Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,1026 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: llama3.2
|
| 3 |
+
language:
|
| 4 |
+
- zh
|
| 5 |
+
- en
|
| 6 |
+
- it
|
| 7 |
+
- de
|
| 8 |
+
- fr
|
| 9 |
+
- ja
|
| 10 |
+
- ko
|
| 11 |
+
base_model: lianghsun/Llama-3.2-Taiwan-3B-Instruct
|
| 12 |
+
datasets:
|
| 13 |
+
- lianghsun/tw-emergency-medicine-bench
|
| 14 |
+
- lianghsun/tw-legal-nlp
|
| 15 |
+
- lianghsun/tw-legal-synthetic-qa
|
| 16 |
+
- lianghsun/tw-law-article-qa
|
| 17 |
+
- lianghsun/tw-judgment-qa
|
| 18 |
+
- lianghsun/tw-judgment-gist-chat
|
| 19 |
+
- lianghsun/tw-bar-examination-2020-chat
|
| 20 |
+
- lianghsun/tw-structured-law-article
|
| 21 |
+
- lianghsun/tw-judgment-gist-chat
|
| 22 |
+
- lianghsun/tw-contract-review-chat
|
| 23 |
+
- lianghsun/reasoning-base-20k-chat
|
| 24 |
+
- lianghsun/vulnerability-mitigation-qa-zh_tw
|
| 25 |
+
- lianghsun/tw-instruct
|
| 26 |
+
- rombodawg/Everything_Instruct_Multilingual
|
| 27 |
+
- xzuyn/manythings-translations-alpaca
|
| 28 |
+
- neural-bridge/rag-dataset-12000
|
| 29 |
+
- minyichen/glaive_toolcall_zh_tw
|
| 30 |
+
pipeline_tag: text-generation
|
| 31 |
+
library_name: transformers
|
| 32 |
+
tags:
|
| 33 |
+
- Taiwan
|
| 34 |
+
- ROC
|
| 35 |
+
- zh-tw
|
| 36 |
+
- instruct
|
| 37 |
+
- chat
|
| 38 |
+
- llama3.2
|
| 39 |
+
- SLM
|
| 40 |
+
- llama-cpp
|
| 41 |
+
- gguf-my-repo
|
| 42 |
+
widget:
|
| 43 |
+
- text: 中華民國憲法第一條
|
| 44 |
+
metrics:
|
| 45 |
+
- accuracy
|
| 46 |
+
model-index:
|
| 47 |
+
- name: Llama-3.2-Taiwan-3B-Instruct
|
| 48 |
+
results:
|
| 49 |
+
- task:
|
| 50 |
+
type: text-generation
|
| 51 |
+
name: Single Choice Question
|
| 52 |
+
dataset:
|
| 53 |
+
name: tw-legal-benchmark-v1
|
| 54 |
+
type: lianghsun/tw-legal-benchmark-v1
|
| 55 |
+
metrics:
|
| 56 |
+
- type: accuracy
|
| 57 |
+
value: 31.1
|
| 58 |
+
name: single choice
|
| 59 |
+
- task:
|
| 60 |
+
type: text-generation
|
| 61 |
+
name: Single Choice Question
|
| 62 |
+
dataset:
|
| 63 |
+
name: (Society) Formosa Taiwan Knowledge Bench
|
| 64 |
+
type: lianghsun/Formosa-bench
|
| 65 |
+
config: society
|
| 66 |
+
split: test
|
| 67 |
+
revision: v2024.11.27
|
| 68 |
+
metrics:
|
| 69 |
+
- type: accuracy
|
| 70 |
+
value: 60.42
|
| 71 |
+
name: single choice
|
| 72 |
+
- task:
|
| 73 |
+
type: text-generation
|
| 74 |
+
name: Single Choice Question
|
| 75 |
+
dataset:
|
| 76 |
+
name: (Governmnt) Formosa Taiwan Knowledge Bench
|
| 77 |
+
type: lianghsun/Formosa-bench
|
| 78 |
+
config: governmnt
|
| 79 |
+
split: test
|
| 80 |
+
revision: v2024.11.27
|
| 81 |
+
metrics:
|
| 82 |
+
- type: accuracy
|
| 83 |
+
value: 44.25
|
| 84 |
+
name: single choice
|
| 85 |
+
- task:
|
| 86 |
+
type: text-generation
|
| 87 |
+
name: Single Choice Question
|
| 88 |
+
dataset:
|
| 89 |
+
name: (Geography) Formosa Taiwan Knowledge Bench
|
| 90 |
+
type: lianghsun/Formosa-bench
|
| 91 |
+
config: geography
|
| 92 |
+
split: test
|
| 93 |
+
revision: v2024.11.27
|
| 94 |
+
metrics:
|
| 95 |
+
- type: accuracy
|
| 96 |
+
value: 47.54
|
| 97 |
+
name: single choice
|
| 98 |
+
- task:
|
| 99 |
+
type: text-generation
|
| 100 |
+
name: Single Choice Question
|
| 101 |
+
dataset:
|
| 102 |
+
name: (History) Formosa Taiwan Knowledge Bench
|
| 103 |
+
type: lianghsun/Formosa-bench
|
| 104 |
+
config: history
|
| 105 |
+
split: test
|
| 106 |
+
revision: v2024.11.27
|
| 107 |
+
metrics:
|
| 108 |
+
- type: accuracy
|
| 109 |
+
value: 60
|
| 110 |
+
name: single choice
|
| 111 |
+
- task:
|
| 112 |
+
type: question-answering
|
| 113 |
+
name: Single Choice Question
|
| 114 |
+
dataset:
|
| 115 |
+
name: (geography_of_taiwan) tmmlu++
|
| 116 |
+
type: ikala/tmmluplus
|
| 117 |
+
config: geography_of_taiwan
|
| 118 |
+
split: test
|
| 119 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 120 |
+
metrics:
|
| 121 |
+
- type: accuracy
|
| 122 |
+
value: 36.2
|
| 123 |
+
name: single choice
|
| 124 |
+
- task:
|
| 125 |
+
type: question-answering
|
| 126 |
+
name: Single Choice Question
|
| 127 |
+
dataset:
|
| 128 |
+
name: (dentistry) tmmlu++
|
| 129 |
+
type: ikala/tmmluplus
|
| 130 |
+
config: dentistry
|
| 131 |
+
split: test
|
| 132 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 133 |
+
metrics:
|
| 134 |
+
