First model version
Browse files- README.md +259 -0
- config.json +64 -0
- configuration_lladamoe.py +97 -0
- generation_config.json +7 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_lladamoe.py +1186 -0
- special_tokens_map.json +8 -0
- tokenizer.json +0 -0
- tokenizer_config.json +17 -0
README.md
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- dllm
|
| 5 |
+
- diffusion
|
| 6 |
+
- llm
|
| 7 |
+
- text_generation
|
| 8 |
+
library_name: transformers
|
| 9 |
+
---
|
| 10 |
+
# LLaDA-MoE
|
| 11 |
+
|
| 12 |
+
**LLaDA-MoE** is a new and upgraded series of the LLaDA diffusion language model. This pre-release includes two cutting-edge models:
|
| 13 |
+
|
| 14 |
+
- `LLaDA-MoE-7B-A1B-Base`: A base pre-trained model designed for research and secondary development.
|
| 15 |
+
- `LLaDA-MoE-7B-A1B-Instruct`: An instruction-tuned model optimized for practical applications.
|
| 16 |
+
- `LLaDA-MoE-7B-A1B-Instruct-TD`: A specialized instruction-tuned model, further optimized for accelerated inference using Trajectory Distillation.
|
| 17 |
+
---
|
| 18 |
+
<div align="center">
|
| 19 |
+
<img src="https://raw.githubusercontent.com/Ulov888/LLaDA_Assets/main/benchmarks_grouped_bar.png" width="800" />
|
| 20 |
+
<img src="https://raw.githubusercontent.com/Ulov888/LLaDA_Assets/main/benchmarks_details_table.png" width="800" />
|
| 21 |
+
</div>
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
## 🚀 Performance Highlights
|
| 27 |
+
|
| 28 |
+
- **Leading MoE Architecture**:
|
| 29 |
+
The first open-source **Mixture-of-Experts (MoE) diffusion large language model**, pre-trained from scratch on approximately **20 trillion tokens**.
|
| 30 |
+
|
| 31 |
+
- **Efficient Inference**:
|
| 32 |
+
With **7 billion total parameters**, only **1.4 billion** are activated during inference. LLaDA-MoE significantly reduces computational costs while outperforming open-source dense models of similar scale.
|
| 33 |
+
|
| 34 |
+
- **Impressive Performance on Code & Complex Reasoning**:
|
| 35 |
+
Excels in tasks such as **code generation** and **advanced mathematical reasoning**, demonstrating strong reasoning capabilities.
|
| 36 |
+
|
| 37 |
+
- **Tool Use**:
|
| 38 |
+
Supports **tool calling** and achieves excellent performance in complex agent-based tasks.
|
| 39 |
+
|
| 40 |
+
- **Open & Extensible**:
|
| 41 |
+
Fully open-source with commitment to transparency. We plan to release a **leading inference framework** in the future and continue investing in cutting-edge areas like **diffusion LLMs (dLLM)** to drive disruptive innovation.
|
| 42 |
+
|
| 43 |
+
---
|
| 44 |
+
|
| 45 |
+
## 📦 Model Variants
|
| 46 |
+
|
| 47 |
+
| Model ID | Description | Hugging Face Link |
|
| 48 |
+
|--------|-------------|-------------------|
|
| 49 |
+
| [`inclusionAI/LLaDA-MoE-7B-A1B-Base`](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base) | Base pre-trained model for research and fine-tuning. | [🤗 Model Card](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base) |
|
| 50 |
+
| [`inclusionAI/LLaDA-MoE-7B-A1B-Instruct`](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Instruct) | Instruction-tuned model, ready for downstream applications. | [🤗 Model Card](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Instruct) |
|
| 51 |
+
| [`inclusionAI/LLaDA-MoE-7B-A1B-Instruct-TD`](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Instruct-TD) | An instruction-tuned model further optimized with **Trajectory Distillation (TD)** for accelerated inference. Decodes multiple tokens per forward pass. | [🤗 Model Card](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Instruct-TD) |
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
---
|
| 55 |
+
|
| 56 |
+
## 🔍 Model Overview
|
| 57 |
+
|
| 58 |
+
**LLaDA-MoE-7B-A1B** has the following specifications:
|
| 59 |
+
|
| 60 |
+
- **Type**: Mixture-of-Experts (MoE) Diffusion Language Model
|
| 61 |
+
- **Total Parameters (Non-Embedding)**: 7.03B
|
| 62 |
+
- **Number of Layers**: 16
|
| 63 |
+
- **Attention Heads**: 16
|
| 64 |
+
- **Context Length**: 4,096 tokens
|
| 65 |
+
- **Position Embedding**: Rotary (RoPE)
|
| 66 |
+
- **Vocabulary Size**: 157,184
|
| 67 |
+
|
| 68 |
+
---
|
| 69 |
+
|
| 70 |
+
## ⚡ Infra
|
| 71 |
+
### 1. We highly recommend you generate with [dInfer](https://github.com/inclusionAI/dInfer)(1000+ Tokens/S)
|
| 72 |
+
|
| 73 |
+
<p align="center">
|
| 74 |
+
<img src="https://raw.githubusercontent.com/inclusionAI/dInfer/refs/heads/master/assets/dinfer_tps.png" alt="dInfer v0.1 speedup" width="600">
|
| 75 |
+
<br>
|
| 76 |
+
<b>Figure</b>: Display of generation speed
|
| 77 |
+
</p>
|
| 78 |
+
|
| 79 |
+
On HumanEval, dInfer achieves over 1,100 TPS at batch size 1, and averages more than 800 TPS across six benchmarks on
|
| 80 |
+
a single node with 8 H800 GPUs.
|
| 81 |
+
#### Install dInfer
|
| 82 |
+
|
| 83 |
+
```
|
| 84 |
+
git clone https://github.com/inclusionAI/dInfer.git
|
| 85 |
+
cd dInfer
|
| 86 |
+
pip install .
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
#### Convert to FusedMoE
|
| 90 |
+
|
| 91 |
+
Use the conversion tool to fuse the experts.
|
| 92 |
+
|
| 93 |
+
```bash
|
| 94 |
+
# From repo root
|
| 95 |
+
python tools/transfer.py \
|
| 96 |
+
--input /path/to/LLaDA-MoE-7B-A1B-Instruct \
|
| 97 |
+
--output /path/to/LLaDA-MoE-7B-A1B-Instruct-fused
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
#### Use the model in dInfer
|
| 101 |
+
|
| 102 |
+
```python
|
| 103 |
+
import torch
|
| 104 |
+
from transformers import AutoTokenizer
|
| 105 |
+
|
| 106 |
+
from dinfer.model import AutoModelForCausalLM
|
| 107 |
+
from dinfer.model import FusedOlmoeForCausalLM
|
| 108 |
+
from dinfer import BlockIteratorFactory, KVCacheFactory
|
| 109 |
+
from dinfer import ThresholdParallelDecoder, BlockWiseDiffusionLLM
|
| 110 |
+
|
| 111 |
+
m = "/path/to/LLaDA-MoE-7B-A1B-Instruct-fused"
|
| 112 |
+
tok = AutoTokenizer.from_pretrained(m, trust_remote_code=True)
|
| 113 |
+
model = AutoModelForCausalLM.from_pretrained(m, trust_remote_code=True, torch_dtype="bfloat16")
|
| 114 |
+
|
| 115 |
+
decoder = ThresholdParallelDecoder(0, threshold=0.9)
|
| 116 |
+
dllm = BlockWiseDiffusionLLM(model, decoder, BlockIteratorFactory(True), cache_factory=KVCacheFactory('dual'))
|
| 117 |
+
|
| 118 |
+
prompt = "Lily can run 12 kilometers per hour for 4 hours. After that, she can run 6 kilometers per hour. How many kilometers can she run in 8 hours?"
