
| 1866 |
+
},
|
| 1867 |
+
{
|
| 1868 |
+
"epoch": 0.8775510204081632,
|
| 1869 |
+
"grad_norm": 3.188560179185641,
|
| 1870 |
+
"learning_rate": 1.2854070969445064e-06,
|
| 1871 |
+
"loss": 1.5405,
|
| 1872 |
+
"step": 258
|
| 1873 |
+
},
|
| 1874 |
+
{
|
| 1875 |
+
"epoch": 0.8809523809523809,
|
| 1876 |
+
"grad_norm": 21.318069352021737,
|
| 1877 |
+
"learning_rate": 1.2800163525183688e-06,
|
| 1878 |
+
"loss": 2.2063,
|
| 1879 |
+
"step": 259
|
| 1880 |
+
},
|
| 1881 |
+
{
|
| 1882 |
+
"epoch": 0.8809523809523809,
|
| 1883 |
+
"eval_loss": 2.1820290088653564,
|
| 1884 |
+
"eval_runtime": 3.8534,
|
| 1885 |
+
"eval_samples_per_second": 14.273,
|
| 1886 |
+
"eval_steps_per_second": 1.038,
|
| 1887 |
+
"step": 259
|
| 1888 |
+
},
|
| 1889 |
+
{
|
| 1890 |
+
"epoch": 0.8843537414965986,
|
| 1891 |
+
"grad_norm": 8.243323927611506,
|
| 1892 |
+
"learning_rate": 1.2746167638957805e-06,
|
| 1893 |
+
"loss": 1.8474,
|
| 1894 |
+
"step": 260
|
| 1895 |
+
},
|
| 1896 |
+
{
|
| 1897 |
+
"epoch": 0.8877551020408163,
|
| 1898 |
+
"grad_norm": 28.909948439715215,
|
| 1899 |
+
"learning_rate": 1.2692085016204333e-06,
|
| 1900 |
+
"loss": 2.2626,
|
| 1901 |
+
"step": 261
|
| 1902 |
+
},
|
| 1903 |
+
{
|
| 1904 |
+
"epoch": 0.891156462585034,
|
| 1905 |
+
"grad_norm": 3.0722449835450116,
|
| 1906 |
+
"learning_rate": 1.2637917365099725e-06,
|
| 1907 |
+
"loss": 1.6435,
|
| 1908 |
+
"step": 262
|
| 1909 |
+
},
|
| 1910 |
+
{
|
| 1911 |
+
"epoch": 0.8945578231292517,
|
| 1912 |
+
"grad_norm": 29.871491992872432,
|
| 1913 |
+
"learning_rate": 1.2583666396506023e-06,
|
| 1914 |
+
"loss": 2.1498,
|
| 1915 |
+
"step": 263
|
| 1916 |
+
},
|
| 1917 |
+
{
|
| 1918 |
+
"epoch": 0.8979591836734694,
|
| 1919 |
+
"grad_norm": 2.977539901133042,
|
| 1920 |
+
"learning_rate": 1.2529333823916806e-06,
|
| 1921 |
+
"loss": 1.7024,
|
| 1922 |
+
"step": 264
|
| 1923 |
+
},
|
| 1924 |
+
{
|
| 1925 |
+
"epoch": 0.9013605442176871,
|
| 1926 |
+
"grad_norm": 16.47476152363902,
|
| 1927 |
+
"learning_rate": 1.2474921363403094e-06,
|
| 1928 |
+
"loss": 2.532,
|
| 1929 |
+
"step": 265
|
| 1930 |
+
},
|
| 1931 |
+
{
|
| 1932 |
+
"epoch": 0.9047619047619048,
|
| 1933 |
+
"grad_norm": 13.022051400004793,
|
| 1934 |
+
"learning_rate": 1.2420430733559124e-06,
|
| 1935 |
+
"loss": 1.8884,
|
| 1936 |
+
"step": 266
|
| 1937 |
+
},
|
| 1938 |
+
{
|
| 1939 |
+
"epoch": 0.9081632653061225,
|