- type: accuracy
|
| 135 |
+
value: 33.83
|
| 136 |
+
name: single choice
|
| 137 |
+
- task:
|
| 138 |
+
type: question-answering
|
| 139 |
+
name: Single Choice Question
|
| 140 |
+
dataset:
|
| 141 |
+
name: (technical) tmmlu++
|
| 142 |
+
type: ikala/tmmluplus
|
| 143 |
+
config: technical
|
| 144 |
+
split: test
|
| 145 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 146 |
+
metrics:
|
| 147 |
+
- type: accuracy
|
| 148 |
+
value: 35.07
|
| 149 |
+
name: single choice
|
| 150 |
+
- task:
|
| 151 |
+
type: question-answering
|
| 152 |
+
name: Single Choice Question
|
| 153 |
+
dataset:
|
| 154 |
+
name: (statistics_and_machine_learning) tmmlu++
|
| 155 |
+
type: ikala/tmmluplus
|
| 156 |
+
config: statistics_and_machine_learning
|
| 157 |
+
split: test
|
| 158 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 159 |
+
metrics:
|
| 160 |
+
- type: accuracy
|
| 161 |
+
value: 28.57
|
| 162 |
+
name: single choice
|
| 163 |
+
- task:
|
| 164 |
+
type: question-answering
|
| 165 |
+
name: Single Choice Question
|
| 166 |
+
dataset:
|
| 167 |
+
name: (clinical_psychology) tmmlu++
|
| 168 |
+
type: ikala/tmmluplus
|
| 169 |
+
config: clinical_psychology
|
| 170 |
+
split: test
|
| 171 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 172 |
+
metrics:
|
| 173 |
+
- type: accuracy
|
| 174 |
+
value: 29.6
|
| 175 |
+
name: single choice
|
| 176 |
+
- task:
|
| 177 |
+
type: question-answering
|
| 178 |
+
name: Single Choice Question
|
| 179 |
+
dataset:
|
| 180 |
+
name: (tve_design) tmmlu++
|
| 181 |
+
type: ikala/tmmluplus
|
| 182 |
+
config: tve_design
|
| 183 |
+
split: test
|
| 184 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 185 |
+
metrics:
|
| 186 |
+
- type: accuracy
|
| 187 |
+
value: 38.54
|
| 188 |
+
name: single choice
|
| 189 |
+
- task:
|
| 190 |
+
type: question-answering
|
| 191 |
+
name: Single Choice Question
|
| 192 |
+
dataset:
|
| 193 |
+
name: (three_principles_of_people) tmmlu++
|
| 194 |
+
type: ikala/tmmluplus
|
| 195 |
+
config: three_principles_of_people
|
| 196 |
+
split: test
|
| 197 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 198 |
+
metrics:
|
| 199 |
+
- type: accuracy
|
| 200 |
+
value: 48.2
|
| 201 |
+
name: single choice
|
| 202 |
+
- task:
|
| 203 |
+
type: question-answering
|
| 204 |
+
name: Single Choice Question
|
| 205 |
+
dataset:
|
| 206 |
+
name: (introduction_to_law) tmmlu++
|
| 207 |
+
type: ikala/tmmluplus
|
| 208 |
+
config: introduction_to_law
|
| 209 |
+
split: test
|
| 210 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 211 |
+
metrics:
|
| 212 |
+
- type: accuracy
|
| 213 |
+
value: 29.96
|
| 214 |
+
name: single choice
|
| 215 |
+
- task:
|
| 216 |
+
type: question-answering
|
| 217 |
+
name: Single Choice Question
|
| 218 |
+
dataset:
|
| 219 |
+
name: (linear_algebra) tmmlu++
|
| 220 |
+
type: ikala/tmmluplus
|
| 221 |
+
config: linear_algebra
|
| 222 |
+
split: test
|
| 223 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 224 |
+
metrics:
|
| 225 |
+
- type: accuracy
|
| 226 |
+
value: 21.43
|
| 227 |
+
name: single choice
|
| 228 |
+
- task:
|
| 229 |
+
type: question-answering
|
| 230 |
+
name: Single Choice Question
|
| 231 |
+
dataset:
|
| 232 |
+
name: (agriculture) tmmlu++
|
| 233 |
+
type: ikala/tmmluplus
|
| 234 |
+
config: agriculture
|
| 235 |
+
split: test
|
| 236 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 237 |
+
metrics:
|
| 238 |
+
- type: accuracy
|
| 239 |
+
value: 24.5
|
| 240 |
+
name: single choice
|
| 241 |
+
- task:
|
| 242 |
+
type: question-answering
|
| 243 |
+
name: Single Choice Question
|
| 244 |
+
dataset:
|
| 245 |
+
name: (jce_humanities) tmmlu++
|
| 246 |
+
type: ikala/tmmluplus
|
| 247 |
+
config: jce_humanities
|
| 248 |
+
split: test
|
| 249 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 250 |
+
metrics:
|
| 251 |
+
- type: accuracy
|
| 252 |
+
value: 38.89
|
| 253 |
+
name: single choice
|
| 254 |
+
- task:
|
| 255 |
+
type: question-answering
|
| 256 |
+
name: Single Choice Question
|
| 257 |
+
dataset:
|
| 258 |
+
name: (music) tmmlu++
|
| 259 |
+
type: ikala/tmmluplus
|
| 260 |
+
config: music
|
| 261 |
+
split: test
|
| 262 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 263 |
+
metrics:
|
| 264 |
+
- type: accuracy