|
| 119 |
+
input_ids = tokenizer(prompt)['input_ids']
|
| 120 |
+
input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
|
| 121 |
+
res = dllm.generate(input_ids, gen_length=gen_len, block_length=block_len)
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
### 2. No Speedup: transformers
|
| 125 |
+
|
| 126 |
+
Make sure you have `transformers` and its dependencies installed:
|
| 127 |
+
|
| 128 |
+
```python
|
| 129 |
+
import torch
|
| 130 |
+
import numpy as np
|
| 131 |
+
import torch.nn.functional as F
|
| 132 |
+
|
| 133 |
+
from transformers import AutoTokenizer, AutoModel
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def add_gumbel_noise(logits, temperature):
|
| 137 |
+
if temperature == 0:
|
| 138 |
+
return logits
|
| 139 |
+
logits = logits.to(torch.float64)
|
| 140 |
+
noise = torch.rand_like(logits, dtype=torch.float64)
|
| 141 |
+
gumbel_noise = (- torch.log(noise)) ** temperature
|
| 142 |
+
return logits.exp() / gumbel_noise
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def get_num_transfer_tokens(mask_index, steps):
|
| 146 |
+
mask_num = mask_index.sum(dim=1, keepdim=True)
|
| 147 |
+
|
| 148 |
+
base = mask_num // steps
|
| 149 |
+
remainder = mask_num % steps
|
| 150 |
+
|
| 151 |
+
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base
|
| 152 |
+
|
| 153 |
+
for i in range(mask_num.size(0)):
|
| 154 |
+
num_transfer_tokens[i, :remainder[i]] += 1
|
| 155 |
+
|
| 156 |
+
return num_transfer_tokens
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
@ torch.no_grad()
|
| 160 |
+
def generate(model, prompt, steps=128, gen_length=128, block_length=128, temperature=0.,
|
| 161 |
+
cfg_scale=0., remasking='low_confidence', mask_id=156895):
|
| 162 |
+
x = torch.full((1, prompt.shape[1] + gen_length), mask_id, dtype=torch.long).to(model.device)
|
| 163 |
+
x[:, :prompt.shape[1]] = prompt.clone()
|
| 164 |
+
prompt_index = (x != mask_id)
|
| 165 |
+
|
| 166 |
+
assert gen_length % block_length == 0
|
| 167 |
+
num_blocks = gen_length // block_length
|
| 168 |
+
assert steps % num_blocks == 0
|
| 169 |
+
steps = steps // num_blocks
|
| 170 |
+
|
| 171 |
+
for num_block in range(num_blocks):
|
| 172 |
+
block_mask_index = (x[:, prompt.shape[1] + num_block * block_length: prompt.shape[1] + (num_block + 1) * block_length:] == mask_id)
|
| 173 |
+
num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps)
|
| 174 |
+
for i in range(steps):
|
| 175 |
+
mask_index = (x == mask_id)
|
| 176 |
+
if cfg_scale > 0.:
|
| 177 |
+
un_x = x.clone()
|
| 178 |
+
un_x[prompt_index] = mask_id
|
| 179 |
+
x_ = torch.cat([x, un_x], dim=0)
|
| 180 |
+
logits = model(x_).logits
|
| 181 |
+
logits, un_logits = torch.chunk(logits, 2, dim=0)
|
| 182 |
+
logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
|
| 183 |
+
else:
|
| 184 |
+
logits = model(x).logits
|
| 185 |
+
|
| 186 |
+
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
|
| 187 |
+
x0 = torch.argmax(logits_with_noise, dim=-1) # b, l
|
| 188 |
+
|
| 189 |
+
if remasking == 'low_confidence':
|
| 190 |
+
p = F.softmax(logits, dim=-1)
|
| 191 |
+
x0_p = torch.squeeze(
|
| 192 |
+
torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
|
| 193 |
+
elif remasking == 'random':
|
| 194 |
+
x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
|
| 195 |
+
else:
|
| 196 |
+
raise NotImplementedError(remasking)
|
| 197 |
+
|
| 198 |
+
x0_p[:, prompt.shape[1] + (num_block + 1) * block_length:] = -np.inf
|
| 199 |
+
|
| 200 |
+
x0 = torch.where(mask_index, x0, x)
|
| 201 |
+
confidence = torch.where(mask_index, x0_p, -np.inf)
|
| 202 |
+
|
| 203 |
+
transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
|
| 204 |
+
for j in range(confidence.shape[0]):
|
| 205 |
+
_, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i])
|
| 206 |
+
transfer_index[j, select_index] = True
|
| 207 |
+
x[transfer_index] = x0[transfer_index]
|
| 208 |
+
|
| 209 |
+
return x
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
device = 'cuda'
|
| 213 |
+
model = AutoModel.from_pretrained('inclusionAI/LLaDA-MoE-7B-A1B-Instruct', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device).eval()
|
| 214 |
+
tokenizer = AutoTokenizer.from_pretrained('inclusionAI/LLaDA-MoE-7B-A1B-Instruct', trust_remote_code=True)
|
| 215 |
+
|
| 216 |
+
prompt = "Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6 kilometers per hour. How many kilometers can she run in 8 hours?"
|
| 217 |
+
m = [
|
| 218 |
+
{"role": "system", "content": "You are a helpful AI assistant."},
|
| 219 |
+
{"role": "user", "content": prompt}
|
| 220 |
+
]
|
| 221 |
+
prompt = tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
|
| 222 |
+
|
| 223 |
+
input_ids = tokenizer(prompt)['input_ids']
|
| 224 |
+
input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
|
| 225 |
+
|
| 226 |
+
text = generate(model, input_ids, steps=128, gen_length=128, block_length=32, temperature=0., cfg_scale=0., remasking='low_confidence')
|
| 227 |
+
print(tokenizer.batch_decode(text[:, input_ids.shape[1]:], skip_special_tokens=False)[0])
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
```
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
## 📚 Citation [LLaDA-MoE](https://arxiv.org/abs/2509.24389)
|
| 236 |
+
|
| 237 |
+
If you find LLaDA-MoE useful in your research or applications, please cite our paper:
|
| 238 |
+
```
|
| 239 |
+
@article{zhu2025llada,
|
| 240 |
+
title={LLaDA-MoE: A Sparse MoE Diffusion Language Model},
|
| 241 |
+
author={Fengqi Zhu and Zebin You and Yipeng Xing and Zenan Huang and Lin Liu and Yihong Zhuang and Guoshan Lu and Kangyu Wang and Xudong Wang and Lanning Wei and Hongrui Guo and Jiaqi Hu and Wentao Ye and Tieyuan Chen and Chenchen Li and Chengfu Tang and Haibo Feng and Jun Hu and Jun Zhou and Xiaolu Zhang and Zhenzhong Lan and Junbo Zhao and Da Zheng and Chongxuan Li and Jianguo Li and Ji-Rong Wen},
|
| 242 |
+
journal={arXiv preprint arXiv:2509.24389},
|
| 243 |
+
year={2025}
|
| 244 |
+
}
|
| 245 |
+
```
|
| 246 |
+
|
| 247 |
+
---
|
| 248 |
+
|
| 249 |
+
## 🌐 License
|
| 250 |
+
|
| 251 |
+
This project is licensed under the terms of the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|
| 252 |
+
|
| 253 |
+
---
|
| 254 |
+
|
| 255 |
+
## 🤝 Contact & Collaboration
|
| 256 |
+
|
| 257 |
+
For questions, collaborations, or feedback, please reach out via [Hugging Face](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base) or open an issue in the [repository](https://github.com/inclusionAI).
|
| 258 |
+
|
| 259 |
+
👉 Join us in advancing open, efficient, and intelligent language models!
|
config.json
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LLaDAMoEModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"clip_qkv": null,
|
| 8 |
+
"dense_intermediate_size": 8192,
|
| 9 |
+
"eos_token_id": 156892,
|
| 10 |
+
"expert_intermediate_size": 1024,
|
| 11 |
+
"hidden_act": "silu",
|
| 12 |
+
"hidden_size": 2048,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"max_position_embeddings": 8192,
|
| 15 |
+
"model_type": "llada",
|
| 16 |
+
"moe_layer_freq": [
|
| 17 |
+
1,
|
| 18 |
+
1,
|
| 19 |
+
1,
|
| 20 |
+
1,
|
| 21 |
+
1,
|
| 22 |
+
1,
|
| 23 |
+
1,
|
| 24 |
+
1,
|
| 25 |
+
1,
|
| 26 |
+
1,
|
| 27 |
+
1,
|
| 28 |
+
1,
|
| 29 |
+
1,
|
| 30 |
+
1,
|
| 31 |
+
1,
|
| 32 |
+
1
|
| 33 |
+
],
|
| 34 |
+
"moe_router_enable_expert_bias": false,
|
| 35 |
+
"moe_router_score_function": "softmax",
|
| 36 |
+
"norm_topk_prob": null,
|
| 37 |
+
"num_attention_heads": 16,
|
| 38 |
+
"num_experts": 64,
|
| 39 |
+
"num_experts_per_tok": 8,
|
| 40 |
+
"num_hidden_layers": 16,
|
| 41 |
+
"num_key_value_heads": 16,
|
| 42 |
+
"output_router_logits": false,
|
| 43 |
+
"pad_token_id": 156892,
|
| 44 |
+
"partial_rotary_factor": 1,
|
| 45 |
+
"qk_layernorm": true,
|
| 46 |
+
