luguoshan commited on
Commit
b385603
·
1 Parent(s): 931097d

First model version

Browse files
README.md ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - dllm
5
+ - diffusion
6
+ - llm
7
+ - text_generation
8
+ library_name: transformers
9
+ ---
10
+ # LLaDA-MoE
11
+
12
+ **LLaDA-MoE** is a new and upgraded series of the LLaDA diffusion language model. This pre-release includes two cutting-edge models:
13
+
14
+ - `LLaDA-MoE-7B-A1B-Base`: A base pre-trained model designed for research and secondary development.
15
+ - `LLaDA-MoE-7B-A1B-Instruct`: An instruction-tuned model optimized for practical applications.
16
+ - `LLaDA-MoE-7B-A1B-Instruct-TD`: A specialized instruction-tuned model, further optimized for accelerated inference using Trajectory Distillation.
17
+ ---
18
+ <div align="center">
19
+ <img src="https://raw.githubusercontent.com/Ulov888/LLaDA_Assets/main/benchmarks_grouped_bar.png" width="800" />
20
+ <img src="https://raw.githubusercontent.com/Ulov888/LLaDA_Assets/main/benchmarks_details_table.png" width="800" />
21
+ </div>
22
+
23
+
24
+
25
+
26
+ ## 🚀 Performance Highlights
27
+
28
+ - **Leading MoE Architecture**:
29
+ The first open-source **Mixture-of-Experts (MoE) diffusion large language model**, pre-trained from scratch on approximately **20 trillion tokens**.
30
+
31
+ - **Efficient Inference**:
32
+ With **7 billion total parameters**, only **1.4 billion** are activated during inference. LLaDA-MoE significantly reduces computational costs while outperforming open-source dense models of similar scale.
33
+
34
+ - **Impressive Performance on Code & Complex Reasoning**:
35
+ Excels in tasks such as **code generation** and **advanced mathematical reasoning**, demonstrating strong reasoning capabilities.
36
+
37
+ - **Tool Use**:
38
+ Supports **tool calling** and achieves excellent performance in complex agent-based tasks.
39
+
40
+ - **Open & Extensible**:
41
+ Fully open-source with commitment to transparency. We plan to release a **leading inference framework** in the future and continue investing in cutting-edge areas like **diffusion LLMs (dLLM)** to drive disruptive innovation.
42
+
43
+ ---
44
+
45
+ ## 📦 Model Variants
46
+
47
+ | Model ID | Description | Hugging Face Link |
48
+ |--------|-------------|-------------------|
49
+ | [`inclusionAI/LLaDA-MoE-7B-A1B-Base`](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base) | Base pre-trained model for research and fine-tuning. | [🤗 Model Card](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base) |
50
+ | [`inclusionAI/LLaDA-MoE-7B-A1B-Instruct`](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Instruct) | Instruction-tuned model, ready for downstream applications. | [🤗 Model Card](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Instruct) |
51
+ | [`inclusionAI/LLaDA-MoE-7B-A1B-Instruct-TD`](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Instruct-TD) | An instruction-tuned model further optimized with **Trajectory Distillation (TD)** for accelerated inference. Decodes multiple tokens per forward pass. | [🤗 Model Card](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Instruct-TD) |
52
+
53
+
54
+ ---
55
+
56
+ ## 🔍 Model Overview
57
+
58
+ **LLaDA-MoE-7B-A1B** has the following specifications:
59
+
60
+ - **Type**: Mixture-of-Experts (MoE) Diffusion Language Model
61
+ - **Total Parameters (Non-Embedding)**: 7.03B
62
+ - **Number of Layers**: 16
63
+ - **Attention Heads**: 16
64
+ - **Context Length**: 4,096 tokens
65
+ - **Position Embedding**: Rotary (RoPE)
66
+ - **Vocabulary Size**: 157,184
67
+
68
+ ---
69
+
70
+ ## ⚡ Infra
71
+ ### 1. We highly recommend you generate with [dInfer](https://github.com/inclusionAI/dInfer)(1000+ Tokens/S)
72
+
73
+ <p align="center">
74
+ <img src="https://raw.githubusercontent.com/inclusionAI/dInfer/refs/heads/master/assets/dinfer_tps.png" alt="dInfer v0.1 speedup" width="600">
75
+ <br>
76
+ <b>Figure</b>: Display of generation speed
77
+ </p>
78
+
79
+ On HumanEval, dInfer achieves over 1,100 TPS at batch size 1, and averages more than 800 TPS across six benchmarks on
80
+ a single node with 8 H800 GPUs.
