Upload folder using huggingface_hub
Browse files- README.md +48 -3
- config.json +79 -48
- tokenizer_config.json +11 -6
- vocab.json +56 -0
README.md
CHANGED
|
@@ -1,5 +1,50 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
Text-to-speech model from the Massively Multilingual Speech (MMS) project
|
| 4 |
|
| 5 |
-
This model was converted from the original MMS VITS model for use with 🤗 Transformers.
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: gn
|
| 3 |
+
tags:
|
| 4 |
+
- guarani
|
| 5 |
+
- tts
|
| 6 |
+
- speech
|
| 7 |
+
- tts-mms
|
| 8 |
+
license: mit
|
| 9 |
+
datasets:
|
| 10 |
+
- mozilla-foundation/common_voice_11_0
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Guarani TTS-MMS Model
|
| 14 |
+
|
| 15 |
+
This is a Text-to-Speech model for the Guarani language, based on the META Massive Multilingual Speech (MMS) architecture.
|
| 16 |
+
|
| 17 |
+
## Model Description
|
| 18 |
+
|
| 19 |
+
This model is designed for Guarani text-to-speech synthesis, utilizing the TTS-MMS architecture. It can generate natural-sounding speech from Guarani text input.
|
| 20 |
+
|
| 21 |
+
## Usage
|
| 22 |
+
python
|
| 23 |
+
from transformers import AutoProcessor, AutoModel
|
| 24 |
+
processor = AutoProcessor.from_pretrained("joselobenitezg/mms-grn-tts")
|
| 25 |
+
model = AutoModel.from_pretrained("joselobenitezg/mms-grn-tts")
|
| 26 |
+
Example usage
|
| 27 |
+
text = "Mba'éichapa"
|
| 28 |
+
inputs = processor(text=text, return_tensors="pt")
|
| 29 |
+
speech = model.generate(inputs)
|
| 30 |
+
|
| 31 |
+
# Training Data
|
| 32 |
+
|
| 33 |
+
The model was trained using:
|
| 34 |
+
- Guarani Common Voice dataset
|
| 35 |
+
- [Add other data sources if applicable]
|
| 36 |
+
|
| 37 |
+
## Model Architecture
|
| 38 |
+
|
| 39 |
+
The model uses the TTS-MMS architecture with the following key components:
|
| 40 |
+
- Encoder-decoder architecture
|
| 41 |
+
- Self-attention mechanisms
|
| 42 |
+
- [Add specific architectural details]
|
| 43 |
+
|
| 44 |
+
## Limitations
|
| 45 |
+
|
| 46 |
+
- [List any known limitations]
|
| 47 |
+
- [Add performance considerations]
|
| 48 |
+
|
| 49 |
|
|
|
|
| 50 |
|
|
|
config.json
CHANGED
|
@@ -1,52 +1,83 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
"
|
| 4 |
-
|
| 5 |
-
"model_type": "ttsmms",
|
| 6 |
-
"vocab_size": 53,
|
| 7 |
-
"spec_channels": 513,
|
| 8 |
-
"segment_size": 32,
|
| 9 |
-
"inter_channels": 192,
|
| 10 |
-
"hidden_channels": 192,
|
| 11 |
-
"filter_channels": 768,
|
| 12 |
-
"n_heads": 2,
|
| 13 |
-
"n_layers": 6,
|
| 14 |
-
"kernel_size": 3,
|
| 15 |
-
"p_dropout": 0.1,
|
| 16 |
-
"resblock": "1",
|
| 17 |
-
"resblock_kernel_sizes": [
|
| 18 |
-
3,
|
| 19 |
-
7,
|
| 20 |
-
11
|
| 21 |
-
],
|
| 22 |
-
"resblock_dilation_sizes": [
|
| 23 |
-
[
|
| 24 |
-
1,
|
| 25 |
-
3,
|
| 26 |
-
5
|
| 27 |
],
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
],
|
| 33 |
-
[
|
| 34 |
-
1,
|
| 35 |
3,
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"activation_dropout": 0.1,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"VitsModel"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
],
|
| 6 |
+
"attention_dropout": 0.1,
|
| 7 |
+
"depth_separable_channels": 2,
|
| 8 |
+
"depth_separable_num_layers": 3,
|
| 9 |
+
"duration_predictor_dropout": 0.5,
|
| 10 |
+
"duration_predictor_filter_channels": 256,
|
| 11 |
+
"duration_predictor_flow_bins": 10,
|
| 12 |
+
"duration_predictor_kernel_size": 3,
|
| 13 |
+