"rms_norm_eps": 1e-05,
|
| 47 |
+
"rope_scaling": null,
|
| 48 |
+
"rope_theta": 50000,
|
| 49 |
+
"routed_scaling_factor": 1,
|
| 50 |
+
"router_aux_loss_coef": 0.01,
|
| 51 |
+
"router_num_group": null,
|
| 52 |
+
"router_topk_group": null,
|
| 53 |
+
"shared_expert_intermediate_size": null,
|
| 54 |
+
"tie_word_embeddings": false,
|
| 55 |
+
"torch_dtype": "bfloat16",
|
| 56 |
+
"transformers_version": "4.53.2",
|
| 57 |
+
"use_cache": false,
|
| 58 |
+
"vocab_size": 157184,
|
| 59 |
+
"auto_map": {
|
| 60 |
+
"AutoConfig": "configuration_lladamoe.LLaDAConfig",
|
| 61 |
+
"AutoModel": "modeling_lladamoe.LLaDAMoEModelLM",
|
| 62 |
+
"AutoModelForCausalLM": "modeling_lladamoe.LLaDAMoEModelLM"
|
| 63 |
+
}
|
| 64 |
+
}
|
configuration_lladamoe.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
LLaDA MoE configuration
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 6 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class LLaDAConfig(PretrainedConfig):
|
| 10 |
+
model_type = "llada"
|
| 11 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
vocab_size=-1,
|
| 16 |
+
hidden_size=-1,
|
| 17 |
+
dense_intermediate_size=-1,
|
| 18 |
+
expert_intermediate_size=-1,
|
| 19 |
+
shared_expert_intermediate_size=-1,
|
| 20 |
+
num_hidden_layers=-1,
|
| 21 |
+
num_attention_heads=-1,
|
| 22 |
+
num_key_value_heads=None,
|
| 23 |
+
hidden_act="silu",
|
| 24 |
+
max_position_embeddings=4096,
|
| 25 |
+
initializer_range=0.02,
|
| 26 |
+
rms_norm_eps=1e-05,
|
| 27 |
+
use_cache=False,
|
| 28 |
+
pad_token_id=1,
|
| 29 |
+
bos_token_id=None,
|
| 30 |
+
eos_token_id=50279,
|
| 31 |
+
tie_word_embeddings=False,
|
| 32 |
+
rope_theta=-1,
|
| 33 |
+
partial_rotary_factor=-1,
|
| 34 |
+
rope_scaling=None,
|
| 35 |
+
attention_bias=False,
|
| 36 |
+
attention_dropout=0.0,
|
| 37 |
+
clip_qkv=None,
|
| 38 |
+
num_experts_per_tok=-1,
|
| 39 |
+
num_experts=-1,
|
| 40 |
+
output_router_logits=False,
|
| 41 |
+
router_aux_loss_coef=0.01,
|
| 42 |
+
norm_topk_prob=None,
|
| 43 |
+
qk_layernorm=None,
|
| 44 |
+
moe_layer_freq=[],
|
| 45 |
+
moe_router_enable_expert_bias=None,
|
| 46 |
+
moe_router_score_function=None,
|
| 47 |
+
routed_scaling_factor=1,
|
| 48 |
+
router_num_group=-2,
|
| 49 |
+
router_topk_group=-2,
|
| 50 |
+
**kwargs,
|
| 51 |
+
):
|
| 52 |
+
self.vocab_size = vocab_size
|
| 53 |
+
self.max_position_embeddings = max_position_embeddings
|
| 54 |
+
self.hidden_size = hidden_size
|
| 55 |
+
self.expert_intermediate_size = expert_intermediate_size
|
| 56 |
+
self.dense_intermediate_size = dense_intermediate_size
|
| 57 |
+
self.shared_expert_intermediate_size = shared_expert_intermediate_size
|
| 58 |
+
self.num_hidden_layers = num_hidden_layers
|
| 59 |
+
self.num_attention_heads = num_attention_heads
|
| 60 |
+
if num_key_value_heads is None:
|
| 61 |
+
num_key_value_heads = num_attention_heads
|
| 62 |
+
self.num_key_value_heads = num_key_value_heads
|
| 63 |
+
|
| 64 |
+
self.hidden_act = hidden_act
|
| 65 |
+
self.initializer_range = initializer_range
|
| 66 |
+
self.rms_norm_eps = rms_norm_eps
|
| 67 |
+
self.use_cache = use_cache
|
| 68 |
+
self.rope_theta = rope_theta
|
| 69 |
+
self.rope_scaling = rope_scaling
|
| 70 |
+
self.attention_bias = attention_bias
|
| 71 |
+
self.attention_dropout = attention_dropout
|
| 72 |
+
self.clip_qkv = clip_qkv
|
| 73 |
+
self.num_experts_per_tok = num_experts_per_tok
|
| 74 |
+
self.num_experts = num_experts
|
| 75 |
+
self.output_router_logits = output_router_logits
|
| 76 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
| 77 |
+
self.norm_topk_prob = norm_topk_prob
|
| 78 |
+
self.qk_layernorm = qk_layernorm
|
| 79 |
+
self.moe_layer_freq = moe_layer_freq
|
| 80 |
+
self.moe_router_enable_expert_bias = moe_router_enable_expert_bias
|
| 81 |
+
self.moe_router_score_function = moe_router_score_function
|
| 82 |
+
self.partial_rotary_factor = partial_rotary_factor
|
| 83 |
+
self.routed_scaling_factor = routed_scaling_factor
|
| 84 |
+
self.router_num_group = router_num_group
|
| 85 |
+
self.router_topk_group = router_topk_group
|
| 86 |
+
|
| 87 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 88 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 89 |
+
rope_config_validation(self)
|
| 90 |
+
|
| 91 |
+
super().__init__(
|
| 92 |
+
pad_token_id=pad_token_id,
|
| 93 |
+
bos_token_id=bos_token_id,
|
| 94 |
+
eos_token_id=eos_token_id,
|
| 95 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 96 |
+
**kwargs,
|
| 97 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"eos_token_id": 156892,
|
| 4 |
+
"pad_token_id": 156892,
|
| 5 |
+
"transformers_version": "4.46.3",
|
| 6 |
+
"use_cache": false
|
| 7 |
+
}
|
model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8ec8d5f76993f1ffed65648985e0c1b55d77546f9d0d3852552e978ffb9d7ebc
|
| 3 |
+
size 4999258928
|
model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d3643677f1a2e5177944ef7e33a93bafd182d60c68eca62ea0cbdd8fa403cf1
|
| 3 |
+
size 4997188984
|
model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9ae6afea005426f3bf1cf91470aa30b30896328f9632aa365c66eacfea1e2cca
|
| 3 |
+
size 4717712520
|
model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modeling_lladamoe.py
ADDED
|
@@ -0,0 +1,1186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""LLaDA MoE model pytorch implementation"""
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
from typing import List, Optional, Tuple, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import torch.utils.checkpoint
|
| 9 |
+
from torch import nn
|
| 10 |
+
from torch.nn import CrossEntropyLoss
|
| 11 |
+
|
| 12 |
+
from transformers.activations import ACT2FN
|
| 13 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 14 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 15 |
+
from transformers.modeling_outputs import (
|
| 16 |
+
MoeCausalLMOutputWithPast,
|
| 17 |
+
MoeModelOutputWithPast,
|
| 18 |
+
)
|
| 19 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 20 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 21 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 22 |
+
from transformers.utils import (
|
| 23 |
+
add_start_docstrings,
|
| 24 |
+
add_start_docstrings_to_model_forward,
|
| 25 |
+
is_flash_attn_2_available,
|
| 26 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 27 |
+
logging,
|
| 28 |
+
replace_return_docstrings,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
from .configuration_lladamoe import LLaDAConfig
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
if is_flash_attn_2_available():
|
| 35 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
logger = logging.get_logger(__name__)
|
| 39 |
+
|
| 40 |
+
_CONFIG_FOR_DOC = "LLaDAConfig"
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
|
| 44 |
+
def load_balancing_loss_func(
|
| 45 |
+
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
|
| 46 |
+
) -> float:
|
| 47 |
+
r"""
|
| 48 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
| 49 |
+
|
| 50 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
| 51 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
| 52 |
+
experts is too unbalanced.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
| 56 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
| 57 |
+
shape [batch_size X sequence_length, num_experts].
|
| 58 |
+
attention_mask (`torch.Tensor`, *optional*):
|
| 59 |
+
For diffusion language model, attention_mask is set to None by default.
|
| 60 |
+
If you pass an attention mask and expect the model to use it for computing other attention mechanisms,
|
| 61 |
+
it may lead to logits and aux_loss returned by the model being inconsistent with your expectations.
|
| 62 |
+
num_experts (`int`, *optional*):
|
| 63 |
+
Number of experts
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
The auxiliary loss.
