Upload run_evaluate_loco.py
Browse files
scripts/evaluate/run_evaluate_loco.py
ADDED
|
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import torch
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
|
| 9 |
+
from sentence_transformers import SentenceTransformer
|
| 10 |
+
import tqdm
|
| 11 |
+
import numpy as np
|
| 12 |
+
import faiss
|
| 13 |
+
from sklearn.metrics import ndcg_score
|
| 14 |
+
from os.path import join
|
| 15 |
+
from sklearn.preprocessing import normalize
|
| 16 |
+
from transformers import AutoTokenizer, AutoModel
|
| 17 |
+
|
| 18 |
+
faiss.omp_set_num_threads(16)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def find_topk_by_vecs(source_vecs: np.ndarray, target_vecs: np.ndarray, topk: int):
|
| 22 |
+
if topk > len(target_vecs):
|
| 23 |
+
topk = len(target_vecs)
|
| 24 |
+
faiss_index = faiss.IndexFlatIP(target_vecs.shape[1])
|
| 25 |
+
faiss_index.add(target_vecs)
|
| 26 |
+
|
| 27 |
+
res_distance, res_index = faiss_index.search(source_vecs, topk)
|
| 28 |
+
return res_index, res_distance
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_loco_path_info(q_dir, d_dir):
|
| 32 |
+
names = []
|
| 33 |
+
for name in sorted(os.listdir(q_dir)):
|
| 34 |
+
if name.endswith(".jsonl"):
|
| 35 |
+
names.append(name)
|
| 36 |
+
for name in os.listdir(d_dir):
|
| 37 |
+
if name.endswith(".jsonl"):
|
| 38 |
+
assert name in names
|
| 39 |
+
infos = []
|
| 40 |
+
for name in names:
|
| 41 |
+
infos.append(["LOCO-V1", name, join(q_dir, name), join(d_dir, name)])
|
| 42 |
+
infos.sort(key=lambda x: x[1])
|
| 43 |
+
return infos
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_loco_data(q_path, d_path):
|
| 47 |
+
passage_list, query2passage_list = [], {}
|
| 48 |
+
|
| 49 |
+
original_doc_id2doc = {}
|
| 50 |
+
|
| 51 |
+
with open(d_path, "r", encoding="utf8") as fr:
|
| 52 |
+
for line in fr:
|
| 53 |
+
item = json.loads(line)
|
| 54 |
+
if item["passage"].strip():
|
| 55 |
+
original_doc_id2doc[item["pid"]] = item["passage"].strip()
|
| 56 |
+
passage_list.append(item["passage"].strip())
|
| 57 |
+
|
| 58 |
+
with open(q_path, "r", encoding="utf8") as fr:
|
| 59 |
+
for line in fr:
|
| 60 |
+
item = json.loads(line)
|
| 61 |
+
if item["query"].strip():
|
| 62 |
+
query2passage_list[item["query"].strip()] = [
|
| 63 |
+
original_doc_id2doc[answer_pid]
|
| 64 |
+
for answer_pid in item["answer_pids"]
|
| 65 |
+
if answer_pid in original_doc_id2doc
|
| 66 |
+
]
|
| 67 |
+
query2passage_list = {k: list(set(v)) for k, v in query2passage_list.items() if list(set(v))}
|
| 68 |
+
passage_list = list(set(passage_list))
|
| 69 |
+
passage2id = {passage: idx for idx, passage in enumerate(passage_list)}
|
| 70 |
+
query2id_list = {k: list(set([passage2id[i] for i in v])) for k, v in query2passage_list.items()}
|
| 71 |
+
query_list = list(query2id_list.keys())
|
| 72 |
+
return query_list, passage_list, query2id_list
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def get_ndcg_score(query_list, passage_list, query2passage_id_list, topk=10, error_data_save_path: str = None):
|
| 76 |
+
chunk_id2passage_id = {}
|
| 77 |
+
q_vecs = model.encode(
|
| 78 |
+
sentences=query_list,
|
| 79 |
+
batch_size=batch_size,
|
| 80 |
+
chunk_size=chunk_size,
|
| 81 |
+
chunk_overlap=chunk_overlap,
|
| 82 |
+
max_seq_length=max_seq_length,