| 1940 |
+
"grad_norm": 8.97804602434911,
|
| 1941 |
+
"learning_rate": 1.2365863655448075e-06,
|
| 1942 |
+
"loss": 1.7885,
|
| 1943 |
+
"step": 267
|
| 1944 |
+
},
|
| 1945 |
+
{
|
| 1946 |
+
"epoch": 0.9115646258503401,
|
| 1947 |
+
"grad_norm": 16.047174726202446,
|
| 1948 |
+
"learning_rate": 1.2311221852547721e-06,
|
| 1949 |
+
"loss": 2.3363,
|
| 1950 |
+
"step": 268
|
| 1951 |
+
},
|
| 1952 |
+
{
|
| 1953 |
+
"epoch": 0.9149659863945578,
|
| 1954 |
+
"grad_norm": 3.5763323384852765,
|
| 1955 |
+
"learning_rate": 1.2256507050695977e-06,
|
| 1956 |
+
"loss": 1.701,
|
| 1957 |
+
"step": 269
|
| 1958 |
+
},
|
| 1959 |
+
{
|
| 1960 |
+
"epoch": 0.9183673469387755,
|
| 1961 |
+
"grad_norm": 26.929796973835796,
|
| 1962 |
+
"learning_rate": 1.220172097803641e-06,
|
| 1963 |
+
"loss": 2.3601,
|
| 1964 |
+
"step": 270
|
| 1965 |
+
},
|
| 1966 |
+
{
|
| 1967 |
+
"epoch": 0.9217687074829932,
|
| 1968 |
+
"grad_norm": 22.50281840057178,
|
| 1969 |
+
"learning_rate": 1.2146865364963633e-06,
|
| 1970 |
+
"loss": 2.0693,
|
| 1971 |
+
"step": 271
|
| 1972 |
+
},
|
| 1973 |
+
{
|
| 1974 |
+
"epoch": 0.9251700680272109,
|
| 1975 |
+
"grad_norm": 11.62602578923058,
|
| 1976 |
+
"learning_rate": 1.2091941944068665e-06,
|
| 1977 |
+
"loss": 1.9123,
|
| 1978 |
+
"step": 272
|
| 1979 |
+
},
|
| 1980 |
+
{
|
| 1981 |
+
"epoch": 0.9285714285714286,
|
| 1982 |
+
"grad_norm": 16.841220035990798,
|
| 1983 |
+
"learning_rate": 1.2036952450084214e-06,
|
| 1984 |
+
"loss": 2.2163,
|
| 1985 |
+
"step": 273
|
| 1986 |
+
},
|
| 1987 |
+
{
|
| 1988 |
+
"epoch": 0.9319727891156463,
|
| 1989 |
+
"grad_norm": 18.055133543008612,
|
| 1990 |
+
"learning_rate": 1.1981898619829879e-06,
|
| 1991 |
+
"loss": 2.2485,
|
| 1992 |
+
"step": 274
|
| 1993 |
+
},
|
| 1994 |
+
{
|
| 1995 |
+
"epoch": 0.935374149659864,
|
| 1996 |
+
"grad_norm": 26.45820099458286,
|
| 1997 |
+
"learning_rate": 1.1926782192157273e-06,
|
| 1998 |
+
"loss": 2.1845,
|
| 1999 |
+
"step": 275
|
| 2000 |
+
},
|
| 2001 |
+
{
|
| 2002 |
+
"epoch": 0.9387755102040817,
|
| 2003 |
+
"grad_norm": 3.334955291200548,
|
| 2004 |
+
"learning_rate": 1.1871604907895148e-06,
|
| 2005 |
+
"loss": 1.7059,
|
| 2006 |
+
"step": 276
|
| 2007 |
+
},
|
| 2008 |
+
{
|
| 2009 |
+
"epoch": 0.9421768707482994,
|
| 2010 |
+
"grad_norm": 19.511242339983163,
|
| 2011 |
+
"learning_rate": 1.1816368509794364e-06,
|
| 2012 |
+
"loss": 2.3601,