|
| 67 |
+
"""
|
| 68 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
| 69 |
+
return 0
|
| 70 |
+
|
| 71 |
+
if isinstance(gate_logits, tuple):
|
| 72 |
+
compute_device = gate_logits[0].device
|
| 73 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
| 74 |
+
|
| 75 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
| 76 |
+
|
| 77 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
| 78 |
+
|
| 79 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
| 80 |
+
|
| 81 |
+
if attention_mask is None:
|
| 82 |
+
# Compute the percentage of tokens routed to each experts
|
| 83 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
| 84 |
+
|
| 85 |
+
# Compute the average probability of routing to these experts
|
| 86 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
| 87 |
+
else:
|
| 88 |
+
batch_size, sequence_length = attention_mask.shape
|
| 89 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
|
| 90 |
+
|
| 91 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
| 92 |
+
expert_attention_mask = (
|
| 93 |
+
attention_mask[None, :, :, None, None]
|
| 94 |
+
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
|
| 95 |
+
.reshape(-1, top_k, num_experts)
|
| 96 |
+
.to(compute_device)
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# Compute the percentage of tokens routed to each experts
|
| 100 |
+
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
| 101 |
+
expert_attention_mask, dim=0
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
| 105 |
+
router_per_expert_attention_mask = (
|
| 106 |
+
attention_mask[None, :, :, None]
|
| 107 |
+
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
|
| 108 |
+
.reshape(-1, num_experts)
|
| 109 |
+
.to(compute_device)
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# Compute the average probability of routing to these experts
|
| 113 |
+
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
|
| 114 |
+
router_per_expert_attention_mask, dim=0
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
| 118 |
+
return overall_loss * num_experts
|
| 119 |
+
|
| 120 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeRMSNorm -> LLaDAMoERMSNorm
|
| 121 |
+
class LLaDAMoERMSNorm(nn.Module):
|
| 122 |
+
def __init__(self, hidden_size, eps=1e-5):
|
| 123 |
+
"""
|
| 124 |
+
LLaDAMoERMSNorm is equivalent to T5LayerNorm
|
| 125 |
+
"""
|
| 126 |
+
super().__init__()
|
| 127 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 128 |
+
self.variance_epsilon = eps
|
| 129 |
+
|
| 130 |
+
def forward(self, hidden_states):
|
| 131 |
+
input_dtype = hidden_states.dtype
|
| 132 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 133 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 134 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 135 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 136 |
+
|
| 137 |
+
def extra_repr(self):
|
| 138 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
ALL_LAYERNORM_LAYERS.append(LLaDAMoERMSNorm)
|
| 142 |
+
|
| 143 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeRotaryEmbedding -> LLaDAMoERotaryEmbedding
|
| 144 |
+
class LLaDAMoERotaryEmbedding(nn.Module):
|
| 145 |
+
def __init__(
|
| 146 |
+
self,
|
| 147 |
+
dim=None,
|
| 148 |
+
max_position_embeddings=2048,
|
| 149 |
+
base=10000,
|
| 150 |
+
device=None,
|
| 151 |
+
scaling_factor=1.0,
|
| 152 |
+
rope_type="default",
|
| 153 |
+
config: Optional[LLaDAConfig] = None,
|
| 154 |
+
):
|
| 155 |
+
super().__init__()
|
| 156 |
+
# TODO (joao): remove the `if` below, only used for BC
|
| 157 |
+
self.rope_kwargs = {}
|
| 158 |
+
if config is None:
|
| 159 |
+
logger.warning_once(
|
| 160 |
+
"`LLaDAMoERotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
| 161 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
| 162 |
+
)
|
| 163 |
+
self.rope_kwargs = {
|
| 164 |
+
"rope_type": rope_type,
|
| 165 |
+
"factor": scaling_factor,
|
| 166 |
+
"dim": dim,
|
| 167 |
+
"base": base,
|
| 168 |
+
"max_position_embeddings": max_position_embeddings,
|
| 169 |
+
}
|
| 170 |
+
self.rope_type = rope_type
|
| 171 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 172 |
+
self.original_max_seq_len = max_position_embeddings
|
| 173 |
+
else:
|
| 174 |
+
# BC: "rope_type" was originally "type"
|
| 175 |
+
if config.rope_scaling is not None:
|
| 176 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 177 |
+
else:
|
| 178 |
+
self.rope_type = "default"
|
| 179 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 180 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 181 |
+
|
| 182 |
+
self.config = config
|
| 183 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 184 |
+
|
| 185 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
| 186 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 187 |
+
self.original_inv_freq = self.inv_freq
|
| 188 |
+
|
| 189 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
| 190 |
+
"""
|
| 191 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 192 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
| 193 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 194 |
+
"""
|
| 195 |
+
seq_len = torch.max(position_ids) + 1
|
| 196 |
+
if seq_len > self.max_seq_len_cached: # growth
|
| 197 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
| 198 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
| 199 |
+
)
|
| 200 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
| 201 |
+
self.max_seq_len_cached = seq_len
|
| 202 |
+
|
| 203 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
| 204 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 205 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
| 206 |
+
|
| 207 |
+
@torch.no_grad()
|
| 208 |
+
def forward(self, x, position_ids):
|
| 209 |
+
if "dynamic" in self.rope_type:
|
| 210 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
| 211 |
+
|
| 212 |
+
# Core RoPE block
|
| 213 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 214 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 215 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 216 |
+
device_type = x.device.type
|
| 217 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 218 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 219 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 220 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 221 |
+
cos = emb.cos()
|
| 222 |
+
sin = emb.sin()
|
| 223 |
+
|
| 224 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 225 |
+
cos = cos * self.attention_scaling
|
| 226 |
+
sin = sin * self.attention_scaling
|
| 227 |
+
|
| 228 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
# copied from transformers.models.olmoe.modeling_olmoe.rotate_half
|
| 232 |
+
def rotate_half(x):
|
| 233 |
+
"""Rotates half the hidden dims of the input."""
|
| 234 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 235 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 236 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
# copied from transformers.models.olmoe.modeling_olmoe.apply_rotary_pos_emb
|
| 240 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 241 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 242 |
+
|
| 243 |
+
Args:
|
| 244 |
+
q (`torch.Tensor`): The query tensor.
|
| 245 |
+
k (`torch.Tensor`): The key tensor.
|
| 246 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 247 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 248 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 249 |
+
Deprecated and unused.
|
| 250 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 251 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 252 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 253 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 254 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 255 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 256 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 257 |
+
Returns:
|
| 258 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 259 |
+
"""
|
| 260 |
+
rotary_dim = cos.shape[-1]
|
| 261 |
+
|
| 262 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 263 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 264 |
+
|
| 265 |
+
q_rot = q[..., :rotary_dim]
|
| 266 |
+
q_pass = q[..., rotary_dim:]
|
| 267 |
+
|
| 268 |
+
k_rot = k[..., :rotary_dim]
|
| 269 |
+
k_pass = k[..., rotary_dim:]
|
| 270 |
+
|
| 271 |
+
q_rotated = (q_rot * cos) + (rotate_half(q_rot) * sin)
|
| 272 |
+
k_rotated = (k_rot * cos) + (rotate_half(k_rot) * sin)
|
| 273 |
+
|
| 274 |
+
q_final = torch.cat((q_rotated, q_pass), dim=-1)
|
| 275 |
+
k_final = torch.cat((k_rotated, k_pass), dim=-1)
|
| 276 |
+
|
| 277 |
+
return q_final, k_final
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeMLP with OlmoeMLP->LLaDAMoEMLP
|
| 281 |
+
class LLaDAMoEMLP(nn.Module):
|
| 282 |
+
def __init__(self, config, mlp_type):
|
| 283 |
+
super().__init__()
|
| 284 |
+
self.config = config
|
| 285 |
+
self.hidden_size = config.hidden_size
|
| 286 |
+
if mlp_type == 'dense':
|
| 287 |
+
self.intermediate_size = config.dense_intermediate_size
|
| 288 |
+
elif mlp_type == 'expert':
|
| 289 |
+
self.intermediate_size = config.expert_intermediate_size
|
| 290 |
+
elif mlp_type == 'shared_expert':
|
| 291 |
+
self.intermediate_size = config.shared_expert_intermediate_size
|
| 292 |
+
else:
|
| 293 |
+
assert False, "unknown mlp type"
|
| 294 |
+
|
| 295 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 296 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 297 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 298 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 299 |
+
|
| 300 |
+
def forward(self, x):
|
| 301 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
# copied from transformers.models.olmoe.modeling_olmoe.repeat_kv
|
| 305 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 306 |
+
"""
|
| 307 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 308 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 309 |
+
"""
|
| 310 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 311 |
+
if n_rep == 1:
|
| 312 |
+
return hidden_states
|
| 313 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 314 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeAttention with OlmoeAttention->LLaDAMoEAttention
|
| 318 |
+
class LLaDAMoEAttention(nn.Module):
|
| 319 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 320 |
+
|
| 321 |
+
def __init__(self, config: LLaDAConfig, layer_idx: Optional[int] = None):
|
| 322 |
+
super().__init__()
|
| 323 |
+
self.config = config
|
| 324 |
+
self.layer_idx = layer_idx
|
| 325 |
+
if layer_idx is None:
|
| 326 |
+
logger.warning_once(
|
| 327 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
| 328 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
| 329 |
+
"when creating this class."
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
self.attention_dropout = config.attention_dropout
|
| 333 |
+
self.hidden_size = config.hidden_size
|
| 334 |
+
self.num_heads = config.num_attention_heads
|
| 335 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 336 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 337 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 338 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 339 |
+
self.rope_theta = config.rope_theta
|
| 340 |
+
|
| 341 |
+
# **For diffusion language model, we set is_causal to False by default.**
|
| 342 |
+
self.is_causal = False
|
| 343 |
+
|
| 344 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 345 |
+
raise ValueError(
|
| 346 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 347 |
+
f" and `num_heads`: {self.num_heads})."