|
| 83 |
+
is_q=True,
|
| 84 |
+
)
|
| 85 |
+
p_vecs = model.encode(
|
| 86 |
+
sentences=passage_list,
|
| 87 |
+
batch_size=batch_size,
|
| 88 |
+
chunk_size=chunk_size,
|
| 89 |
+
chunk_overlap=chunk_overlap,
|
| 90 |
+
max_seq_length=max_seq_length,
|
| 91 |
+
is_q=False,
|
| 92 |
+
)
|
| 93 |
+
# according query2id_list get labels_list
|
| 94 |
+
query_id_list = [query2passage_id_list[query] for query in query_list]
|
| 95 |
+
max_doc = max((len(id_list) for id_list in query_id_list))
|
| 96 |
+
|
| 97 |
+
labels = np.array([(id_list * max_doc)[:max_doc] for id_list in query_id_list])
|
| 98 |
+
if isinstance(p_vecs, list):
|
| 99 |
+
for idx, vec in enumerate(p_vecs):
|
| 100 |
+
if multi_vec_strategy == "full_text":
|
| 101 |
+
p_vecs[idx] = normalize(np.mean(vec[1:2, :], axis=0, keepdims=True), axis=1)
|
| 102 |
+
elif multi_vec_strategy == "full_text+chunks":
|
| 103 |
+
n_chunk = (vec.shape[0] - 2) // 2
|
| 104 |
+
if n_chunk > 0:
|
| 105 |
+
p_vecs[idx] = np.vstack(
|
| 106 |
+
(
|
| 107 |
+
normalize(np.mean(vec[:2, :], axis=0, keepdims=True), axis=1),
|
| 108 |
+
vec[2:2 + n_chunk, :],
|
| 109 |
+
)
|
| 110 |
+
)
|
| 111 |
+
else:
|
| 112 |
+
p_vecs[idx] = normalize(np.mean(vec[:2, :], axis=0, keepdims=True), axis=1)
|
| 113 |
+
p_vecs = np.vstack(p_vecs)
|
| 114 |
+
|
| 115 |
+
if isinstance(q_vecs, list):
|
| 116 |
+
for idx, vec in enumerate(q_vecs):
|
| 117 |
+
q_vecs[idx] = normalize(np.mean(vec[0:2, :], axis=0, keepdims=True), axis=1)
|
| 118 |
+
q_vecs = np.vstack(q_vecs)
|
| 119 |
+
print("q_vecs.shape and dtype", q_vecs.shape, q_vecs.dtype)
|
| 120 |
+
print("p_vecs.shape and dtype", p_vecs.shape, p_vecs.dtype)
|
| 121 |
+
# search topk
|
| 122 |
+
# we calculate ndcg@10
|
| 123 |
+
topk_index, topk_scores = find_topk_by_vecs(q_vecs, p_vecs, topk * 100)
|
| 124 |
+
# print("topk_index", topk_index.shape, topk_index)
|
| 125 |
+
# print("topk_scores", topk_scores.shape, topk_scores)
|
| 126 |
+
### we may use multi vectors, so we should modify topk_index and topk_scores
|
| 127 |
+
if chunk_id2passage_id:
|
| 128 |
+
new_topk_index, new_topk_scores = [], []
|
| 129 |
+
# print("chunk_id2passage_id")
|
| 130 |
+
for chunk_ids, chunk_scores in tqdm.tqdm(zip(topk_index, topk_scores),
|
| 131 |
+
desc="modify topk_index and topk_scores", disable=True):
|
| 132 |
+
# processed by row
|
| 133 |
+
row_ids, row_scores, passage_id_set = [], [], set()
|
| 134 |
+
for idx, chunk_id in enumerate(chunk_ids):
|
| 135 |
+
passage_id = chunk_id2passage_id[chunk_id]
|
| 136 |
+
if passage_id not in passage_id_set:
|
| 137 |
+
passage_id_set.add(passage_id)
|
| 138 |
+
row_ids.append(passage_id)
|
| 139 |
+
row_scores.append(chunk_scores[idx])
|
| 140 |
+
new_topk_index.append(row_ids[:topk])
|
| 141 |
+
new_topk_scores.append(row_scores[:topk])
|
| 142 |
+
topk_index = np.array(new_topk_index)
|
| 143 |
+
# print("topk_index", topk_index)
|
| 144 |
+
topk_scores = np.array(new_topk_scores)
|
| 145 |
+
topk_index, topk_scores = topk_index[:, :topk], topk_scores[:, :topk]
|
| 146 |
+
is_match = (topk_index == labels[:, :1])
|
| 147 |
+
for idx in range(1, max_doc):
|
| 148 |
+
# the or operator means that only one positive doc in pred topk, we think it is recalled
|
| 149 |
+
is_match = is_match | (topk_index == labels[:, idx:idx + 1])