81
+ #### Install dInfer
82
+
83
+ ```
84
+ git clone https://github.com/inclusionAI/dInfer.git
85
+ cd dInfer
86
+ pip install .
87
+ ```
88
+
89
+ #### Convert to FusedMoE
90
+
91
+ Use the conversion tool to fuse the experts.
92
+
93
+ ```bash
94
+ # From repo root
95
+ python tools/transfer.py \
96
+ --input /path/to/LLaDA-MoE-7B-A1B-Instruct \
97
+ --output /path/to/LLaDA-MoE-7B-A1B-Instruct-fused
98
+ ```
99
+
100
+ #### Use the model in dInfer
101
+
102
+ ```python
103
+ import torch
104
+ from transformers import AutoTokenizer
105
+
106
+ from dinfer.model import AutoModelForCausalLM
107
+ from dinfer.model import FusedOlmoeForCausalLM
108
+ from dinfer import BlockIteratorFactory, KVCacheFactory
109
+ from dinfer import ThresholdParallelDecoder, BlockWiseDiffusionLLM
110
+
111
+ m = "/path/to/LLaDA-MoE-7B-A1B-Instruct-fused"
112
+ tok = AutoTokenizer.from_pretrained(m, trust_remote_code=True)
113
+ model = AutoModelForCausalLM.from_pretrained(m, trust_remote_code=True, torch_dtype="bfloat16")
114
+
115
+ decoder = ThresholdParallelDecoder(0, threshold=0.9)
116
+ dllm = BlockWiseDiffusionLLM(model, decoder, BlockIteratorFactory(True), cache_factory=KVCacheFactory('dual'))
117
+
118
+ prompt = "Lily can run 12 kilometers per hour for 4 hours. After that, she can run 6 kilometers per hour. How many kilometers can she run in 8 hours?"
119
+ input_ids = tokenizer(prompt)['input_ids']
120
+ input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
121
+ res = dllm.generate(input_ids, gen_length=gen_len, block_length=block_len)
122
+ ```
123
+
124
+ ### 2. No Speedup: transformers
125
+
126
+ Make sure you have `transformers` and its dependencies installed:
127
+
128
+ ```python
129
+ import torch
130
+ import numpy as np
131
+ import torch.nn.functional as F
132
+
133
+ from transformers import AutoTokenizer, AutoModel
134
+
135
+
136
+ def add_gumbel_noise(logits, temperature):
137
+ if temperature == 0:
138
+ return logits
139
+ logits = logits.to(torch.float64)
140
+ noise = torch.rand_like(logits, dtype=torch.float64)
141
+ gumbel_noise = (- torch.log(noise)) ** temperature
142
+ return logits.exp() / gumbel_noise
143
+
144
+
145
+ def get_num_transfer_tokens(mask_index, steps):
146
+ mask_num = mask_index.sum(dim=1, keepdim=True)
147
+
148
+ base = mask_num // steps
149
+ remainder = mask_num % steps
150
+
151
+ num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base
152
+
153
+ for i in range(mask_num.size(0)):
154
+ num_transfer_tokens[i, :remainder[i]] += 1
155
+
156
+ return num_transfer_tokens
157
+
158
+
159
+ @ torch.no_grad()
160
+ def generate(model, prompt, steps=128, gen_length=128, block_length=128, temperature=0.,
161
+ cfg_scale=0., remasking='low_confidence', mask_id=156895):
162
+ x = torch.full((1, prompt.shape[1] + gen_length), mask_id, dtype=torch.long).to(model.device)
163
+ x[:, :prompt.shape[1]] = prompt.clone()
164
+ prompt_index = (x != mask_id)
165
+
166
+ assert gen_length % block_length == 0
167
+ num_blocks = gen_length // block_length
168
+ assert steps % num_blocks == 0
169
+ steps = steps // num_blocks
170
+
171
+ for num_block in range(num_blocks):
172
+ block_mask_index = (x[:, prompt.shape[1] + num_block * block_length: prompt.shape[1] + (num_block + 1) * block_length:] == mask_id)
173
+ num_transfer_tokens = get_num_transfer_tokens(block_mask_index, steps)
174
+ for i in range(steps):
175
+ mask_index = (x == mask_id)
176
+ if cfg_scale > 0.:
177
+ un_x = x.clone()
178