|
| 2013 |
+
"step": 277
|
| 2014 |
+
},
|
| 2015 |
+
{
|
| 2016 |
+
"epoch": 0.9455782312925171,
|
| 2017 |
+
"grad_norm": 21.146925953072365,
|
| 2018 |
+
"learning_rate": 1.1761074742472882e-06,
|
| 2019 |
+
"loss": 1.9957,
|
| 2020 |
+
"step": 278
|
| 2021 |
+
},
|
| 2022 |
+
{
|
| 2023 |
+
"epoch": 0.9489795918367347,
|
| 2024 |
+
"grad_norm": 3.5535024021194452,
|
| 2025 |
+
"learning_rate": 1.1705725352360633e-06,
|
| 2026 |
+
"loss": 1.9249,
|
| 2027 |
+
"step": 279
|
| 2028 |
+
},
|
| 2029 |
+
{
|
| 2030 |
+
"epoch": 0.9523809523809523,
|
| 2031 |
+
"grad_norm": 13.348912305071467,
|
| 2032 |
+
"learning_rate": 1.165032208764438e-06,
|
| 2033 |
+
"loss": 2.0641,
|
| 2034 |
+
"step": 280
|
| 2035 |
+
},
|
| 2036 |
+
{
|
| 2037 |
+
"epoch": 0.95578231292517,
|
| 2038 |
+
"grad_norm": 12.61033318044152,
|
| 2039 |
+
"learning_rate": 1.1594866698212483e-06,
|
| 2040 |
+
"loss": 2.169,
|
| 2041 |
+
"step": 281
|
| 2042 |
+
},
|
| 2043 |
+
{
|
| 2044 |
+
"epoch": 0.9591836734693877,
|
| 2045 |
+
"grad_norm": 28.256325358544956,
|
| 2046 |
+
"learning_rate": 1.1539360935599644e-06,
|
| 2047 |
+
"loss": 2.0952,
|
| 2048 |
+
"step": 282
|
| 2049 |
+
},
|
| 2050 |
+
{
|
| 2051 |
+
"epoch": 0.9625850340136054,
|
| 2052 |
+
"grad_norm": 12.61302060729169,
|
| 2053 |
+
"learning_rate": 1.1483806552931582e-06,
|
| 2054 |
+
"loss": 1.9411,
|
| 2055 |
+
"step": 283
|
| 2056 |
+
},
|
| 2057 |
+
{
|
| 2058 |
+
"epoch": 0.9659863945578231,
|
| 2059 |
+
"grad_norm": 8.711391665501074,
|
| 2060 |
+
"learning_rate": 1.142820530486966e-06,
|
| 2061 |
+
"loss": 1.7633,
|
| 2062 |
+
"step": 284
|
| 2063 |
+
},
|
| 2064 |
+
{
|
| 2065 |
+
"epoch": 0.9693877551020408,
|
| 2066 |
+
"grad_norm": 35.95958496013491,
|
| 2067 |
+
"learning_rate": 1.1372558947555455e-06,
|
| 2068 |
+
"loss": 2.1904,
|
| 2069 |
+
"step": 285
|
| 2070 |
+
},
|
| 2071 |
+
{
|
| 2072 |
+
"epoch": 0.9727891156462585,
|
| 2073 |
+
"grad_norm": 3.429092657849847,
|
| 2074 |
+
"learning_rate": 1.131686923855531e-06,
|
| 2075 |
+
"loss": 1.8276,
|
| 2076 |
+
"step": 286
|
| 2077 |
+
},
|
| 2078 |
+
{
|
| 2079 |
+
"epoch": 0.9761904761904762,
|
| 2080 |
+
"grad_norm": 12.871658288368948,
|
| 2081 |
+
"learning_rate": 1.1261137936804811e-06,
|
| 2082 |
+
"loss": 2.0911,
|
| 2083 |
+
"step": 287
|
| 2084 |
+
},
|
| 2085 |
+
{
|
| 2086 |
+
"epoch": 0.9795918367346939,
|
| 2087 |
+