|
| 150 |
+
|
| 151 |
+
# compute recall at topk
|
| 152 |
+
print("is_match.shape", is_match.shape)
|
| 153 |
+
# recall_at_k = is_match.sum(axis=1).astype(bool).mean()
|
| 154 |
+
ndcg = ndcg_score(is_match.astype(dtype=np.float32), topk_scores)
|
| 155 |
+
|
| 156 |
+
if error_data_save_path:
|
| 157 |
+
in_top_k = is_match.sum(axis=1).astype(bool)
|
| 158 |
+
err_data = []
|
| 159 |
+
for idx, pred_res in enumerate(in_top_k):
|
| 160 |
+
if not pred_res:
|
| 161 |
+
query = query_list[idx]
|
| 162 |
+
label_doc = passage_list[query2passage_id_list[query][0]]
|
| 163 |
+
pred_doc = passage_list[topk_index[idx][0]]
|
| 164 |
+
err_data.append([query, label_doc, pred_doc])
|
| 165 |
+
pd.DataFrame(err_data, columns=["Query", "Label", "Pred"]).to_excel(error_data_save_path, index=False)
|
| 166 |
+
return float(ndcg)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
class ModelWrapper:
|
| 170 |
+
def __init__(self, model_dir, model_type, max_seq_length):
|
| 171 |
+
assert model_type in ["dewey", "sentence_transformer"]
|
| 172 |
+
self.model_type = model_type
|
| 173 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
| 174 |
+
if model_type == "dewey":
|
| 175 |
+
self.model = AutoModel.from_pretrained(
|
| 176 |
+
model_dir,
|
| 177 |
+
attn_implementation="flash_attention_2",
|
| 178 |
+
trust_remote_code=True,
|
| 179 |
+
).cuda().bfloat16().eval()
|
| 180 |
+
self.model.tokenizer = self.tokenizer
|
| 181 |
+
else:
|
| 182 |
+
self.model = SentenceTransformer(
|
| 183 |
+
model_dir,
|
| 184 |
+
trust_remote_code=True,
|
| 185 |
+
device="cpu",
|
| 186 |
+
model_kwargs={
|
| 187 |
+
"torch_dtype": torch.bfloat16, # fp16
|
| 188 |
+
"attn_implementation": "flash_attention_2"
|
| 189 |
+
},
|
| 190 |
+
)
|
| 191 |
+
self.model.max_seq_length = max_seq_length
|
| 192 |
+
if "NV-Embed-v2" in model_dir:
|
| 193 |
+
self.model.tokenizer.padding_side = "right"
|
| 194 |
+
self.pool = self.model.start_multi_process_pool()
|
| 195 |
+
|
| 196 |
+
def encode(
|
| 197 |
+
self,
|
| 198 |
+
sentences,
|
| 199 |
+
batch_size,
|
| 200 |
+
chunk_size,
|
| 201 |
+
chunk_overlap,
|
| 202 |
+
max_seq_length,
|
| 203 |
+
is_q,
|
| 204 |
+
):
|
| 205 |
+
if self.model_type == "dewey":
|
| 206 |
+
if is_q:
|
| 207 |
+
prompt = "<|START_INSTRUCTION|>Answer the question<|END_INSTRUCTION|>"
|
| 208 |
+
else:
|
| 209 |
+
prompt = "<|START_INSTRUCTION|>Candidate document<|END_INSTRUCTION|>"
|
| 210 |
+
return self.model.encode(
|
| 211 |
+
sentences=sentences,
|
| 212 |
+
batch_size=batch_size,
|
| 213 |
+
use_cuda=True,
|
| 214 |
+
show_progress_bar=True,
|
| 215 |
+
chunk_size=chunk_size,
|
| 216 |
+
chunk_overlap=chunk_overlap,
|
| 217 |
+
convert_to_tensor=False,
|
| 218 |
+
max_seq_length=max_seq_length,
|
| 219 |
+
normalize_embeddings=True,
|
| 220 |
+
prompt=prompt,
|
| 221 |
+
fast_chunk=True,
|
| 222 |
+
)[0]
|
| 223 |
+
self.model.max_seq_length = max_seq_length
|
| 224 |
+
prompt = None
|
| 225 |
+
if is_q and (
|
| 226 |
+
"Linq-Embed-Mistral" in model_dir or "e5-mistral-7b-instruct" in model_dir or "SFR-Embedding-Mistral" in model_dir):
|
| 227 |
+
prompt = PROMPT_E5
|
| 228 |
+
if is_q and ("NV-Embed-v2" in model_dir):
|
| 229 |
+
prompt = PROMPT_NV
|
| 230 |
+
if "chunk_alignment" in model_dir or "dewey" in model_dir:
|
