--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy base_model: bert-base-cased model-index: - name: bert-base-cased_conll2003-sm-first-ner results: - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - type: precision value: 0.944354983002326 name: Precision - type: recall value: 0.9470662120940248 name: Recall - type: f1 value: 0.9457086543630173 name: F1 - type: accuracy value: 0.9860775887443339 name: Accuracy --- # bert-base-cased_conll2003-sm-first-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0783 - Precision: 0.9444 - Recall: 0.9471 - F1: 0.9457 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0912 | 1.0 | 7021 | 0.0962 | 0.9191 | 0.9106 | 0.9148 | 0.9789 | | 0.0302 | 2.0 | 14042 | 0.0748 | 0.9406 | 0.9413 | 0.9409 | 0.9847 | | 0.0221 | 3.0 | 21063 | 0.0783 | 0.9444 | 0.9471 | 0.9457 | 0.9861 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1