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
| 351 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 352 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
| 353 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
| 354 |
+
if config.qk_layernorm:
|
| 355 |
+
self.q_norm = LLaDAMoERMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 356 |
+
self.k_norm = LLaDAMoERMSNorm(
|
| 357 |
+
self.head_dim, eps=config.rms_norm_eps
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
def forward(
|
| 361 |
+
self,
|
| 362 |
+
hidden_states: torch.Tensor,
|
| 363 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 364 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 365 |
+
past_key_value: Optional[Cache] = None,
|
| 366 |
+
output_attentions: bool = False,
|
| 367 |
+
use_cache: bool = False,
|
| 368 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 369 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 370 |
+
**kwargs,
|
| 371 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 372 |
+
bsz, q_len, _ = hidden_states.size()
|
| 373 |
+
|
| 374 |
+
query_states = self.q_proj(hidden_states)
|
| 375 |
+
key_states = self.k_proj(hidden_states)
|
| 376 |
+
if 'q_norm' in dir(self):
|
| 377 |
+
query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
|
| 378 |
+
key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
|
| 379 |
+
value_states = self.v_proj(hidden_states)
|
| 380 |
+
|
| 381 |
+
if self.config.clip_qkv is not None:
|
| 382 |
+
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 383 |
+
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 384 |
+
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 385 |
+
|
| 386 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 387 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 388 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 389 |
+
|
| 390 |
+
cos, sin = position_embeddings
|
| 391 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 392 |
+
|
| 393 |
+
if past_key_value is not None:
|
| 394 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 395 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 396 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 397 |
+
|
| 398 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 399 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 400 |
+
|
| 401 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 402 |
+
|
| 403 |
+
# **For diffusion language model, attention_mask is set to None(full attention) by default.**
|
| 404 |
+
attention_mask = None
|
| 405 |
+
|
| 406 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 407 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 408 |
+
attn_weights = attn_weights + causal_mask
|
| 409 |
+
|
| 410 |
+
# upcast attention to fp32
|
| 411 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 412 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 413 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 414 |
+
|
| 415 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 416 |
+
raise ValueError(
|
| 417 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 418 |
+
f" {attn_output.size()}"
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 422 |
+
|
| 423 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 424 |
+
|
| 425 |
+
attn_output = self.o_proj(attn_output)
|
| 426 |
+
|
| 427 |
+
if not output_attentions:
|
| 428 |
+
attn_weights = None
|
| 429 |
+
|
| 430 |
+
return attn_output, attn_weights, past_key_value
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
# copied from transformers.models.olmoe.modeling_olmoe.FlashAttention2 with OlmoeFlashAttention2->LLaDAMoEFlashAttention2
|
| 434 |
+
class LLaDAMoEFlashAttention2(LLaDAMoEAttention):
|
| 435 |
+
"""
|
| 436 |
+
LLaDAMoE flash attention module. This module inherits from `LLaDAMoEAttention` as the weights of the module stays
|
| 437 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 438 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 439 |
+
"""
|
| 440 |
+
|
| 441 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeFlashAttention2.__init__
|
| 442 |
+
def __init__(self, *args, **kwargs):
|
| 443 |
+
super().__init__(*args, **kwargs)
|
| 444 |
+
|
| 445 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 446 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 447 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 448 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 449 |
+
|
| 450 |
+
def forward(
|
| 451 |
+
self,
|
| 452 |
+
hidden_states: torch.Tensor,
|
| 453 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 454 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 455 |
+
past_key_value: Optional[Cache] = None,
|
| 456 |
+
output_attentions: bool = False,
|
| 457 |
+
use_cache: bool = False,
|
| 458 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 459 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 460 |
+
**kwargs,
|
| 461 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 462 |
+
output_attentions = False
|
| 463 |
+
|
| 464 |
+
bsz, q_len, _ = hidden_states.size()
|
| 465 |
+
|
| 466 |
+
query_states = self.q_proj(hidden_states)
|
| 467 |
+
key_states = self.k_proj(hidden_states)
|
| 468 |
+
if 'q_norm' in dir(self):
|
| 469 |
+
query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
|
| 470 |
+
key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
|
| 471 |
+
value_states = self.v_proj(hidden_states)
|
| 472 |
+
if self.config.clip_qkv is not None:
|
| 473 |
+
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 474 |
+
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 475 |
+
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 476 |
+
|
| 477 |
+
# Flash attention requires the input to have the shape
|
| 478 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 479 |
+
# therefore we just need to keep the original shape
|
| 480 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 481 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 482 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 483 |
+
|
| 484 |
+
cos, sin = position_embeddings
|
| 485 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 486 |
+
|
| 487 |
+
if past_key_value is not None:
|
| 488 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 489 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 490 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 491 |
+
|
| 492 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 493 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 494 |
+
query_states = query_states.transpose(1, 2)
|
| 495 |
+
key_states = key_states.transpose(1, 2)
|
| 496 |
+
value_states = value_states.transpose(1, 2)
|
| 497 |
+
|
| 498 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
| 499 |
+
|
| 500 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 501 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 502 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 503 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 504 |
+
# in fp32. (LLaDAMoERMSNorm handles it correctly)
|
| 505 |
+
|
| 506 |
+
input_dtype = query_states.dtype
|
| 507 |
+
if input_dtype == torch.float32:
|
| 508 |
+
if torch.is_autocast_enabled():
|
| 509 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 510 |
+
# Handle the case where the model is quantized
|
| 511 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 512 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 513 |
+
else:
|
| 514 |
+
target_dtype = self.q_proj.weight.dtype
|
| 515 |
+
|
| 516 |
+
logger.warning_once(
|
| 517 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 518 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 519 |
+
f" {target_dtype}."
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
query_states = query_states.to(target_dtype)
|
| 523 |
+
key_states = key_states.to(target_dtype)
|
| 524 |
+
value_states = value_states.to(target_dtype)
|
| 525 |
+
|
| 526 |
+
# **For diffusion language model, attention_mask is set to None(full attention) by default.**
|
| 527 |
+
attention_mask = None
|
| 528 |
+
self.is_causal = False
|
| 529 |
+
|
| 530 |
+
attn_output = _flash_attention_forward(
|
| 531 |
+
query_states,
|
| 532 |
+
key_states,
|
| 533 |
+
value_states,
|
| 534 |
+
attention_mask,
|
| 535 |
+
q_len,
|
| 536 |
+
dropout=dropout_rate,
|
| 537 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
| 538 |
+
is_causal=self.is_causal,
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 542 |
+
attn_output = self.o_proj(attn_output)
|
| 543 |
+
|
| 544 |
+
if not output_attentions:
|
| 545 |
+
attn_weights = None
|
| 546 |
+
|
| 547 |
+
return attn_output, attn_weights, past_key_value
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeSdpaAttention with OlmoeSdpaAttention->LLaDAMoESdpaAttention
|
| 551 |
+
class LLaDAMoESdpaAttention(LLaDAMoEAttention):
|
| 552 |
+
"""
|
| 553 |
+
LLaDAMoE attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 554 |
+
`LLaDAMoEAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 555 |
+
SDPA API.