|
| 265 |
+
value: 25.9
|
| 266 |
+
name: single choice
|
| 267 |
+
- task:
|
| 268 |
+
type: question-answering
|
| 269 |
+
name: Single Choice Question
|
| 270 |
+
dataset:
|
| 271 |
+
name: (secondary_physics) tmmlu++
|
| 272 |
+
type: ikala/tmmluplus
|
| 273 |
+
config: secondary_physics
|
| 274 |
+
split: test
|
| 275 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 276 |
+
metrics:
|
| 277 |
+
- type: accuracy
|
| 278 |
+
value: 33.04
|
| 279 |
+
name: single choice
|
| 280 |
+
- task:
|
| 281 |
+
type: question-answering
|
| 282 |
+
name: Single Choice Question
|
| 283 |
+
dataset:
|
| 284 |
+
name: (physics) tmmlu++
|
| 285 |
+
type: ikala/tmmluplus
|
| 286 |
+
config: physics
|
| 287 |
+
split: test
|
| 288 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 289 |
+
metrics:
|
| 290 |
+
- type: accuracy
|
| 291 |
+
value: 27.84
|
| 292 |
+
name: single choice
|
| 293 |
+
- task:
|
| 294 |
+
type: question-answering
|
| 295 |
+
name: Single Choice Question
|
| 296 |
+
dataset:
|
| 297 |
+
name: (advance_chemistry) tmmlu++
|
| 298 |
+
type: ikala/tmmluplus
|
| 299 |
+
config: advance_chemistry
|
| 300 |
+
split: test
|
| 301 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 302 |
+
metrics:
|
| 303 |
+
- type: accuracy
|
| 304 |
+
value: 27.64
|
| 305 |
+
name: single choice
|
| 306 |
+
- task:
|
| 307 |
+
type: question-answering
|
| 308 |
+
name: Single Choice Question
|
| 309 |
+
dataset:
|
| 310 |
+
name: (junior_science_exam) tmmlu++
|
| 311 |
+
type: ikala/tmmluplus
|
| 312 |
+
config: junior_science_exam
|
| 313 |
+
split: test
|
| 314 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 315 |
+
metrics:
|
| 316 |
+
- type: accuracy
|
| 317 |
+
value: 30.05
|
| 318 |
+
name: single choice
|
| 319 |
+
- task:
|
| 320 |
+
type: question-answering
|
| 321 |
+
name: Single Choice Question
|
| 322 |
+
dataset:
|
| 323 |
+
name: (veterinary_pathology) tmmlu++
|
| 324 |
+
type: ikala/tmmluplus
|
| 325 |
+
config: veterinary_pathology
|
| 326 |
+
split: test
|
| 327 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 328 |
+
metrics:
|
| 329 |
+
- type: accuracy
|
| 330 |
+
value: 25.09
|
| 331 |
+
name: single choice
|
| 332 |
+
- task:
|
| 333 |
+
type: question-answering
|
| 334 |
+
name: Single Choice Question
|
| 335 |
+
dataset:
|
| 336 |
+
name: (financial_analysis) tmmlu++
|
| 337 |
+
type: ikala/tmmluplus
|
| 338 |
+
config: financial_analysis
|
| 339 |
+
split: test
|
| 340 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 341 |
+
metrics:
|
| 342 |
+
- type: accuracy
|
| 343 |
+
value: 25.13
|
| 344 |
+
name: single choice
|
| 345 |
+
- task:
|
| 346 |
+
type: question-answering
|
| 347 |
+
name: Single Choice Question
|
| 348 |
+
dataset:
|
| 349 |
+
name: (national_protection) tmmlu++
|
| 350 |
+
type: ikala/tmmluplus
|
| 351 |
+
config: national_protection
|
| 352 |
+
split: test
|
| 353 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 354 |
+
metrics:
|
| 355 |
+
- type: accuracy
|
| 356 |
+
value: 42.65
|
| 357 |
+
name: single choice
|
| 358 |
+
- task:
|
| 359 |
+
type: question-answering
|
| 360 |
+
name: Single Choice Question
|
| 361 |
+
dataset:
|
| 362 |
+
name: (macroeconomics) tmmlu++
|
| 363 |
+
type: ikala/tmmluplus
|
| 364 |
+
config: macroeconomics
|
| 365 |
+
split: test
|
| 366 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 367 |
+
metrics:
|
| 368 |
+
- type: accuracy
|
| 369 |
+
value: 26.76
|
| 370 |
+
name: single choice
|
| 371 |
+
- task:
|
| 372 |
+
type: question-answering
|
| 373 |
+
name: Single Choice Question
|
| 374 |
+
dataset:
|
| 375 |
+
name: (politic_science) tmmlu++
|
| 376 |
+
type: ikala/tmmluplus
|
| 377 |
+
config: politic_science
|
| 378 |
+
split: test
|
| 379 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 380 |
+
metrics:
|
| 381 |
+
- type: accuracy
|
| 382 |
+
value: 27.44
|
| 383 |
+
name: single choice
|
| 384 |
+
- task:
|
| 385 |
+
type: question-answering
|
| 386 |
+
name: Single Choice Question
|
| 387 |
+
dataset:
|
| 388 |
+
name: (ttqav2) tmmlu++
|
| 389 |
+
type: ikala/tmmluplus
|
| 390 |
+
config: ttqav2
|
| 391 |
+
split: test
|
| 392 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 393 |
+
metrics:
|
| 394 |
+
- type: accuracy
|
| 395 |
+
value: 61.06