"grad_norm": 13.217001333800638,
|
| 2088 |
+
"learning_rate": 1.1205366802553228e-06,
|
| 2089 |
+
"loss": 1.9614,
|
| 2090 |
+
"step": 288
|
| 2091 |
+
},
|
| 2092 |
+
{
|
| 2093 |
+
"epoch": 0.9829931972789115,
|
| 2094 |
+
"grad_norm": 24.712172909538513,
|
| 2095 |
+
"learning_rate": 1.1149557597307934e-06,
|
| 2096 |
+
"loss": 2.0412,
|
| 2097 |
+
"step": 289
|
| 2098 |
+
},
|
| 2099 |
+
{
|
| 2100 |
+
"epoch": 0.9863945578231292,
|
| 2101 |
+
"grad_norm": 10.412944718560512,
|
| 2102 |
+
"learning_rate": 1.1093712083778746e-06,
|
| 2103 |
+
"loss": 1.7787,
|
| 2104 |
+
"step": 290
|
| 2105 |
+
},
|
| 2106 |
+
{
|
| 2107 |
+
"epoch": 0.9897959183673469,
|
| 2108 |
+
"grad_norm": 15.631851389191027,
|
| 2109 |
+
"learning_rate": 1.1037832025822265e-06,
|
| 2110 |
+
"loss": 2.3362,
|
| 2111 |
+
"step": 291
|
| 2112 |
+
},
|
| 2113 |
+
{
|
| 2114 |
+
"epoch": 0.9931972789115646,
|
| 2115 |
+
"grad_norm": 12.135256117907334,
|
| 2116 |
+
"learning_rate": 1.098191918838617e-06,
|
| 2117 |
+
"loss": 2.0212,
|
| 2118 |
+
"step": 292
|
| 2119 |
+
},
|
| 2120 |
+
{
|
| 2121 |
+
"epoch": 0.9965986394557823,
|
| 2122 |
+
"grad_norm": 13.057522322919077,
|
| 2123 |
+
"learning_rate": 1.0925975337453462e-06,
|
| 2124 |
+
"loss": 2.2842,
|
| 2125 |
+
"step": 293
|
| 2126 |
+
},
|
| 2127 |
+
{
|
| 2128 |
+
"epoch": 1.0,
|
| 2129 |
+
"grad_norm": 17.565324685523922,
|
| 2130 |
+
"learning_rate": 1.0870002239986686e-06,
|
| 2131 |
+
"loss": 2.5002,
|
| 2132 |
+
"step": 294
|
| 2133 |
+
}
|
| 2134 |
+
],
|
| 2135 |
+
"logging_steps": 1,
|
| 2136 |
+
"max_steps": 588,
|
| 2137 |
+
"num_input_tokens_seen": 0,
|
| 2138 |
+
"num_train_epochs": 2,
|
| 2139 |
+
"save_steps": 294,
|
| 2140 |
+
"stateful_callbacks": {
|
| 2141 |
+
"TrainerControl": {
|
| 2142 |
+
"args": {
|
| 2143 |
+
"should_epoch_stop": false,
|
| 2144 |
+
"should_evaluate": false,
|
| 2145 |
+
"should_log": false,
|
| 2146 |
+
"should_save": true,
|
| 2147 |
+
"should_training_stop": false
|
| 2148 |
+
},
|
| 2149 |
+
"attributes": {}
|
| 2150 |
+
}
|
| 2151 |
+
},
|
| 2152 |
+
"total_flos": 95887829237760.0,
|
| 2153 |
+
"train_batch_size": 2,
|
| 2154 |
+
"trial_name": null,
|
| 2155 |
+
"trial_params": null
|
| 2156 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22a4947fe41739721780866b30349cfbf1192d28b19f4eacf333006a2df11a8c
|
| 3 |
+
size 8376
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|