|
| 556 |
+
"""
|
| 557 |
+
def forward(
|
| 558 |
+
self,
|
| 559 |
+
hidden_states: torch.Tensor,
|
| 560 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 561 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 562 |
+
past_key_value: Optional[Cache] = None,
|
| 563 |
+
output_attentions: bool = False,
|
| 564 |
+
use_cache: bool = False,
|
| 565 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 566 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 567 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 568 |
+
if output_attentions:
|
| 569 |
+
logger.warning_once(
|
| 570 |
+
"LLaDAModel is using LLaDAMoESdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 571 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 572 |
+
)
|
| 573 |
+
return super().forward(
|
| 574 |
+
hidden_states=hidden_states,
|
| 575 |
+
attention_mask=attention_mask,
|
| 576 |
+
position_ids=position_ids,
|
| 577 |
+
past_key_value=past_key_value,
|
| 578 |
+
output_attentions=output_attentions,
|
| 579 |
+
use_cache=use_cache,
|
| 580 |
+
cache_position=cache_position,
|
| 581 |
+
position_embeddings=position_embeddings,
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
bsz, q_len, _ = hidden_states.size()
|
| 585 |
+
|
| 586 |
+
query_states = self.q_proj(hidden_states)
|
| 587 |
+
key_states = self.k_proj(hidden_states)
|
| 588 |
+
if 'q_norm' in dir(self):
|
| 589 |
+
query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
|
| 590 |
+
key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
|
| 591 |
+
value_states = self.v_proj(hidden_states)
|
| 592 |
+
|
| 593 |
+
if self.config.clip_qkv is not None:
|
| 594 |
+
query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 595 |
+
key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 596 |
+
value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
| 597 |
+
|
| 598 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 599 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 600 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 601 |
+
|
| 602 |
+
cos, sin = position_embeddings
|
| 603 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 604 |
+
|
| 605 |
+
if past_key_value is not None:
|
| 606 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 607 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 608 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 609 |
+
|
| 610 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 611 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 612 |
+
|
| 613 |
+
causal_mask = attention_mask
|
| 614 |
+
# if attention_mask is not None and cache_position is not None:
|
| 615 |
+
if attention_mask is not None:
|
| 616 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
| 617 |
+
|
| 618 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 619 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 620 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
| 621 |
+
query_states = query_states.contiguous()
|
| 622 |
+
key_states = key_states.contiguous()
|
| 623 |
+
value_states = value_states.contiguous()
|
| 624 |
+
|
| 625 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 626 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 627 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
| 628 |
+
|
| 629 |
+
# **For diffusion language model, attention_mask is set to None(full attention) by default.**
|
| 630 |
+
is_causal = False
|
| 631 |
+
causal_mask = None
|
| 632 |
+
|
| 633 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 634 |
+
query_states,
|
| 635 |
+
key_states,
|
| 636 |
+
value_states,
|
| 637 |
+
attn_mask=causal_mask,
|
| 638 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 639 |
+
is_causal=is_causal,
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 643 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
| 644 |
+
|
| 645 |
+
attn_output = self.o_proj(attn_output)
|
| 646 |
+
|
| 647 |
+
return attn_output, None, past_key_value
|
| 648 |
+
|
| 649 |
+
|
| 650 |
+
LLADAMOE_ATTENTION_CLASSES = {
|
| 651 |
+
"eager": LLaDAMoEAttention,
|
| 652 |
+
"flash_attention_2": LLaDAMoEFlashAttention2,
|
| 653 |
+
"sdpa": LLaDAMoESdpaAttention,
|
| 654 |
+
}
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeSparseMoeBlock with OlmoeSparseMoeBlock->LLaDAMoESparseMoeBlock
|
| 658 |
+
class LLaDAMoESparseMoeBlock(nn.Module):
|
| 659 |
+
def __init__(self, config):
|
| 660 |
+
super().__init__()
|
| 661 |
+
self.num_experts = config.num_experts
|
| 662 |
+
self.top_k = config.num_experts_per_tok
|
| 663 |
+
self.norm_topk_prob = False
|
| 664 |
+
self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False)
|
| 665 |
+
self.experts = nn.ModuleList([LLaDAMoEMLP(config, 'expert') for _ in range(self.num_experts)])
|
| 666 |
+
self.score_func = config.moe_router_score_function
|
| 667 |
+
if config.moe_router_enable_expert_bias:
|
| 668 |
+
self.register_buffer("expert_bias", torch.zeros(self.num_experts))
|
| 669 |
+
else:
|
| 670 |
+
self.expert_bias = None
|
| 671 |
+
|
| 672 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 673 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
| 674 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
| 675 |
+
# router_logits: (batch * sequence_length, n_experts)
|
| 676 |
+
router_logits = self.gate(hidden_states)
|
| 677 |
+
|
| 678 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
| 679 |
+
|
| 680 |
+
if self.expert_bias is not None:
|
| 681 |
+
routing_weights += self.expert_bias
|
| 682 |
+
|
| 683 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 684 |
+
if self.norm_topk_prob:
|
| 685 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 686 |
+
# we cast back to the input dtype
|
| 687 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 688 |
+
|
| 689 |
+
final_hidden_states = torch.zeros(
|
| 690 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
| 691 |
+
)
|
| 692 |
+
|
| 693 |
+
# One hot encode the selected experts to create an expert mask
|
| 694 |
+
# this will be used to easily index which expert is going to be selected
|
| 695 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
| 696 |
+
|
| 697 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
| 698 |
+
for expert_idx in range(self.num_experts):
|
| 699 |
+
expert_layer = self.experts[expert_idx]
|
| 700 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
| 701 |
+
|
| 702 |
+
# Index the correct hidden states and compute the expert hidden state for
|
| 703 |
+
# the current expert. We need to make sure to multiply the output hidden
|
| 704 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
| 705 |
+
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
| 706 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
|
| 707 |
+
|
| 708 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
| 709 |
+
# the `top_x` tensor here.
|
| 710 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
| 711 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
| 712 |
+
return final_hidden_states
|
| 713 |
+
|
| 714 |
+
|
| 715 |
+
class LLaDAMoEDecoderLayer(nn.Module):
|
| 716 |
+
def __init__(self, config: LLaDAConfig, layer_idx: int):
|
| 717 |
+
super().__init__()
|
| 718 |
+
self.hidden_size = config.hidden_size
|
| 719 |
+
self.mlp_type = 'dense' if config.moe_layer_freq[layer_idx] == 0 else 'moe'
|
| 720 |
+
|
| 721 |
+
self.self_attn = LLADAMOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
| 722 |
+
|
| 723 |
+
self.mlp = LLaDAMoESparseMoeBlock(config) if self.mlp_type == 'moe' else LLaDAMoEMLP(config, 'dense')
|
| 724 |
+
self.input_layernorm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 725 |
+
self.post_attention_layernorm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 726 |
+
if config.shared_expert_intermediate_size is not None and self.mlp_type == 'moe':
|
| 727 |
+
self.shared_expert = LLaDAMoEMLP(config, 'shared_expert')
|
| 728 |
+
|
| 729 |
+
def forward(
|
| 730 |
+
self,
|
| 731 |
+
hidden_states: torch.Tensor,
|
| 732 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 733 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 734 |
+
past_key_value: Optional[Cache] = None,
|
| 735 |
+
output_attentions: Optional[bool] = False,
|
| 736 |
+
output_router_logits: Optional[bool] = False,
|
| 737 |
+
use_cache: Optional[bool] = False,
|
| 738 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 739 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 740 |
+
**kwargs,
|
| 741 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 742 |
+
"""
|
| 743 |
+
Args:
|
| 744 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 745 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
| 746 |
+
For diffusion language model, attention_mask is set to None(full attention).
|
| 747 |
+
output_attentions (`bool`, *optional*):
|
| 748 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 749 |
+
returned tensors for more detail.
|
| 750 |
+
output_router_logits (`bool`, *optional*):
|
| 751 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
|
| 752 |
+
and should not be returned during inference.
|
| 753 |
+
use_cache (`bool`, *optional*):
|
| 754 |
+
For diffusion language model, use_cache is set to False by default.
|
| 755 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
|
| 756 |
+
For diffusion language model, past_key_value is set to None by default.
|
| 757 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 758 |
+
For diffusion language model, cache_position is set to None by default.
|
| 759 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 760 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 761 |
+
with `head_dim` being the embedding dimension of each attention head.
|
| 762 |
+
kwargs (`dict`, *optional*):
|
| 763 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 764 |
+
into the model
|
| 765 |
+
"""
|
| 766 |
+
residual = hidden_states
|
| 767 |
+
|
| 768 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 769 |
+
|
| 770 |
+
# **For diffusion language model, attention_mask is set to None(full attention) by default.**
|
| 771 |
+
use_cache = False
|
| 772 |
+
attention_mask = None
|
| 773 |
+
|
| 774 |
+
# Self Attention
|
| 775 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 776 |
+
hidden_states=hidden_states,
|
| 777 |
+
attention_mask=attention_mask,
|
| 778 |
+
position_ids=position_ids,
|
| 779 |
+
past_key_value=past_key_value,
|
| 780 |
+
output_attentions=output_attentions,
|
| 781 |
+
use_cache=use_cache,
|
| 782 |
+
cache_position=cache_position,
|
| 783 |
+
position_embeddings=position_embeddings,
|
| 784 |
+
**kwargs,
|
| 785 |
+
)
|
| 786 |
+
hidden_states = residual + hidden_states
|
| 787 |
+
|
| 788 |
+
# Fully Connected
|
| 789 |
+
residual = hidden_states
|
| 790 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 791 |
+
shared_expert_states = hidden_states
|
| 792 |
+
|
| 793 |
+
hidden_states = self.mlp(hidden_states)
|
| 794 |
+
|
| 795 |
+
if hasattr(self, "shared_expert"):
|
| 796 |
+
hidden_states = hidden_states + self.shared_expert(shared_expert_states)
|
| 797 |
+
hidden_states = residual + hidden_states
|
| 798 |
+
|
| 799 |
+
outputs = (hidden_states,)
|
| 800 |
+
|
| 801 |
+
if output_attentions:
|
| 802 |
+
outputs += (self_attn_weights,)
|
| 803 |
+
|
| 804 |
+
if use_cache:
|
| 805 |
+
outputs += (present_key_value,)
|
| 806 |
+
|
| 807 |
+
return outputs
|
| 808 |
+
|
| 809 |
+
|
| 810 |
+
LLADAMOE_START_DOCSTRING = r"""
|
| 811 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 812 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 813 |
+
etc.)
|
| 814 |
+
|
| 815 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 816 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 817 |
+
and behavior.