+ un_x[prompt_index] = mask_id
179
+ x_ = torch.cat([x, un_x], dim=0)
180
+ logits = model(x_).logits
181
+ logits, un_logits = torch.chunk(logits, 2, dim=0)
182
+ logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
183
+ else:
184
+ logits = model(x).logits
185
+
186
+ logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
187
+ x0 = torch.argmax(logits_with_noise, dim=-1) # b, l
188
+
189
+ if remasking == 'low_confidence':
190
+ p = F.softmax(logits, dim=-1)
191
+ x0_p = torch.squeeze(
192
+ torch.gather(p, dim=-1, index=torch.unsqueeze(x0, -1)), -1) # b, l
193
+ elif remasking == 'random':
194
+ x0_p = torch.rand((x0.shape[0], x0.shape[1]), device=x0.device)
195
+ else:
196
+ raise NotImplementedError(remasking)
197
+
198
+ x0_p[:, prompt.shape[1] + (num_block + 1) * block_length:] = -np.inf
199
+
200
+ x0 = torch.where(mask_index, x0, x)
201
+ confidence = torch.where(mask_index, x0_p, -np.inf)
202
+
203
+ transfer_index = torch.zeros_like(x0, dtype=torch.bool, device=x0.device)
204
+ for j in range(confidence.shape[0]):
205
+ _, select_index = torch.topk(confidence[j], k=num_transfer_tokens[j, i])
206
+ transfer_index[j, select_index] = True
207
+ x[transfer_index] = x0[transfer_index]
208
+
209
+ return x
210
+
211
+
212
+ device = 'cuda'
213
+ model = AutoModel.from_pretrained('inclusionAI/LLaDA-MoE-7B-A1B-Instruct', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device).eval()
214
+ tokenizer = AutoTokenizer.from_pretrained('inclusionAI/LLaDA-MoE-7B-A1B-Instruct', trust_remote_code=True)
215
+
216
+ prompt = "Lily can run 12 kilometers per hour for 4 hours. After that, she runs 6 kilometers per hour. How many kilometers can she run in 8 hours?"
217
+ m = [
218
+ {"role": "system", "content": "You are a helpful AI assistant."},
219
+ {"role": "user", "content": prompt}
220
+ ]
221
+ prompt = tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
222
+
223
+ input_ids = tokenizer(prompt)['input_ids']
224
+ input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
225
+
226
+ text = generate(model, input_ids, steps=128, gen_length=128, block_length=32, temperature=0., cfg_scale=0., remasking='low_confidence')
227
+ print(tokenizer.batch_decode(text[:, input_ids.shape[1]:], skip_special_tokens=False)[0])
228
+
229
+
230
+
231
+
232
+ ```
233
+
234
+
235
+ ## 📚 Citation [LLaDA-MoE](https://arxiv.org/abs/2509.24389)
236
+
237
+ If you find LLaDA-MoE useful in your research or applications, please cite our paper:
238
+ ```
239
+ @article{zhu2025llada,
240
+ title={LLaDA-MoE: A Sparse MoE Diffusion Language Model},
241
+ author={Fengqi Zhu and Zebin You and Yipeng Xing and Zenan Huang and Lin Liu and Yihong Zhuang and Guoshan Lu and Kangyu Wang and Xudong Wang and Lanning Wei and Hongrui Guo and Jiaqi Hu and Wentao Ye and Tieyuan Chen and Chenchen Li and Chengfu Tang and Haibo Feng and Jun Hu and Jun Zhou and Xiaolu Zhang and Zhenzhong Lan and Junbo Zhao and Da Zheng and Chongxuan Li and Jianguo Li and Ji-Rong Wen},
242
+ journal={arXiv preprint arXiv:2509.24389},
243
+ year={2025}
244
+ }
245
+ ```
246
+
247
+ ---
248
+
249
+ ## 🌐 License
250
+
251
+ This project is licensed under the terms of the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
252
+
253
+ ---
254
+
255
+ ## 🤝 Contact & Collaboration
256
+
257
+ For questions, collaborations, or feedback, please reach out via [Hugging Face](https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base) or open an issue in the [repository](https://github.com/inclusionAI).
