jkswin commited on
Commit
ece4151
·
1 Parent(s): 2c8dc9b

[DOCS] Usage example in readme

Browse files
Files changed (1) hide show
  1. README.md +31 -6
README.md CHANGED
@@ -1,17 +1,24 @@
1
  ---
2
  language:
3
  - en
4
- pipeline_tag: fill-mask
 
 
 
 
 
 
5
  widget:
6
- - text: "Marshmallon should be [MASK]. It allows a 1 card FTK."
7
  example_title: Banlist Speculation
8
- - text: "Once per [MASK]: You can toss a coin and call it."
9
  example_title: Time Wizard
10
- - text: "You [MASK] so hard on turn 2."
11
  example_title: Misplay
 
12
  ---
13
 
14
- # YGOMiniLM
15
  ![time_wiz](https://ms.yugipedia.com//thumb/7/76/TimeWizard-MRD-EN-UR-UE-25thAnniversaryEdition.png/300px-TimeWizard-MRD-EN-UR-UE-25thAnniversaryEdition.png)
16
  [ImgSource](https://yugipedia.com/wiki/Time_Wizard)
17
 
@@ -19,6 +26,7 @@ This is a sentence-transformers/paraphrase-MiniLM-L3-v2 model that has undergone
19
 
20
  Its intended use is to create sentence embeddings for fast vector search in the domain of YuGiOh discourse.
21
 
 
22
  The training data was split into two parts:
23
  1) A private collection of data collected from YouTube Comments:
24
 
@@ -29,4 +37,21 @@ The training data was split into two parts:
29
  |MSTTV |5340|
30
  |mkohl40|5224|
31
 
32
- 2) The Full Database of YuGiOh cards accessed via the [YGOProDeck API](https://ygoprodeck.com/api-guide/) as of 17/05/2023. The `name`, `type`, `race` and `desc` fields were concatenated and delimited by `\t` to create the training examples.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  language:
3
  - en
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - feature-extraction
8
+ - sentence-similarity
9
+ - transformers
10
+ - domain-specific
11
  widget:
12
+ - text: Marshmallon should be [MASK]. It allows a 1 card FTK.
13
  example_title: Banlist Speculation
14
+ - text: 'Once per [MASK]: You can toss a coin and call it.'
15
  example_title: Time Wizard
16
+ - text: You [MASK] so hard on turn 2.
17
  example_title: Misplay
18
+ library_name: sentence-transformers
19
  ---
20
 
21
+ # **YGOMiniLM**
22
  ![time_wiz](https://ms.yugipedia.com//thumb/7/76/TimeWizard-MRD-EN-UR-UE-25thAnniversaryEdition.png/300px-TimeWizard-MRD-EN-UR-UE-25thAnniversaryEdition.png)
23
  [ImgSource](https://yugipedia.com/wiki/Time_Wizard)
24
 
 
26
 
27
  Its intended use is to create sentence embeddings for fast vector search in the domain of YuGiOh discourse.
28
 
29
+ ## **Training Data**
30
  The training data was split into two parts:
31
  1) A private collection of data collected from YouTube Comments:
32
 
 
37
  |MSTTV |5340|
38
  |mkohl40|5224|
39
 
40
+ 2) The Full Database of YuGiOh cards accessed via the [YGOProDeck API](https://ygoprodeck.com/api-guide/) as of 17/05/2023. The `name`, `type`, `race` and `desc` fields were concatenated and delimited by `\t` to create the training examples.
41
+
42
+ ## **Usage**
43
+ ```
44
+ pip install sentence-transformers
45
+ ```
46
+ Then to get embeddings you simply run the following:
47
+ ```
48
+ from sentence_transformers import SentenceTransformer
49
+ sentences = ["FLIP: Target 1 monster on the field; destroy that target.",
50
+ "Union Carrier needs to go.",
51
+ "Scythe lock is healthy for the game"
52
+ ]
53
+
54
+ model = SentenceTransformer("jkswin/YGO_MiniLM")
55
+ embeddings = model.encode(sentences)
56
+ print(embeddings)
57
+ ```