|
| 396 |
+
name: single choice
|
| 397 |
+
- task:
|
| 398 |
+
type: question-answering
|
| 399 |
+
name: Single Choice Question
|
| 400 |
+
dataset:
|
| 401 |
+
name: (junior_chinese_exam) tmmlu++
|
| 402 |
+
type: ikala/tmmluplus
|
| 403 |
+
config: junior_chinese_exam
|
| 404 |
+
split: test
|
| 405 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 406 |
+
metrics:
|
| 407 |
+
- type: accuracy
|
| 408 |
+
value: 30.86
|
| 409 |
+
name: single choice
|
| 410 |
+
- task:
|
| 411 |
+
type: question-answering
|
| 412 |
+
name: Single Choice Question
|
| 413 |
+
dataset:
|
| 414 |
+
name: (traditional_chinese_medicine_clinical_medicine) tmmlu++
|
| 415 |
+
type: ikala/tmmluplus
|
| 416 |
+
config: traditional_chinese_medicine_clinical_medicine
|
| 417 |
+
split: test
|
| 418 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 419 |
+
metrics:
|
| 420 |
+
- type: accuracy
|
| 421 |
+
value: 25.9
|
| 422 |
+
name: single choice
|
| 423 |
+
- task:
|
| 424 |
+
type: question-answering
|
| 425 |
+
name: Single Choice Question
|
| 426 |
+
dataset:
|
| 427 |
+
name: (junior_math_exam) tmmlu++
|
| 428 |
+
type: ikala/tmmluplus
|
| 429 |
+
config: junior_math_exam
|
| 430 |
+
split: test
|
| 431 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 432 |
+
metrics:
|
| 433 |
+
- type: accuracy
|
| 434 |
+
value: 21.71
|
| 435 |
+
name: single choice
|
| 436 |
+
- task:
|
| 437 |
+
type: question-answering
|
| 438 |
+
name: Single Choice Question
|
| 439 |
+
dataset:
|
| 440 |
+
name: (auditing) tmmlu++
|
| 441 |
+
type: ikala/tmmluplus
|
| 442 |
+
config: auditing
|
| 443 |
+
split: test
|
| 444 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 445 |
+
metrics:
|
| 446 |
+
- type: accuracy
|
| 447 |
+
value: 21.82
|
| 448 |
+
name: single choice
|
| 449 |
+
- task:
|
| 450 |
+
type: question-answering
|
| 451 |
+
name: Single Choice Question
|
| 452 |
+
dataset:
|
| 453 |
+
name: (anti_money_laundering) tmmlu++
|
| 454 |
+
type: ikala/tmmluplus
|
| 455 |
+
config: anti_money_laundering
|
| 456 |
+
split: test
|
| 457 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 458 |
+
metrics:
|
| 459 |
+
- type: accuracy
|
| 460 |
+
value: 37.31
|
| 461 |
+
name: single choice
|
| 462 |
+
- task:
|
| 463 |
+
type: question-answering
|
| 464 |
+
name: Single Choice Question
|
| 465 |
+
dataset:
|
| 466 |
+
name: (pharmacology) tmmlu++
|
| 467 |
+
type: ikala/tmmluplus
|
| 468 |
+
config: pharmacology
|
| 469 |
+
split: test
|
| 470 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 471 |
+
metrics:
|
| 472 |
+
- type: accuracy
|
| 473 |
+
value: 30.68
|
| 474 |
+
name: single choice
|
| 475 |
+
- task:
|
| 476 |
+
type: question-answering
|
| 477 |
+
name: Single Choice Question
|
| 478 |
+
dataset:
|
| 479 |
+
name: (trust_practice) tmmlu++
|
| 480 |
+
type: ikala/tmmluplus
|
| 481 |
+
config: trust_practice
|
| 482 |
+
split: test
|
| 483 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 484 |
+
metrics:
|
| 485 |
+
- type: accuracy
|
| 486 |
+
value: 28.18
|
| 487 |
+
name: single choice
|
| 488 |
+
- task:
|
| 489 |
+
type: question-answering
|
| 490 |
+
name: Single Choice Question
|
| 491 |
+
dataset:
|
| 492 |
+
name: (tve_mathematics) tmmlu++
|
| 493 |
+
type: ikala/tmmluplus
|
| 494 |
+
config: tve_mathematics
|
| 495 |
+
split: test
|
| 496 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 497 |
+
metrics:
|
| 498 |
+
- type: accuracy
|
| 499 |
+
value: 18.67
|
| 500 |
+
name: single choice
|
| 501 |
+
- task:
|
| 502 |
+
type: question-answering
|
| 503 |
+
name: Single Choice Question
|
| 504 |
+
dataset:
|
| 505 |
+
name: (human_behavior) tmmlu++
|
| 506 |
+
type: ikala/tmmluplus
|
| 507 |
+
config: human_behavior
|
| 508 |
+
split: test
|
| 509 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 510 |
+
metrics:
|
| 511 |
+
- type: accuracy
|
| 512 |
+
value: 32.04
|
| 513 |
+
name: single choice
|
| 514 |
+
- task:
|
| 515 |
+
type: question-answering
|
| 516 |
+
name: Single Choice Question
|
| 517 |
+
dataset:
|
| 518 |
+
name: (pharmacy) tmmlu++
|
| 519 |
+
type: ikala/tmmluplus
|
| 520 |
+
config: pharmacy
|
| 521 |
+
split: test
|
| 522 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 523 |
+
metrics:
|
| 524 |
+
- type: accuracy
|
| 525 |