258
+
259
+ 👉 Join us in advancing open, efficient, and intelligent language models!
config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LLaDAMoEModel"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "clip_qkv": null,
8
+ "dense_intermediate_size": 8192,
9
+ "eos_token_id": 156892,
10
+ "expert_intermediate_size": 1024,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 2048,
13
+ "initializer_range": 0.02,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "llada",
16
+ "moe_layer_freq": [
17
+ 1,
18
+ 1,
19
+ 1,
20
+ 1,
21
+ 1,
22
+ 1,
23
+ 1,
24
+ 1,
25
+ 1,
26
+ 1,
27
+ 1,
28
+ 1,
29
+ 1,
30
+ 1,
31
+ 1,
32
+ 1
33
+ ],
34
+ "moe_router_enable_expert_bias": false,
35
+ "moe_router_score_function": "softmax",
36
+ "norm_topk_prob": null,
37
+ "num_attention_heads": 16,
38
+ "num_experts": 64,
39
+ "num_experts_per_tok": 8,
40
+ "num_hidden_layers": 16,
41
+ "num_key_value_heads": 16,
42
+ "output_router_logits": false,
43
+ "pad_token_id": 156892,
44
+ "partial_rotary_factor": 1,
45
+ "qk_layernorm": true,
46
+ "rms_norm_eps": 1e-05,
47
+ "rope_scaling": null,
48
+ "rope_theta": 50000,
49
+ "routed_scaling_factor": 1,
50
+ "router_aux_loss_coef": 0.01,
51
+ "router_num_group": null,
52
+ "router_topk_group": null,
53
+ "shared_expert_intermediate_size": null,
54
+ "tie_word_embeddings": false,
55
+ "torch_dtype": "bfloat16",
56
+ "transformers_version": "4.53.2",
57
+ "use_cache": false,
58
+ "vocab_size": 157184,
59
+ "auto_map": {
60
+ "AutoConfig": "configuration_lladamoe.LLaDAConfig",
61
+ "AutoModel": "modeling_lladamoe.LLaDAMoEModelLM",
62
+ "AutoModelForCausalLM": "modeling_lladamoe.LLaDAMoEModelLM"
63
+ }
64
+ }
configuration_lladamoe.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ LLaDA MoE configuration
3
+ """
4
+
5
+ from transformers.configuration_utils import PretrainedConfig
6
+ from transformers.modeling_rope_utils import rope_config_validation
7
+
8
+
9
+ class LLaDAConfig(PretrainedConfig):
10
+ model_type = "llada"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=-1,
16
+ hidden_size=-1,
17
+ dense_intermediate_size=-1,
18
+ expert_intermediate_size=-1,
19
+ shared_expert_intermediate_size=-1,
20
+ num_hidden_layers=-1,
21
+ num_attention_heads=-1,
22
+ num_key_value_heads=None,
23
+ hidden_act="silu",
24
+ max_position_embeddings=4096,
25
+ initializer_range=0.02,
26
+ rms_norm_eps=1e-05,
27
+ use_cache=False,
28
+ pad_token_id=1,
29
+ bos_token_id=None,
30
+ eos_token_id=50279,
31
+ tie_word_embeddings=False,
32
+ rope_theta=-1,
33
+ partial_rotary_factor=-1,
34
+ rope_scaling=None,
35
+ attention_bias=False,
36
+ attention_dropout=0.0,
37
+ clip_qkv=None,
38
+ num_experts_per_tok=-1,
39
+ num_experts=-1,
40
+ output_router_logits=False,
41
+ router_aux_loss_coef=0.01,
42
+ norm_topk_prob=None,
43
+ qk_layernorm=None,
44
+ moe_layer_freq=[],
45
+ moe_router_enable_expert_bias=None,
46
+ moe_router_score_function=None,
47
+ routed_scaling_factor=1,
48
+ router_num_group=-2,
49
+ router_topk_group=-2,
50
+ **kwargs,
51
+ ):
52
+ self.vocab_size = vocab_size
53
+ self.max_position_embeddings = max_position_embeddings
54
+ self.hidden_size = hidden_size
55
+ self.expert_intermediate_size = expert_intermediate_size
56
+ self.dense_intermediate_size = dense_intermediate_size
57
+ self.shared_expert_intermediate_size = shared_expert_intermediate_size
58
+ self.num_hidden_layers = num_hidden_layers
59
+ self.num_attention_heads = num_attention_heads
60
+ if num_key_value_heads is None:
61
+ num_key_value_heads = num_attention_heads
62
+ self.num_key_value_heads = num_key_value_heads
63
+
64
+ self.hidden_act = hidden_act
65
+ self.initializer_range = initializer_range
66
+ self.rms_norm_eps = rms_norm_eps
67
+ self.use_cache = use_cache
68
+ self.rope_theta = rope_theta
69
+ self.rope_scaling = rope_scaling