| 231 |
+
if is_q:
|
| 232 |
+
prompt = "<|START_INSTRUCTION|>Answer the question<|END_INSTRUCTION|>"
|
| 233 |
+
else:
|
| 234 |
+
prompt = "<|START_INSTRUCTION|>Candidate document<|END_INSTRUCTION|>"
|
| 235 |
+
vecs = self.model.encode_multi_process(
|
| 236 |
+
add_eos(sentences) if "NV-Embed-v2" in model_dir else sentences,
|
| 237 |
+
pool=self.pool,
|
| 238 |
+
show_progress_bar=True,
|
| 239 |
+
batch_size=batch_size,
|
| 240 |
+
normalize_embeddings=True,
|
| 241 |
+
prompt=prompt
|
| 242 |
+
)
|
| 243 |
+
return vecs
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def add_eos(input_examples):
|
| 247 |
+
input_examples = [input_example + model.tokenizer.eos_token for input_example in input_examples]
|
| 248 |
+
return input_examples
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
PROMPT_BGE = "Represent this sentence for searching relevant passages:"
|
| 252 |
+
PROMPT_E5 = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: "
|
| 253 |
+
PROMPT_NV = "Instruct: Given a question, retrieve passages that answer the question\nQuery: "
|
| 254 |
+
if __name__ == "__main__":
|
| 255 |
+
chunk_size = -1
|
| 256 |
+
chunk_overlap = 32
|
| 257 |
+
batch_size = 2
|
| 258 |
+
max_seq_length = 8 * 1024
|
| 259 |
+
multi_vec_strategy = "full_text" # full_text; full_text+chunks
|
| 260 |
+
err_data_save_path = None
|
| 261 |
+
topk = 10
|
| 262 |
+
|
| 263 |
+
model_dir = "infgrad/dewey_en_beta"
|
| 264 |
+
# model_dir = "/home/zd/public_models/Linq-Embed-Mistral/"
|
| 265 |
+
# model_dir = "/home/zd/public_models/SFR-Embedding-Mistral"
|
| 266 |
+
# model_dir = "/home/zd/public_models/e5-mistral-7b-instruct"
|
| 267 |
+
# model_dir = "/home/zd/public_models/bge-m3"
|
| 268 |
+
# model_dir = "/home/zd/public_models/gte-modernbert-base"
|
| 269 |
+
# model_dir = "/home/zd/public_models/NV-Embed-v2"
|
| 270 |
+
|
| 271 |
+
# sentence_transformer dewey
|
| 272 |
+
model_type = "sentence_transformer"
|
| 273 |
+
## get data info
|
| 274 |
+
# TODO Please download LOCOV1 data first!
|
| 275 |
+
data_info = get_loco_path_info(
|
| 276 |
+
"/home/zd/public_data/LoCoV1-Queries/documents/",
|
| 277 |
+
"/home/zd/public_data/LoCoV1-Documents/documents/",
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
# load model
|
| 281 |
+
model = ModelWrapper(model_dir=model_dir, model_type=model_type, max_seq_length=max_seq_length)
|
| 282 |
+
# model = zd()
|
| 283 |
+
ndcg_score_list = []
|
| 284 |
+
for item in data_info:
|
| 285 |
+
print("\n\n\n\n" + "=" * 20)
|
| 286 |
+
print(f"evaluate {item[:2]}...")
|
| 287 |
+
query_list, passage_list, query2passage_id_list = get_loco_data(*item[2:])
|
| 288 |
+
print("number of all queries", len(query_list))
|
| 289 |
+
print("number of all passages", len(passage_list))
|
| 290 |
+
ndcg = get_ndcg_score(query_list, passage_list, query2passage_id_list, topk=topk,
|
| 291 |
+
error_data_save_path=err_data_save_path)
|
| 292 |
+
print(f"{ndcg}")
|
| 293 |
+
ndcg_score_list.append(ndcg)
|
| 294 |
+
|
| 295 |
+
for i in data_info:
|
| 296 |
+
print(i[0])
|
| 297 |
+
print("\n\n\n")
|
| 298 |
+
for i in data_info:
|
| 299 |
+
print(i[1].replace(".jsonl", ""))
|
| 300 |
+
print("\n\n\n")
|
| 301 |
+
|
| 302 |
+
print(os.path.basename(model_dir))
|
| 303 |
+
for i in ndcg_score_list:
|
| 304 |
+
print(i)
|