|
| 818 |
+
|
| 819 |
+
Parameters:
|
| 820 |
+
config ([`LLaDAConfig`]):
|
| 821 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 822 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 823 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 824 |
+
"""
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
@add_start_docstrings(
|
| 828 |
+
"The bare LLaDAMoE Model outputting raw hidden-states without any specific head on top.",
|
| 829 |
+
LLADAMOE_START_DOCSTRING,
|
| 830 |
+
)
|
| 831 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeModel with OlmoePreTrainedModel->LLaDAMoEPreTrainedModel
|
| 832 |
+
class LLaDAMoEPreTrainedModel(PreTrainedModel):
|
| 833 |
+
config_class = LLaDAConfig
|
| 834 |
+
base_model_prefix = "model"
|
| 835 |
+
supports_gradient_checkpointing = True
|
| 836 |
+
_no_split_modules = ["LLaDAMoEDecoderLayer"]
|
| 837 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 838 |
+
_supports_flash_attn_2 = True
|
| 839 |
+
_supports_sdpa = True
|
| 840 |
+
_supports_cache_class = True
|
| 841 |
+
_supports_quantized_cache = True
|
| 842 |
+
_supports_static_cache = True
|
| 843 |
+
|
| 844 |
+
def _init_weights(self, module):
|
| 845 |
+
std = self.config.initializer_range
|
| 846 |
+
if isinstance(module, nn.Linear):
|
| 847 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 848 |
+
if module.bias is not None:
|
| 849 |
+
module.bias.data.zero_()
|
| 850 |
+
elif isinstance(module, nn.Embedding):
|
| 851 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 852 |
+
if module.padding_idx is not None:
|
| 853 |
+
module.weight.data[module.padding_idx].zero_()
|
| 854 |
+
|
| 855 |
+
|
| 856 |
+
LLADAMOE_INPUTS_DOCSTRING = r"""
|
| 857 |
+
Args:
|
| 858 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 859 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 860 |
+
it.
|
| 861 |
+
|
| 862 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 863 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 864 |
+
|
| 865 |
+
[What are input IDs?](../glossary#input-ids)
|
| 866 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 867 |
+
Mask to avoid performing attention on padding token indices.
|
| 868 |
+
**For diffusion language model, attention_mask is set to None(full attention) by default.**
|
| 869 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 870 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 871 |
+
config.n_positions - 1]`.
|
| 872 |
+
|
| 873 |
+
[What are position IDs?](../glossary#position-ids)
|
| 874 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 875 |
+
**For diffusion language model, past_key_values can not be applied by default.**
|
| 876 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 877 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 878 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 879 |
+
model's internal embedding lookup matrix.
|
| 880 |
+
use_cache (`bool`, *optional*):
|
| 881 |
+
For diffusion languagem model, the use_cache and past_key_values can not be enabled for default setting.
|
| 882 |
+
output_attentions (`bool`, *optional*):
|
| 883 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 884 |
+
tensors for more detail.
|
| 885 |
+
output_hidden_states (`bool`, *optional*):
|
| 886 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 887 |
+
more detail.
|
| 888 |
+
output_router_logits (`bool`, *optional*):
|
| 889 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
| 890 |
+
should not be returned during inference.
|
| 891 |
+
return_dict (`bool`, *optional*):
|
| 892 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 893 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 894 |
+
**For diffusion language model, cache_position can not be applied by default.**
|
| 895 |
+
"""
|
| 896 |
+
|
| 897 |
+
|
| 898 |
+
@add_start_docstrings(
|
| 899 |
+
"The bare LLaDAMoE Model outputting raw hidden-states without any specific head on top.",
|
| 900 |
+
LLADAMOE_START_DOCSTRING,
|
| 901 |
+
)
|
| 902 |
+
# copied from transformers.models.olmoe.modeling_olmoe.OlmoeModel with OlmoeModel->LLaDAMoEModel
|
| 903 |
+
class LLaDAMoEModel(LLaDAMoEPreTrainedModel):
|
| 904 |
+
"""
|
| 905 |
+
Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaDAMoEDecoderLayer`]
|
| 906 |
+
|
| 907 |
+
Args:
|
| 908 |
+
config: LLaDAConfig
|
| 909 |
+
"""
|
| 910 |
+
|
| 911 |
+
def __init__(self, config: LLaDAConfig):
|
| 912 |
+
super().__init__(config)
|
| 913 |
+
self.padding_idx = config.pad_token_id
|
| 914 |
+
self.vocab_size = config.vocab_size
|
| 915 |
+
|
| 916 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 917 |
+
self.layers = nn.ModuleList(
|
| 918 |
+
[LLaDAMoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 919 |
+
)
|
| 920 |
+
self.norm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 921 |
+
self.rotary_emb = LLaDAMoERotaryEmbedding(config=config)
|
| 922 |
+
self.gradient_checkpointing = False
|
| 923 |
+
|
| 924 |
+
# Initialize weights and apply final processing
|
| 925 |
+
self.post_init()
|
| 926 |
+
|
| 927 |
+
def get_input_embeddings(self):
|
| 928 |
+
return self.embed_tokens
|
| 929 |
+
|
| 930 |
+
def set_input_embeddings(self, value):
|
| 931 |
+
self.embed_tokens = value
|
| 932 |
+
|
| 933 |
+
@add_start_docstrings_to_model_forward(LLADAMOE_INPUTS_DOCSTRING)
|
| 934 |
+
def forward(
|
| 935 |
+
self,
|
| 936 |
+
input_ids: torch.LongTensor = None,
|
| 937 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 938 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 939 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 940 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 941 |
+
use_cache: Optional[bool] = None,
|
| 942 |
+
output_attentions: Optional[bool] = None,
|
| 943 |
+
output_hidden_states: Optional[bool] = None,
|
| 944 |
+
output_router_logits: Optional[bool] = None,
|
| 945 |
+
return_dict: Optional[bool] = None,
|
| 946 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 947 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
| 948 |
+
assert (not use_cache and past_key_values is None and cache_position is None), "The cache mechanism is not suppotred for LLaDA MoE by default."
|
| 949 |
+
|
| 950 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 951 |
+
output_router_logits = (
|
| 952 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 953 |
+
)
|
| 954 |
+
output_hidden_states = (
|
| 955 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 956 |
+
)
|
| 957 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 958 |
+
|
| 959 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 960 |
+
raise ValueError(
|
| 961 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 962 |
+
)
|
| 963 |
+
|
| 964 |
+
if inputs_embeds is None:
|
| 965 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 966 |
+
|
| 967 |
+
return_legacy_cache = False
|
| 968 |
+
if cache_position is None:
|
| 969 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 970 |
+
cache_position = torch.arange(
|
| 971 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 972 |
+
)
|
| 973 |
+
if position_ids is None:
|
| 974 |
+
position_ids = cache_position.unsqueeze(0)
|
| 975 |
+
|
| 976 |
+
causal_mask = None
|
| 977 |
+
logger.warning_once(
|
| 978 |
+
f"Please note that, unlike autoregressive models, LLaDA MoE employs a bidirectional attention mechanism. "
|
| 979 |
+
f"In the forward code in modeling_lladamoe.py, we set both attention_mask and causal_mask to None, "
|
| 980 |
+
f"which affects the default causal attention and causes the input attention_mask parameter to become ineffective. "
|
| 981 |
+
f"If you pass an attention mask and expect the model to use it for computing other attention mechanisms, "
|
| 982 |
+
f"it may lead to logits and aux_loss returned by the model being inconsistent with your expectations. "
|
| 983 |
+
)
|
| 984 |
+
|
| 985 |
+
# embed positions
|
| 986 |
+
hidden_states = inputs_embeds
|
| 987 |
+
|
| 988 |
+
# create position embeddings to be shared across the decoder layers
|
| 989 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 990 |
+
|
| 991 |
+
# decoder layers
|
| 992 |
+
all_hidden_states = () if output_hidden_states else None
|
| 993 |
+
all_self_attns = () if output_attentions else None
|
| 994 |
+
all_router_logits = () if output_router_logits else None
|
| 995 |
+
next_decoder_cache = None
|
| 996 |
+
|
| 997 |
+
for decoder_layer in self.layers:
|
| 998 |
+
if output_hidden_states:
|
| 999 |
+
all_hidden_states += (hidden_states,)
|
| 1000 |
+
|
| 1001 |
+
if self.gradient_checkpointing and self.training:
|
| 1002 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1003 |
+
decoder_layer.__call__,
|
| 1004 |
+
hidden_states,
|
| 1005 |
+
causal_mask,
|
| 1006 |
+
position_ids,
|
| 1007 |
+
past_key_values,
|
| 1008 |
+
output_attentions,
|
| 1009 |
+
output_router_logits,
|
| 1010 |
+
use_cache,
|
| 1011 |
+
cache_position,
|
| 1012 |
+
position_embeddings,
|
| 1013 |
+
)
|
| 1014 |
+
else:
|
| 1015 |
+
layer_outputs = decoder_layer(
|
| 1016 |