70
+ self.attention_bias = attention_bias
71
+ self.attention_dropout = attention_dropout
72
+ self.clip_qkv = clip_qkv
73
+ self.num_experts_per_tok = num_experts_per_tok
74
+ self.num_experts = num_experts
75
+ self.output_router_logits = output_router_logits
76
+ self.router_aux_loss_coef = router_aux_loss_coef
77
+ self.norm_topk_prob = norm_topk_prob
78
+ self.qk_layernorm = qk_layernorm
79
+ self.moe_layer_freq = moe_layer_freq
80
+ self.moe_router_enable_expert_bias = moe_router_enable_expert_bias
81
+ self.moe_router_score_function = moe_router_score_function
82
+ self.partial_rotary_factor = partial_rotary_factor
83
+ self.routed_scaling_factor = routed_scaling_factor
84
+ self.router_num_group = router_num_group
85
+ self.router_topk_group = router_topk_group
86
+
87
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
88
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
89
+ rope_config_validation(self)
90
+
91
+ super().__init__(
92
+ pad_token_id=pad_token_id,
93
+ bos_token_id=bos_token_id,
94
+ eos_token_id=eos_token_id,
95
+ tie_word_embeddings=tie_word_embeddings,
96
+ **kwargs,
97
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": 156892,
4
+ "pad_token_id": 156892,
5
+ "transformers_version": "4.46.3",
6
+ "use_cache": false
7
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ec8d5f76993f1ffed65648985e0c1b55d77546f9d0d3852552e978ffb9d7ebc
3
+ size 4999258928
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d3643677f1a2e5177944ef7e33a93bafd182d60c68eca62ea0cbdd8fa403cf1
3
+ size 4997188984
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ae6afea005426f3bf1cf91470aa30b30896328f9632aa365c66eacfea1e2cca
3
+ size 4717712520
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_lladamoe.py ADDED
@@ -0,0 +1,1186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """LLaDA MoE model pytorch implementation"""
2
+
3
+ import math
4
+ from typing import List, Optional, Tuple, Union
5
+
6
+ import torch
7
+ import torch.nn.functional as F
8
+ import torch.utils.checkpoint
9
+ from torch import nn
10
+ from torch.nn import CrossEntropyLoss
11
+
12
+ from transformers.activations import ACT2FN
13
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
14
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
15
+ from transformers.modeling_outputs import (
16
+ MoeCausalLMOutputWithPast,
17
+ MoeModelOutputWithPast,
18
+ )
19
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
20
+ from transformers.modeling_utils import PreTrainedModel
21
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
22
+ from transformers.utils import (
23
+ add_start_docstrings,
24
+ add_start_docstrings_to_model_forward,
25
+ is_flash_attn_2_available,
26
+ is_flash_attn_greater_or_equal_2_10,
27
+ logging,
28
+ replace_return_docstrings,
29
+ )
30
+
31
+ from .configuration_lladamoe import LLaDAConfig
32
+
33
+
34
+ if is_flash_attn_2_available():
35
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
36
+
37
+
38
+ logger = logging.get_logger(__name__)
39
+
40
+ _CONFIG_FOR_DOC = "LLaDAConfig"
41
+
42
+
43
+ # Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
44
+ def load_balancing_loss_func(
45
+ gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
46
+ ) -> float:
47
+ r"""
48
+ Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
49
+
50
+ See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
51
+ function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
52
+ experts is too unbalanced.
53
+
54
+ Args:
55
+ gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
56
+ Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
57
+ shape [batch_size X sequence_length, num_experts].
58
+ attention_mask (`torch.Tensor`, *optional*):
59
+ For diffusion language model, attention_mask is set to None by default.