+
value: 22.76
|
| 526 |
+
name: single choice
|
| 527 |
+
- task:
|
| 528 |
+
type: question-answering
|
| 529 |
+
name: Single Choice Question
|
| 530 |
+
dataset:
|
| 531 |
+
name: (tve_chinese_language) tmmlu++
|
| 532 |
+
type: ikala/tmmluplus
|
| 533 |
+
config: tve_chinese_language
|
| 534 |
+
split: test
|
| 535 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 536 |
+
metrics:
|
| 537 |
+
- type: accuracy
|
| 538 |
+
value: 36.65
|
| 539 |
+
name: single choice
|
| 540 |
+
- task:
|
| 541 |
+
type: question-answering
|
| 542 |
+
name: Single Choice Question
|
| 543 |
+
dataset:
|
| 544 |
+
name: (optometry) tmmlu++
|
| 545 |
+
type: ikala/tmmluplus
|
| 546 |
+
config: optometry
|
| 547 |
+
split: test
|
| 548 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 549 |
+
metrics:
|
| 550 |
+
- type: accuracy
|
| 551 |
+
value: 25.11
|
| 552 |
+
name: single choice
|
| 553 |
+
- task:
|
| 554 |
+
type: question-answering
|
| 555 |
+
name: Single Choice Question
|
| 556 |
+
dataset:
|
| 557 |
+
name: (physical_education) tmmlu++
|
| 558 |
+
type: ikala/tmmluplus
|
| 559 |
+
config: physical_education
|
| 560 |
+
split: test
|
| 561 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 562 |
+
metrics:
|
| 563 |
+
- type: accuracy
|
| 564 |
+
value: 30.73
|
| 565 |
+
name: single choice
|
| 566 |
+
- task:
|
| 567 |
+
type: question-answering
|
| 568 |
+
name: Single Choice Question
|
| 569 |
+
dataset:
|
| 570 |
+
name: (organic_chemistry) tmmlu++
|
| 571 |
+
type: ikala/tmmluplus
|
| 572 |
+
config: organic_chemistry
|
| 573 |
+
split: test
|
| 574 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 575 |
+
metrics:
|
| 576 |
+
- type: accuracy
|
| 577 |
+
value: 35.78
|
| 578 |
+
name: single choice
|
| 579 |
+
- task:
|
| 580 |
+
type: question-answering
|
| 581 |
+
name: Single Choice Question
|
| 582 |
+
dataset:
|
| 583 |
+
name: (tve_natural_sciences) tmmlu++
|
| 584 |
+
type: ikala/tmmluplus
|
| 585 |
+
config: tve_natural_sciences
|
| 586 |
+
split: test
|
| 587 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 588 |
+
metrics:
|
| 589 |
+
- type: accuracy
|
| 590 |
+
value: 33.73
|
| 591 |
+
name: single choice
|
| 592 |
+
- task:
|
| 593 |
+
type: question-answering
|
| 594 |
+
name: Single Choice Question
|
| 595 |
+
dataset:
|
| 596 |
+
name: (education) tmmlu++
|
| 597 |
+
type: ikala/tmmluplus
|
| 598 |
+
config: education
|
| 599 |
+
split: test
|
| 600 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 601 |
+
metrics:
|
| 602 |
+
- type: accuracy
|
| 603 |
+
value: 37.9
|
| 604 |
+
name: single choice
|
| 605 |
+
- task:
|
| 606 |
+
type: question-answering
|
| 607 |
+
name: Single Choice Question
|
| 608 |
+
dataset:
|
| 609 |
+
name: (mechanical) tmmlu++
|
| 610 |
+
type: ikala/tmmluplus
|
| 611 |
+
config: mechanical
|
| 612 |
+
split: test
|
| 613 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 614 |
+
metrics:
|
| 615 |
+
- type: accuracy
|
| 616 |
+
value: 42.37
|
| 617 |
+
name: single choice
|
| 618 |
+
- task:
|
| 619 |
+
type: question-answering
|
| 620 |
+
name: Single Choice Question
|
| 621 |
+
dataset:
|
| 622 |
+
name: (taiwanese_hokkien) tmmlu++
|
| 623 |
+
type: ikala/tmmluplus
|
| 624 |
+
config: taiwanese_hokkien
|
| 625 |
+
split: test
|
| 626 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 627 |
+
metrics:
|
| 628 |
+
- type: accuracy
|
| 629 |
+
value: 14.73
|
| 630 |
+
name: single choice
|
| 631 |
+
- task:
|
| 632 |
+
type: question-answering
|
| 633 |
+
name: Single Choice Question
|
| 634 |
+
dataset:
|
| 635 |
+
name: (nautical_science) tmmlu++
|
| 636 |
+
type: ikala/tmmluplus
|
| 637 |
+
config: nautical_science
|
| 638 |
+
split: test
|
| 639 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 640 |
+
metrics:
|
| 641 |
+
- type: accuracy
|
| 642 |
+
value: 30.49
|
| 643 |
+
name: single choice
|
| 644 |
+
- task:
|
| 645 |
+
type: question-answering
|
| 646 |
+
name: Single Choice Question
|
| 647 |
+
dataset:
|
| 648 |
+
name: (business_management) tmmlu++
|
| 649 |
+
type: ikala/tmmluplus
|
| 650 |
+
config: business_management
|
| 651 |
+
split: test
|
| 652 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 653 |
+
metrics:
|
| 654 |
+
- type: accuracy
|
| 655 |
+
value: 39.57
|
