--- base_model: unsloth/Qwen2.5-14B-Instruct language: - de - fr - it license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - qwen2 - trl datasets: - ipst/slds metrics: - bertscore - bleu - rouge --- # Model Card for Qwen2.5-7B-Instruct-SLDS ## Model Summary This model is a **Qwen2.5-7B-Instruct fine-tuned on the Swiss Landmark Decisions Summarization (SLDS) dataset**. SLDS is a multilingual dataset of **20,000 Swiss Federal Supreme Court decisions** (1954–2024), each paired with **headnotes in German, French, and Italian**, resulting in ~60,000 decision–headnote pairs. The model is optimized for **legal abstractive summarization** and is capable of producing **concise, legally structured headnotes**. It can be used for both **monolingual** and **cross-lingual summarization** tasks. This model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) --- ## Intended Use - **Primary Task**: Judicial summarization (decision → headnote generation). - **Languages**: German (`de`), French (`fr`), Italian (`it`). - **Scenarios**: - Monolingual summarization: e.g., German decision → German headnote. - Cross-lingual summarization: e.g., German decision → French headnote. - Legal research support: assisting in retrieval and navigation of court decisions. **Not intended for**: - Replacing human legal expertise. - Serving as an authoritative legal source. - Automated legal advice or decision-making. --- ## Training Data - **Dataset**: [Swiss Landmark Decisions Summarization (SLDS)](https://huggingface.co/datasets/ipst/slds). - **Size**: ~20K decisions, ~60K decision–headnote pairs. - **Splits**: Train (1954–2021), Validation (2022), Test (2023–2024). - **Source**: [Swiss Federal Supreme Court](https://www.bger.ch). --- ## Training Procedure - **Base Models**: - Qwen2.5 family (0.5B–14B) - Llama 3.2 (3B) - Phi-3.5-mini - **Fine-tuning Objective**: Conditional generation (decision → headnote). - **Evaluation Metrics**: - Lexical: ROUGE-1/2/L, BLEU, BERTScore. - Domain-specific: LLM-as-a-Judge framework (DeepSeek V3) assessing five rubrics: accuracy, completeness, clarity, legal citations, and considerations. --- ## Model Performance On the SLDS test set (2023–2024): | Model | Setting | BERTScore ↑ | BLEU ↑ | ROUGE-1 ↑ | ROUGE-2 ↑ | ROUGE-L ↑ | JUDGE ↑ | |:--- |:--- |:--- |:--- |:--- |:--- |:--- |:--- | | [Phi-3.5-mini](https://huggingface.co/ipst/Phi-3.5-mini-instruct-SLDS) | fine-tuned | 11.24 ± 3.82 | 34.84 ± 0.41 | 31.20 ± 2.08 | 14.11 ± 1.27 | 20.96 ± 1.35 | 15.25 ± 2.32 | | [Llama 3.2B](https://huggingface.co/ipst/Llama-3.2-3B-Instruct-SLDS) | fine-tuned | 15.20 ± 4.40 | 21.89 ± 0.42 | 31.89 ± 2.34 | 14.87 ± 1.61 | 22.49 ± 1.60 | 18.47 ± 2.99 | | [Qwen2.5 0.5B](https://huggingface.co/ipst/Qwen2.5-0.5B-Instruct-SLDS) | fine-tuned | -1.37 ± 3.85 | 32.20 ± 0.35 | 23.87 ± 1.68 | 9.46 ± 0.94 | 17.37 ± 1.09 | 5.80 ± 1.26 | | [Qwen2.5 1.5B](https://huggingface.co/ipst/Qwen2.5-1.5B-Instruct-SLDS) | fine-tuned | 19.81 ± 2.72 | 36.79 ± 0.34 | 33.03 ± 1.73 | 14.14 ± 1.08 | 22.67 ± 1.13 | 15.92 ± 2.27 | | [Qwen2.5 3B](https://huggingface.co/ipst/Qwen2.5-3B-Instruct-SLDS) | fine-tuned | 23.23 ± 2.80 | 38.42 ± 0.34 | 35.18 ± 1.79 | 15.66 ± 1.23 | 24.10 ± 1.17 | 20.31 ± 2.66 | | [Qwen2.5 7B](https://huggingface.co/ipst/Qwen2.5-7B-Instruct-SLDS) | fine-tuned | 29.59 ± 1.97 | 41.40 ± 0.34 | 39.24 ± 1.59 | 18.26 ± 1.25 | 26.44 ± 1.15 | 28.37 ± 3.07 | | [Qwen2.5 14B](https://huggingface.co/ipst/Qwen2.5-14B-Instruct-SLDS) | fine-tuned | **32.48 ± 1.98** | **41.80 ± 0.37** | 40.04 ± 1.74 | **19.99 ± 1.41** | **28.00 ± 1.28** | 31.38 ± 3.19 | | GPT-4o | one-shot | 30.44 ± 1.74 | 31.89 ± 0.25 | **42.12 ± 1.79** | 18.92 ± 1.22 | 25.92 ± 1.05 | 39.70 ± 2.66 | | Claude 3.5 Sonnet | one-shot | 5.53 ± 2.00 | 21.88 ± 0.25 | 41.86 ± 1.64 | 19.23 ± 1.19 | 27.67 ± 1.20 | 41.25 ± 2.90 | | DeepSeek-R1 | one-shot | 20.28 ± 1.45 | 22.37 ± 0.18 | 38.30 ± 1.82 | 15.97 ± 0.85 | 21.03 ± 0.84 | **42.28 ± 2.21** | | o3-mini | one-shot | 14.18 ± 1.31 | 20.55 ± 0.17 | 34.77 ± 1.43 | 11.92 ± 0.69 | 18.21 ± 0.67 | 34.82 ± 2.41 | - **Lexical metrics**: Fine-tuned models outperform in overlap-based scores. - **LLM-judge scores**: Larger proprietary and reasoning models outperform in legal precision. --- ## Limitations - **Language imbalance**: German decisions dominate, while Italian remains underrepresented. - **Biases**: Headnotes reflect judicial style and conventions, not neutral summaries. - **Evaluation mismatch**: ROUGE and BLEU may not fully capture legal accuracy. - **Overfitting risk**: Models may overfit to formulaic headnote structures. - **Cross-lingual difficulty**: Some models struggle with non-monolingual headnote generation. --- ## Ethical Considerations - **Sensitive information**: All data is anonymized by the Swiss Federal Supreme Court before publication. - **Legal risk**: Generated headnotes must not be used as official legal advice. - **Fair use**: Ensure attribution when reusing outputs. --- ## How to Cite If you use this model, please cite the dataset paper: ```bibtex @article{rolshoven2025slds, title={Unlocking Legal Knowledge: A Multilingual Dataset for Judicial Summarization in Switzerland}, author={Luca Rolshoven and Vishvaksenan Rasiah and Srinanda Brügger Bose and Sarah Hostettler and Lara Burkhalter and Matthias Stürmer and Joel Niklaus}, year={2025}, eprint={2410.13456}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2410.13456}, } ```