"duration_predictor_num_flows": 4,
|
| 14 |
+
"duration_predictor_tail_bound": 5.0,
|
| 15 |
+
"ffn_dim": 768,
|
| 16 |
+
"ffn_kernel_size": 3,
|
| 17 |
+
"flow_size": 192,
|
| 18 |
+
"hidden_act": "relu",
|
| 19 |
+
"hidden_dropout": 0.1,
|
| 20 |
+
"hidden_size": 192,
|
| 21 |
+
"initializer_range": 0.02,
|
| 22 |
+
"layer_norm_eps": 1e-05,
|
| 23 |
+
"layerdrop": 0.1,
|
| 24 |
+
"leaky_relu_slope": 0.1,
|
| 25 |
+
"model_type": "vits",
|
| 26 |
+
"noise_scale": 0.667,
|
| 27 |
+
"noise_scale_duration": 0.8,
|
| 28 |
+
"num_attention_heads": 2,
|
| 29 |
+
"num_hidden_layers": 6,
|
| 30 |
+
"num_speakers": 1,
|
| 31 |
+
"posterior_encoder_num_wavenet_layers": 16,
|
| 32 |
+
"prior_encoder_num_flows": 4,
|
| 33 |
+
"prior_encoder_num_wavenet_layers": 4,
|
| 34 |
+
"resblock_dilation_sizes": [
|
| 35 |
+
[
|
| 36 |
+
1,
|
| 37 |
+
3,
|
| 38 |
+
5
|
| 39 |
+
],
|
| 40 |
+
[
|
| 41 |
+
1,
|
| 42 |
+
3,
|
| 43 |
+
5
|
| 44 |
+
],
|
| 45 |
+
[
|
| 46 |
+
1,
|
| 47 |
+
3,
|
| 48 |
+
5
|
| 49 |
+
]
|
| 50 |
],
|
| 51 |
+
"resblock_kernel_sizes": [
|
|
|
|
| 52 |
3,
|
| 53 |
+
7,
|
| 54 |
+
11
|
| 55 |
+
],
|
| 56 |
+
"sampling_rate": 16000,
|
| 57 |
+
"speaker_embedding_size": 0,
|
| 58 |
+
"speaking_rate": 1.0,
|
| 59 |
+
"spectrogram_bins": 513,
|
| 60 |
+
"torch_dtype": "float32",
|
| 61 |
+
"transformers_version": "4.33.0.dev0",
|
| 62 |
+
"upsample_initial_channel": 512,
|
| 63 |
+
"upsample_kernel_sizes": [
|
| 64 |
+
16,
|
| 65 |
+
16,
|
| 66 |
+
4,
|
| 67 |
+
4
|
| 68 |
+
],
|
| 69 |
+
"upsample_rates": [
|
| 70 |
+
8,
|
| 71 |
+
8,
|
| 72 |
+
2,
|
| 73 |
+
2
|
| 74 |
+
],
|
| 75 |
+
"use_bias": true,
|
| 76 |
+
"use_stochastic_duration_prediction": true,
|
| 77 |
+
"vocab_size": 53,
|
| 78 |
+
"wavenet_dilation_rate": 1,
|
| 79 |
+
"wavenet_dropout": 0.0,
|
| 80 |
+
"wavenet_kernel_size": 5,
|
| 81 |
+
"window_size": 4
|
| 82 |
+
}
|
| 83 |
+
|
tokenizer_config.json
CHANGED
|
@@ -1,7 +1,12 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"add_blank": true,
|
| 3 |
+
"clean_up_tokenization_spaces": true,
|
| 4 |
+
"is_uroman": false,
|
| 5 |
+
"language": "grn",
|
| 6 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 7 |
+
"normalize": true,
|
| 8 |
+
"pad_token": "3",
|
| 9 |
+
"phonemize": false,
|
| 10 |
+
"tokenizer_class": "VitsTokenizer",
|
| 11 |
+
"unk_token": "<unk>"
|
| 12 |
+
}
|
vocab.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
" ": 11,
|
| 3 |
+
"'": 46,
|
| 4 |
+
"-": 37,
|
| 5 |
+
"0": 24,
|
| 6 |
+
"1": 23,
|
| 7 |
+
"2": 42,
|
| 8 |
+
"3": 0,
|
| 9 |
+
"4": 21,
|
| 10 |
+
"5": 41,
|
| 11 |
+
"6": 8,
|
| 12 |
+
"7": 16,
|
| 13 |
+
"8": 9,
|
| 14 |
+
"9": 26,
|
| 15 |
+
"_": 35,
|
| 16 |
+
"a": 10,
|
| 17 |
+
"b": 22,
|
| 18 |
+
"c": 29,
|
| 19 |
+
"d": 15,
|
| 20 |
+
"e": 38,
|
| 21 |
+
"f": 27,
|
| 22 |
+
"g": 45,
|
| 23 |
+
"h": 6,
|
| 24 |
+
"i": 43,
|
| 25 |
+
"j": 30,
|
| 26 |
+
"k": 7,
|
| 27 |
+
"l": 3,
|
| 28 |
+
"m": 2,
|
| 29 |
+
"n": 18,
|
| 30 |
+
"o": 50,
|
| 31 |
+
"p": 17,
|
| 32 |
+
"q": 19,
|
| 33 |
+
"r": 36,
|
| 34 |
+
"s": 52,
|
| 35 |
+
"t": 40,
|
| 36 |
+
"u": 39,
|
| 37 |
+
"v": 13,
|
| 38 |
+
"x": 51,
|
| 39 |
+
"y": 31,
|
| 40 |
+
"z": 47,
|
| 41 |
+
"á": 44,
|
| 42 |
+
"ã": 20,
|
| 43 |
+
"é": 34,
|
| 44 |
+
"í": 33,
|
| 45 |
+
"ñ": 1,
|
| 46 |
+
"ó": 32,
|
| 47 |
+
"õ": 48,
|
| 48 |
+
"ú": 25,
|
| 49 |
+
"ý": 14,
|
| 50 |
+
"ĩ": 49,
|
| 51 |
+
"ũ": 5,
|
| 52 |
+
"ẽ": 12,
|
| 53 |
+
"ỹ": 4,
|
| 54 |
+
"—": 28
|
| 55 |
+
}
|
| 56 |
+
|