| 656 |
+
name: single choice
|
| 657 |
+
- task:
|
| 658 |
+
type: question-answering
|
| 659 |
+
name: Single Choice Question
|
| 660 |
+
dataset:
|
| 661 |
+
name: (logic_reasoning) tmmlu++
|
| 662 |
+
type: ikala/tmmluplus
|
| 663 |
+
config: logic_reasoning
|
| 664 |
+
split: test
|
| 665 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 666 |
+
metrics:
|
| 667 |
+
- type: accuracy
|
| 668 |
+
value: 27.34
|
| 669 |
+
name: single choice
|
| 670 |
+
- task:
|
| 671 |
+
type: question-answering
|
| 672 |
+
name: Single Choice Question
|
| 673 |
+
dataset:
|
| 674 |
+
name: (marketing_management) tmmlu++
|
| 675 |
+
type: ikala/tmmluplus
|
| 676 |
+
config: marketing_management
|
| 677 |
+
split: test
|
| 678 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 679 |
+
metrics:
|
| 680 |
+
- type: accuracy
|
| 681 |
+
value: 39.78
|
| 682 |
+
name: single choice
|
| 683 |
+
- task:
|
| 684 |
+
type: question-answering
|
| 685 |
+
name: Single Choice Question
|
| 686 |
+
dataset:
|
| 687 |
+
name: (economics) tmmlu++
|
| 688 |
+
type: ikala/tmmluplus
|
| 689 |
+
config: economics
|
| 690 |
+
split: test
|
| 691 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 692 |
+
metrics:
|
| 693 |
+
- type: accuracy
|
| 694 |
+
value: 25.95
|
| 695 |
+
name: single choice
|
| 696 |
+
- task:
|
| 697 |
+
type: question-answering
|
| 698 |
+
name: Single Choice Question
|
| 699 |
+
dataset:
|
| 700 |
+
name: (basic_medical_science) tmmlu++
|
| 701 |
+
type: ikala/tmmluplus
|
| 702 |
+
config: basic_medical_science
|
| 703 |
+
split: test
|
| 704 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 705 |
+
metrics:
|
| 706 |
+
- type: accuracy
|
| 707 |
+
value: 28.41
|
| 708 |
+
name: single choice
|
| 709 |
+
- task:
|
| 710 |
+
type: question-answering
|
| 711 |
+
name: Single Choice Question
|
| 712 |
+
dataset:
|
| 713 |
+
name: (occupational_therapy_for_psychological_disorders) tmmlu++
|
| 714 |
+
type: ikala/tmmluplus
|
| 715 |
+
config: occupational_therapy_for_psychological_disorders
|
| 716 |
+
split: test
|
| 717 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 718 |
+
metrics:
|
| 719 |
+
- type: accuracy
|
| 720 |
+
value: 35.73
|
| 721 |
+
name: single choice
|
| 722 |
+
- task:
|
| 723 |
+
type: question-answering
|
| 724 |
+
name: Single Choice Question
|
| 725 |
+
dataset:
|
| 726 |
+
name: (general_principles_of_law) tmmlu++
|
| 727 |
+
type: ikala/tmmluplus
|
| 728 |
+
config: general_principles_of_law
|
| 729 |
+
split: test
|
| 730 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 731 |
+
metrics:
|
| 732 |
+
- type: accuracy
|
| 733 |
+
value: 31.13
|
| 734 |
+
name: single choice
|
| 735 |
+
- task:
|
| 736 |
+
type: question-answering
|
| 737 |
+
name: Single Choice Question
|
| 738 |
+
dataset:
|
| 739 |
+
name: (junior_chemistry) tmmlu++
|
| 740 |
+
type: ikala/tmmluplus
|
| 741 |
+
config: junior_chemistry
|
| 742 |
+
split: test
|
| 743 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 744 |
+
metrics:
|
| 745 |
+
- type: accuracy
|
| 746 |
+
value: 24.88
|
| 747 |
+
name: single choice
|
| 748 |
+
- task:
|
| 749 |
+
type: question-answering
|
| 750 |
+
name: Single Choice Question
|
| 751 |
+
dataset:
|
| 752 |
+
name: (veterinary_pharmacology) tmmlu++
|
| 753 |
+
type: ikala/tmmluplus
|
| 754 |
+
config: veterinary_pharmacology
|
| 755 |
+
split: test
|
| 756 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 757 |
+
metrics:
|
| 758 |
+
- type: accuracy
|
| 759 |
+
value: 36.3
|
| 760 |
+
name: single choice
|
| 761 |
+
- task:
|
| 762 |
+
type: question-answering
|
| 763 |
+
name: Single Choice Question
|
| 764 |
+
dataset:
|
| 765 |
+
name: (educational_psychology) tmmlu++
|
| 766 |
+
type: ikala/tmmluplus
|
| 767 |
+
config: educational_psychology
|
| 768 |
+
split: test
|
| 769 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 770 |
+
metrics:
|
| 771 |
+
- type: accuracy
|
| 772 |
+
value: 33.52
|
| 773 |
+
name: single choice
|
| 774 |
+
- task:
|
| 775 |
+
type: question-answering
|
| 776 |
+
name: Single Choice Question
|
| 777 |
+
dataset:
|
| 778 |
+
name: (finance_banking) tmmlu++
|
| 779 |
+
type: ikala/tmmluplus
|
| 780 |
+
config: finance_banking
|
| 781 |
+
split: test
|
| 782 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 783 |