+
hidden_states,
|
| 1017 |
+
attention_mask=causal_mask,
|
| 1018 |
+
position_ids=position_ids,
|
| 1019 |
+
past_key_value=past_key_values,
|
| 1020 |
+
output_attentions=output_attentions,
|
| 1021 |
+
output_router_logits=output_router_logits,
|
| 1022 |
+
use_cache=use_cache,
|
| 1023 |
+
cache_position=cache_position,
|
| 1024 |
+
position_embeddings=position_embeddings,
|
| 1025 |
+
)
|
| 1026 |
+
|
| 1027 |
+
hidden_states = layer_outputs[0]
|
| 1028 |
+
|
| 1029 |
+
if use_cache:
|
| 1030 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 1031 |
+
|
| 1032 |
+
if output_attentions:
|
| 1033 |
+
all_self_attns += (layer_outputs[1],)
|
| 1034 |
+
|
| 1035 |
+
if output_router_logits and layer_outputs[-1] is not None:
|
| 1036 |
+
all_router_logits += (layer_outputs[-1],)
|
| 1037 |
+
|
| 1038 |
+
hidden_states = self.norm(hidden_states)
|
| 1039 |
+
|
| 1040 |
+
# add hidden states from the last layer
|
| 1041 |
+
if output_hidden_states:
|
| 1042 |
+
all_hidden_states += (hidden_states,)
|
| 1043 |
+
|
| 1044 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 1045 |
+
if return_legacy_cache:
|
| 1046 |
+
next_cache = next_cache.to_legacy_cache()
|
| 1047 |
+
|
| 1048 |
+
if not return_dict:
|
| 1049 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 1050 |
+
return MoeModelOutputWithPast(
|
| 1051 |
+
last_hidden_state=hidden_states,
|
| 1052 |
+
past_key_values=next_cache,
|
| 1053 |
+
hidden_states=all_hidden_states,
|
| 1054 |
+
attentions=all_self_attns,
|
| 1055 |
+
router_logits=all_router_logits,
|
| 1056 |
+
)
|
| 1057 |
+
|
| 1058 |
+
|
| 1059 |
+
class LLaDAMoEModelLM(LLaDAMoEPreTrainedModel):
|
| 1060 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1061 |
+
|
| 1062 |
+
def __init__(self, config):
|
| 1063 |
+
super().__init__(config)
|
| 1064 |
+
self.model = LLaDAMoEModel(config)
|
| 1065 |
+
self.vocab_size = config.vocab_size
|
| 1066 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1067 |
+
|
| 1068 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
| 1069 |
+
self.num_experts = config.num_experts
|
| 1070 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
| 1071 |
+
# Initialize weights and apply final processing
|
| 1072 |
+
self.post_init()
|
| 1073 |
+
|
| 1074 |
+
def get_input_embeddings(self):
|
| 1075 |
+
return self.model.embed_tokens
|
| 1076 |
+
|
| 1077 |
+
def set_input_embeddings(self, value):
|
| 1078 |
+
self.model.embed_tokens = value
|
| 1079 |
+
|
| 1080 |
+
def get_output_embeddings(self):
|
| 1081 |
+
return self.lm_head
|
| 1082 |
+
|
| 1083 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1084 |
+
self.lm_head = new_embeddings
|
| 1085 |
+
|
| 1086 |
+
def set_decoder(self, decoder):
|
| 1087 |
+
self.model = decoder
|
| 1088 |
+
|
| 1089 |
+
def get_decoder(self):
|
| 1090 |
+
return self.model
|
| 1091 |
+
|
| 1092 |
+
@add_start_docstrings_to_model_forward(LLADAMOE_INPUTS_DOCSTRING)
|
| 1093 |
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1094 |
+
def forward(
|
| 1095 |
+
self,
|
| 1096 |
+
input_ids: torch.LongTensor = None,
|
| 1097 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1098 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1099 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1100 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1101 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1102 |
+
use_cache: Optional[bool] = None,
|
| 1103 |
+
output_attentions: Optional[bool] = None,
|
| 1104 |
+
output_hidden_states: Optional[bool] = None,
|
| 1105 |
+
output_router_logits: Optional[bool] = None,
|
| 1106 |
+
return_dict: Optional[bool] = None,
|
| 1107 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1108 |
+
num_logits_to_keep: int = 0,
|
| 1109 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
| 1110 |
+
r"""
|
| 1111 |
+
For the current inference code of the diffusion language model, passing the parameters `labels` and `num_logits_to_keep` to compute loss is not supported.
|
| 1112 |
+
Please note that for the diffusion language model, you cannot use model.generate() to generate responses. Please use the provided sampling code to generate model outputs.
|
| 1113 |
+
|
| 1114 |
+
Returns:
|
| 1115 |
+
|
| 1116 |
+
Example:
|
| 1117 |
+
|
| 1118 |
+
```python
|
| 1119 |
+
>>> from transformers import AutoTokenizer, AutoModel
|
| 1120 |
+
|
| 1121 |
+
>>> model = AutoModel.from_pretrained("path/to/LLaDAMoE")
|
| 1122 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("path/to/LLaDAMoE")
|
| 1123 |
+
|
| 1124 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1125 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1126 |
+
|
| 1127 |
+
>>> # Generate
|
| 1128 |
+
>>> generate_ids = generate() # Please use the customized generate method instead of model.generate().
|
| 1129 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1130 |
+
'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
|
| 1131 |
+
```
|
| 1132 |
+
"""
|
| 1133 |
+
assert (labels is None and num_logits_to_keep == 0), "LLaDAMoE model does not support calculate loss in the forward pass."
|
| 1134 |
+
|
| 1135 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1136 |
+
output_router_logits = (
|
| 1137 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
| 1138 |
+
)
|
| 1139 |
+
output_hidden_states = (
|
| 1140 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1141 |
+
)
|
| 1142 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1143 |
+
|
| 1144 |
+
outputs = self.model(
|
| 1145 |
+
input_ids=input_ids,
|
| 1146 |
+
attention_mask=attention_mask,
|
| 1147 |
+
position_ids=position_ids,
|
| 1148 |
+
past_key_values=past_key_values,
|
| 1149 |
+
inputs_embeds=inputs_embeds,
|
| 1150 |
+
use_cache=use_cache,
|
| 1151 |
+
output_attentions=output_attentions,
|
| 1152 |
+
output_hidden_states=output_hidden_states,
|
| 1153 |
+
output_router_logits=output_router_logits,
|
| 1154 |
+
return_dict=return_dict,
|
| 1155 |
+
cache_position=cache_position,
|
| 1156 |
+
)
|
| 1157 |
+
|
| 1158 |
+
hidden_states = outputs[0]
|
| 1159 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
| 1160 |
+
|
| 1161 |
+
loss = None
|
| 1162 |
+
|
| 1163 |
+
aux_loss = None
|
| 1164 |
+
if output_router_logits:
|
| 1165 |
+
aux_loss = load_balancing_loss_func(
|
| 1166 |
+
outputs.router_logits if return_dict else outputs[-1],
|
| 1167 |
+
self.num_experts,
|
| 1168 |
+
self.num_experts_per_tok,
|
| 1169 |
+
attention_mask,
|
| 1170 |
+
)
|
| 1171 |
+
|
| 1172 |
+
if not return_dict:
|
| 1173 |
+
output = (logits,) + outputs[1:]
|
| 1174 |
+
if output_router_logits:
|
| 1175 |
+
output = (aux_loss,) + output
|
| 1176 |
+
return (loss,) + output if loss is not None else output
|
| 1177 |
+
|
| 1178 |
+
return MoeCausalLMOutputWithPast(
|
| 1179 |
+
loss=loss,
|
| 1180 |
+
aux_loss=aux_loss,
|
| 1181 |
+
logits=logits,
|
| 1182 |
+
past_key_values=outputs.past_key_values,
|
| 1183 |
+
hidden_states=outputs.hidden_states,
|
| 1184 |
+
attentions=outputs.attentions,
|
| 1185 |
+
router_logits=outputs.router_logits,
|
| 1186 |
+
)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<|startoftext|>",
|
| 3 |
+
"cls_token": "[CLS]",
|
| 4 |
+
"eos_token": "<|endoftext|>",
|
| 5 |
+
"gmask_token": "[gMASK]",
|
| 6 |
+
"pad_token": "<|endoftext|>",
|
| 7 |
+
"mask_token": "<|mask|>"
|
| 8 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"bos_token": "<|startoftext|>",
|
| 5 |
+
"chat_template": "{% set thinking_option = 'off' %}\n{{- '<role>SYSTEM</role>' }}\n{%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n' }}\n{%- endif %}\n{%- if tools %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call>\\n\" }}\n{%- endif %}\n{{- 'detailed thinking ' + thinking_option + '<|role_end|>' }}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if message.role == \"user\" %}\n {{- '<role>HUMAN</role>' + message.content + '<|role_end|>' }}\n {%- elif message.role == \"system\" and not loop.first %}\n {{- '<role>SYSTEM</role>' + message.content + '<|role_end|>' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if reasoning_content %}\n {{- '<role>ASSISTANT</role>' + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<role>ASSISTANT</role>' + content }}\n {%- endif %}\n {%- else %}\n {{- '<role>ASSISTANT</role>' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|role_end|>' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<role>OBSERVATION</role>' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|role_end|>' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<role>ASSISTANT</role>' }}\n{%- endif %}",
|
| 6 |
+
"clean_up_tokenization_spaces": false,
|
| 7 |
+
"cls_token": "[CLS]",
|
| 8 |
+
"eos_token": "<|endoftext|>",
|
| 9 |
+
"fast_tokenizer": true,
|
| 10 |
+
"gmask_token": "[gMASK]",
|
| 11 |
+
"merges_file": null,
|
| 12 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 13 |
+
"pad_token": "<|endoftext|>",
|
| 14 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 15 |
+
"trust_remote_code": true,
|
| 16 |
+
"vocab_file": null
|
| 17 |
+
}
|