jacksonhack's picture
pushing model
608f422 verified
"""
*Filename :dqn.py
*Description :
*Time :2024/11/13 18:34:33
*Author :jackson
*Version :1.0
"""
import os
import random
import time
from dataclasses import dataclass
import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import tyro
from stable_baselines3.common.buffers import ReplayBuffer
from torch.utils.tensorboard import SummaryWriter
@dataclass
class Args:
exp_name: str = os.path.basename(__file__)[: -len(".py")]
"""the name of this experiment"""
seed: int = 1
"""seed of the experiment"""
torch_deterministic: bool = True
"""if toggled, `torch.backends.cudnn.deterministic=False`"""
cuda: bool = True
"""if toggled, cuda will be enabled by default"""
track: bool = False
"""if toggled, this experiment will be tracked with Weights and Biases"""
wandb_project_name: str = "cleanRL"
"""the wandb's project name"""
wandb_entity: str = None
"""the entity (team) of wandb's project"""
capture_video: bool = False
"""whether to capture videos of the agent performances (check out `videos` folder)"""
save_model: bool = False
"""whether to save model into the `runs/{run_name}` folder"""
upload_model: bool = False
"""whether to upload the saved model to huggingface"""
hf_entity: str = "jacksonhack"
"""the user or org name of the model repository from the Hugging Face Hub"""
# Algorithm specific arguments
env_id: str = "CartPole-v1"
"""the id of the environment"""
total_timesteps: int = 500000
"""total timesteps of the experiments"""
learning_rate: float = 2.5e-4
"""the learning rate of the optimizer"""
num_envs: int = 1
"""the number of parallel game environments"""
buffer_size: int = 10000
"""the replay memory buffer size"""
gamma: float = 0.99
"""the discount factor gamma"""
tau: float = 1.0
"""the target network update rate"""
target_network_frequency: int = 500
"""the timesteps it takes to update the target network"""
batch_size: int = 128
"""the batch size of sample from the reply memory"""
start_e: float = 1
"""the starting epsilon for exploration"""
end_e: float = 0.05
"""the ending epsilon for exploration"""
exploration_fraction: float = 0.5
"""the fraction of `total-timesteps` it takes from start-e to go end-e"""
learning_starts: int = 10000
"""timestep to start learning"""
train_frequency: int = 10
"""the frequency of training"""
def make_env(env_id, seed, idx, capture_video, run_name):
def thunk():
if capture_video and idx == 0:
env = gym.make(env_id, render_mode="rgb_array")
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
else:
env = gym.make(env_id)
env = gym.wrappers.RecordEpisodeStatistics(env)
env.action_space.seed(seed)
return env
return thunk
class QNetwork(nn.Module):
def __init__(self, env):
super().__init__()
self.network = nn.Sequential(
nn.Linear(np.array(env.single_observation_space.shape).prod(), 120),
nn.ReLU(),
nn.Linear(120, 84),
nn.ReLU(),
nn.Linear(84, env.single_action_space.n),
)
def forward(self, x):
return self.network(x)
def linear_schedule(start_e: float, end_e: float, duration: int, t: int):
slope = (end_e - start_e) / duration
return max(slope * t + start_e, end_e)
if __name__ == "__main__":
import stable_baselines3 as sb3
if sb3.__version__ < "2.0":
raise ValueError(
"""Ongoing migration: run the following command to install the new dependencies:
poetry run pip install "stable_baselines3==2.0.0a1"
"""
)
args = tyro.cli(Args)
assert args.num_envs == 1, "vectorized envs are not supported at the moment"
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
if args.track:
import wandb
wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=run_name,
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# env setup
envs = gym.vector.SyncVectorEnv(
[make_env(args.env_id, args.seed + i, i, args.capture_video, run_name) for i in range(args.num_envs)]
)
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
q_network = QNetwork(envs).to(device)
optimizer = optim.Adam(q_network.parameters(), lr=args.learning_rate)
target_network = QNetwork(envs).to(device)
target_network.load_state_dict(q_network.state_dict())
rb = ReplayBuffer(
args.buffer_size,
envs.single_observation_space,
envs.single_action_space,
device,
handle_timeout_termination=False,
)
start_time = time.time()
obs, _ = envs.reset(seed=args.seed)
for global_step in range(args.total_timesteps):
# ALGO LOGIC: put action logic here
epsilon = linear_schedule(
args.start_e, args.end_e, args.exploration_fraction * args.total_timesteps, global_step
)
if random.random() < epsilon:
actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
else:
q_values = q_network(torch.Tensor(obs).to(device))
actions = torch.argmax(q_values, dim=1).cpu().numpy()
# TRY NOT TO MODIFY: execute the game and log data.
next_obs, rewards, terminations, truncations, infos = envs.step(actions)
# TRY NOT TO MODIFY: record rewards for plotting purposes
if "final_info" in infos:
for info in infos["final_info"]:
if info and "episode" in info:
print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
# TRY NOT TO MODIFY: save data to reply buffer; handle `final_observation`
# 向量化环境会自己重置环境
real_next_obs = next_obs.copy()
for idx, trunc in enumerate(truncations):
if trunc:
# 将截断状态变为真实状态,确保算法获得更准确的信息
real_next_obs[idx] = infos["final_observation"][idx]
rb.add(obs, real_next_obs, actions, rewards, terminations, infos)
# TRY NOT TO MODIFY: CRUCIAL step easy to overlook
obs = next_obs
# ALGO LOGIC: training.
if global_step > args.learning_starts:
if global_step % args.train_frequency == 0:
data = rb.sample(args.batch_size)
with torch.no_grad():
target_max, _ = target_network(data.next_observations).max(dim=1) # tensor.max() 返回最大值及其索引
td_target = data.rewards.flatten() + args.gamma * target_max * (1 - data.dones.flatten())
old_val = q_network(data.observations).gather(1, data.actions).squeeze()
loss = F.mse_loss(td_target, old_val)
if global_step % 100 == 0:
writer.add_scalar("losses/td_loss", loss, global_step)
writer.add_scalar("losses/q_values", old_val.mean().item(), global_step)
# SPS: Step per second
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
# optimize the model
optimizer.zero_grad()
loss.backward()
optimizer.step()
# update target network
if global_step % args.target_network_frequency == 0:
for target_network_param, q_network_param in zip(target_network.parameters(), q_network.parameters()):
target_network_param.data.copy_(
args.tau * q_network_param.data + (1.0 - args.tau) * target_network_param.data
)
if args.save_model:
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
torch.save(q_network.state_dict(), model_path)
print(f"model saved to {model_path}")
from utils.evals.dqn_eval import evaluate
episodic_returns = evaluate(
model_path,
make_env,
args.env_id,
eval_episodes=10,
run_name=f"{run_name}-eval",
Model=QNetwork,
device=device,
epsilon=0.05,
)
for idx, episodic_return in enumerate(episodic_returns):
writer.add_scalar("eval/episodic_return", episodic_return, idx)
if args.upload_model:
from utils.huggingface import push_to_hub
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
push_to_hub(args, episodic_returns, repo_id, "DQN", f"runs/{run_name}", f"videos/{run_name}-eval")