+
metrics:
|
| 784 |
+
- type: accuracy
|
| 785 |
+
value: 32.59
|
| 786 |
+
name: single choice
|
| 787 |
+
- task:
|
| 788 |
+
type: question-answering
|
| 789 |
+
name: Single Choice Question
|
| 790 |
+
dataset:
|
| 791 |
+
name: (official_document_management) tmmlu++
|
| 792 |
+
type: ikala/tmmluplus
|
| 793 |
+
config: official_document_management
|
| 794 |
+
split: test
|
| 795 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 796 |
+
metrics:
|
| 797 |
+
- type: accuracy
|
| 798 |
+
value: 32.43
|
| 799 |
+
name: single choice
|
| 800 |
+
- task:
|
| 801 |
+
type: question-answering
|
| 802 |
+
name: Single Choice Question
|
| 803 |
+
dataset:
|
| 804 |
+
name: (fire_science) tmmlu++
|
| 805 |
+
type: ikala/tmmluplus
|
| 806 |
+
config: fire_science
|
| 807 |
+
split: test
|
| 808 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 809 |
+
metrics:
|
| 810 |
+
- type: accuracy
|
| 811 |
+
value: 30.65
|
| 812 |
+
name: single choice
|
| 813 |
+
- task:
|
| 814 |
+
type: question-answering
|
| 815 |
+
name: Single Choice Question
|
| 816 |
+
dataset:
|
| 817 |
+
name: (junior_social_studies) tmmlu++
|
| 818 |
+
type: ikala/tmmluplus
|
| 819 |
+
config: junior_social_studies
|
| 820 |
+
split: test
|
| 821 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 822 |
+
metrics:
|
| 823 |
+
- type: accuracy
|
| 824 |
+
value: 47.62
|
| 825 |
+
name: single choice
|
| 826 |
+
- task:
|
| 827 |
+
type: question-answering
|
| 828 |
+
name: Single Choice Question
|
| 829 |
+
dataset:
|
| 830 |
+
name: (accounting) tmmlu++
|
| 831 |
+
type: ikala/tmmluplus
|
| 832 |
+
config: accounting
|
| 833 |
+
split: test
|
| 834 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 835 |
+
metrics:
|
| 836 |
+
- type: accuracy
|
| 837 |
+
value: 20.94
|
| 838 |
+
name: single choice
|
| 839 |
+
- task:
|
| 840 |
+
type: question-answering
|
| 841 |
+
name: Single Choice Question
|
| 842 |
+
dataset:
|
| 843 |
+
name: (engineering_math) tmmlu++
|
| 844 |
+
type: ikala/tmmluplus
|
| 845 |
+
config: engineering_math
|
| 846 |
+
split: test
|
| 847 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 848 |
+
metrics:
|
| 849 |
+
- type: accuracy
|
| 850 |
+
value: 27.18
|
| 851 |
+
name: single choice
|
| 852 |
+
- task:
|
| 853 |
+
type: question-answering
|
| 854 |
+
name: Single Choice Question
|
| 855 |
+
dataset:
|
| 856 |
+
name: (education_(profession_level)) tmmlu++
|
| 857 |
+
type: ikala/tmmluplus
|
| 858 |
+
config: education_(profession_level)
|
| 859 |
+
split: test
|
| 860 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 861 |
+
metrics:
|
| 862 |
+
- type: accuracy
|
| 863 |
+
value: 24.07
|
| 864 |
+
name: single choice
|
| 865 |
+
- task:
|
| 866 |
+
type: question-answering
|
| 867 |
+
name: Single Choice Question
|
| 868 |
+
dataset:
|
| 869 |
+
name: (chinese_language_and_literature) tmmlu++
|
| 870 |
+
type: ikala/tmmluplus
|
| 871 |
+
config: chinese_language_and_literature
|
| 872 |
+
split: test
|
| 873 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 874 |
+
metrics:
|
| 875 |
+
- type: accuracy
|
| 876 |
+
value: 27.64
|
| 877 |
+
name: single choice
|
| 878 |
+
- task:
|
| 879 |
+
type: question-answering
|
| 880 |
+
name: Single Choice Question
|
| 881 |
+
dataset:
|
| 882 |
+
name: (management_accounting) tmmlu++
|
| 883 |
+
type: ikala/tmmluplus
|
| 884 |
+
config: management_accounting
|
| 885 |
+
split: test
|
| 886 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 887 |
+
metrics:
|
| 888 |
+
- type: accuracy
|
| 889 |
+
value: 24.19
|
| 890 |
+
name: single choice
|
| 891 |
+
- task:
|
| 892 |
+
type: question-answering
|
| 893 |
+
name: Single Choice Question
|
| 894 |
+
dataset:
|
| 895 |
+
name: (culinary_skills) tmmlu++
|
| 896 |
+
type: ikala/tmmluplus
|
| 897 |
+
config: culinary_skills
|
| 898 |
+
split: test
|
| 899 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 900 |
+
metrics:
|
| 901 |
+
- type: accuracy
|
| 902 |
+
value: 39.38
|
| 903 |
+
name: single choice
|
| 904 |
+
- task:
|
| 905 |
+
type: question-answering
|
| 906 |
+
name: Single Choice Question
|
| 907 |
+
dataset:
|
| 908 |
+
name: (administrative_law) tmmlu++
|
| 909 |
+
type: ikala/tmmluplus
|
| 910 |
+
config: administrative_law
