Update README.md
Browse files
README.md
CHANGED
|
@@ -40,6 +40,51 @@ Summary of features:
|
|
| 40 |
| Pooling Strategy | Last-token pooling |
|
| 41 |
| Attention Mechanism | FlashAttention2 |
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
## Training & Evaluation
|
| 44 |
|
| 45 |
Please refer to our technical report of jina-embeddings-c1 for training details and benchmarks.
|
|
|
|
| 40 |
| Pooling Strategy | Last-token pooling |
|
| 41 |
| Attention Mechanism | FlashAttention2 |
|
| 42 |
|
| 43 |
+
## Usage
|
| 44 |
+
|
| 45 |
+
<details>
|
| 46 |
+
<summary>Requirements</a></summary>
|
| 47 |
+
|
| 48 |
+
The following Python packages are required:
|
| 49 |
+
|
| 50 |
+
- `transformers>=4.53.0`
|
| 51 |
+
- `torch>=2.7.1`
|
| 52 |
+
|
| 53 |
+
### Optional / Recommended
|
| 54 |
+
- **flash-attention**: Installing [flash-attention](https://github.com/Dao-AILab/flash-attention) is recommended for improved inference speed and efficiency, but not mandatory.
|
| 55 |
+
</details>
|
| 56 |
+
|
| 57 |
+
<details>
|
| 58 |
+
<summary>via <a href="https://huggingface.co/docs/transformers/en/index">transformers</a></summary>
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
# !pip install transformers>=4.53.0 torch>=2.7.1
|
| 62 |
+
|
| 63 |
+
from transformers import AutoModel
|
| 64 |
+
import torch
|
| 65 |
+
|
| 66 |
+
# Initialize the model
|
| 67 |
+
model = AutoModel.from_pretrained("jinaai/jina-embeddings-c1-0.5B", trust_remote_code=True)
|
| 68 |
+
model.to("cuda")
|
| 69 |
+
|
| 70 |
+
# Configure truncate_dim, max_length, batch_size in the encode function if needed
|
| 71 |
+
|
| 72 |
+
# Encode query
|
| 73 |
+
query_embeddings = model.encode(
|
| 74 |
+
["print hello world in python"],
|
| 75 |
+
task="nl2code",
|
| 76 |
+
prompt_name="query",
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# Encode passage
|
| 80 |
+
passage_embeddings = model.encode(
|
| 81 |
+
["print('Hello World!')"],
|
| 82 |
+
task="nl2code",
|
| 83 |
+
prompt_name="passage",
|
| 84 |
+
)
|
| 85 |
+
```
|
| 86 |
+
</details>
|
| 87 |
+
|
| 88 |
## Training & Evaluation
|
| 89 |
|
| 90 |
Please refer to our technical report of jina-embeddings-c1 for training details and benchmarks.
|