|
| 911 |
+
split: test
|
| 912 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 913 |
+
metrics:
|
| 914 |
+
- type: accuracy
|
| 915 |
+
value: 25.71
|
| 916 |
+
name: single choice
|
| 917 |
+
- task:
|
| 918 |
+
type: question-answering
|
| 919 |
+
name: Single Choice Question
|
| 920 |
+
dataset:
|
| 921 |
+
name: (insurance_studies) tmmlu++
|
| 922 |
+
type: ikala/tmmluplus
|
| 923 |
+
config: insurance_studies
|
| 924 |
+
split: test
|
| 925 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 926 |
+
metrics:
|
| 927 |
+
- type: accuracy
|
| 928 |
+
value: 33.42
|
| 929 |
+
name: single choice
|
| 930 |
+
- task:
|
| 931 |
+
type: question-answering
|
| 932 |
+
name: Single Choice Question
|
| 933 |
+
dataset:
|
| 934 |
+
name: (real_estate) tmmlu++
|
| 935 |
+
type: ikala/tmmluplus
|
| 936 |
+
config: real_estate
|
| 937 |
+
split: test
|
| 938 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 939 |
+
metrics:
|
| 940 |
+
- type: accuracy
|
| 941 |
+
value: 22.83
|
| 942 |
+
name: single choice
|
| 943 |
+
- task:
|
| 944 |
+
type: question-answering
|
| 945 |
+
name: Single Choice Question
|
| 946 |
+
dataset:
|
| 947 |
+
name: (computer_science) tmmlu++
|
| 948 |
+
type: ikala/tmmluplus
|
| 949 |
+
config: computer_science
|
| 950 |
+
split: test
|
| 951 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 952 |
+
metrics:
|
| 953 |
+
- type: accuracy
|
| 954 |
+
value: 31.61
|
| 955 |
+
name: single choice
|
| 956 |
+
- task:
|
| 957 |
+
type: question-answering
|
| 958 |
+
name: Single Choice Question
|
| 959 |
+
dataset:
|
| 960 |
+
name: (taxation) tmmlu++
|
| 961 |
+
type: ikala/tmmluplus
|
| 962 |
+
config: taxation
|
| 963 |
+
split: test
|
| 964 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 965 |
+
metrics:
|
| 966 |
+
- type: accuracy
|
| 967 |
+
value: 27.47
|
| 968 |
+
name: single choice
|
| 969 |
+
- task:
|
| 970 |
+
type: question-answering
|
| 971 |
+
name: Single Choice Question
|
| 972 |
+
dataset:
|
| 973 |
+
name: (trade) tmmlu++
|
| 974 |
+
type: ikala/tmmluplus
|
| 975 |
+
config: trade
|
| 976 |
+
split: test
|
| 977 |
+
revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
|
| 978 |
+
metrics:
|
| 979 |
+
- type: accuracy
|
| 980 |
+
value: 20.32
|
| 981 |
+
name: single choice
|
| 982 |
+
---
|
| 983 |
+
|
| 984 |
+
# itlwas/Llama-3.2-Taiwan-3B-Instruct-Q4_K_M-GGUF
|
| 985 |
+
This model was converted to GGUF format from [`lianghsun/Llama-3.2-Taiwan-3B-Instruct`](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
| 986 |
+
Refer to the [original model card](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-3B-Instruct) for more details on the model.
|
| 987 |
+
|
| 988 |
+
## Use with llama.cpp
|
| 989 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
| 990 |
+
|
| 991 |
+
```bash
|
| 992 |
+
brew install llama.cpp
|
| 993 |
+
|
| 994 |
+
```
|
| 995 |
+
Invoke the llama.cpp server or the CLI.
|
| 996 |
+
|
| 997 |
+
### CLI:
|
| 998 |
+
```bash
|
| 999 |
+
llama-cli --hf-repo itlwas/Llama-3.2-Taiwan-3B-Instruct-Q4_K_M-GGUF --hf-file llama-3.2-taiwan-3b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
|
| 1000 |
+
```
|
| 1001 |
+
|
| 1002 |
+
### Server:
|
| 1003 |
+
```bash
|
| 1004 |
+
llama-server --hf-repo itlwas/Llama-3.2-Taiwan-3B-Instruct-Q4_K_M-GGUF --hf-file llama-3.2-taiwan-3b-instruct-q4_k_m.gguf -c 2048
|
| 1005 |
+
```
|
| 1006 |
+
|
| 1007 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
| 1008 |
+
|
| 1009 |
+
Step 1: Clone llama.cpp from GitHub.
|
| 1010 |
+
```
|
| 1011 |
+
git clone https://github.com/ggerganov/llama.cpp
|
| 1012 |
+
```
|
| 1013 |
+
|
| 1014 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
| 1015 |
+
```
|
| 1016 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
| 1017 |
+
```
|
| 1018 |
+
|
| 1019 |
+
Step 3: Run inference through the main binary.
|
| 1020 |
+
```
|
| 1021 |
+
./llama-cli --hf-repo itlwas/Llama-3.2-Taiwan-3B-Instruct-Q4_K_M-GGUF --hf-file llama-3.2-taiwan-3b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
|
| 1022 |
+
```
|
| 1023 |
+
or
|
| 1024 |
+
```
|
| 1025 |
+
./llama-server --hf-repo itlwas/Llama-3.2-Taiwan-3B-Instruct-Q4_K_M-GGUF --hf-file llama-3.2-taiwan-3b-instruct-q4_k_m.gguf -c 2048
|
| 1026 |
+
```
|