60
+ If you pass an attention mask and expect the model to use it for computing other attention mechanisms,
61
+ it may lead to logits and aux_loss returned by the model being inconsistent with your expectations.
62
+ num_experts (`int`, *optional*):
63
+ Number of experts
64
+
65
+ Returns:
66
+ The auxiliary loss.
67
+ """
68
+ if gate_logits is None or not isinstance(gate_logits, tuple):
69
+ return 0
70
+
71
+ if isinstance(gate_logits, tuple):
72
+ compute_device = gate_logits[0].device
73
+ concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
74
+
75
+ routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
76
+
77
+ _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
78
+
79
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
80
+
81
+ if attention_mask is None:
82
+ # Compute the percentage of tokens routed to each experts
83
+ tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
84
+
85
+ # Compute the average probability of routing to these experts
86
+ router_prob_per_expert = torch.mean(routing_weights, dim=0)
87
+ else:
88
+ batch_size, sequence_length = attention_mask.shape
89
+ num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
90
+
91
+ # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
92
+ expert_attention_mask = (
93
+ attention_mask[None, :, :, None, None]
94
+ .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
95
+ .reshape(-1, top_k, num_experts)
96
+ .to(compute_device)
97
+ )
98
+
99
+ # Compute the percentage of tokens routed to each experts
100
+ tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
101
+ expert_attention_mask, dim=0
102
+ )
103
+
104
+ # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
105
+ router_per_expert_attention_mask = (
106
+ attention_mask[None, :, :, None]
107
+ .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
108
+ .reshape(-1, num_experts)
109
+ .to(compute_device)
110
+ )
111
+
112
+ # Compute the average probability of routing to these experts
113
+ router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
114
+ router_per_expert_attention_mask, dim=0
115
+ )
116
+
117
+ overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
118
+ return overall_loss * num_experts
119
+
120
+ # copied from transformers.models.olmoe.modeling_olmoe.OlmoeRMSNorm -> LLaDAMoERMSNorm
121
+ class LLaDAMoERMSNorm(nn.Module):
122
+ def __init__(self, hidden_size, eps=1e-5):
123
+ """
124
+ LLaDAMoERMSNorm is equivalent to T5LayerNorm
125
+ """
126
+ super().__init__()
127
+ self.weight = nn.Parameter(torch.ones(hidden_size))
128
+ self.variance_epsilon = eps
129
+
130
+ def forward(self, hidden_states):
131
+ input_dtype = hidden_states.dtype
132
+ hidden_states = hidden_states.to(torch.float32)
133
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
134
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
135
+ return self.weight * hidden_states.to(input_dtype)
136
+
137
+ def extra_repr(self):
138
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
139
+
140
+
141
+ ALL_LAYERNORM_LAYERS.append(LLaDAMoERMSNorm)
142
+
143
+ # copied from transformers.models.olmoe.modeling_olmoe.OlmoeRotaryEmbedding -> LLaDAMoERotaryEmbedding
144
+ class LLaDAMoERotaryEmbedding(nn.Module):
145
+ def __init__(
146
+ self,
147
+ dim=None,
148
+ max_position_embeddings=2048,
149
+ base=10000,
150
+ device=None,
151
+ scaling_factor=1.0,
152
+ rope_type="default",
153
+ config: Optional[LLaDAConfig] = None,
154
+ ):
155
+ super().__init__()
156
+ # TODO (joao): remove the `if` below, only used for BC
157
+ self.rope_kwargs = {}
158
+ if config is None:
159
+ logger.warning_once(
160
+ "`LLaDAMoERotaryEmbedding` can now be fully parameterized by passing the model config through the "
161
+ "`config` argument. All other arguments will be removed in v4.46"
162
+ )
163
+ self.rope_kwargs = {
164
+ "rope_type": rope_type,
165
+ "factor": scaling_factor,
166
+ "dim": dim,
167
+ "base": base,
168
+ "max_position_embeddings": max_position_embeddings,
169
+ }
170
+ self.rope_type = rope_type
171
+ self.max_seq_len_cached = max_position_embeddings
172
+ self.original_max_seq_len = max_position_embeddings
173
+ else:
174
+ # BC: "rope_type" was originally "type"
175
+ if config.rope_scaling is not None:
176
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
177
+ else:
178
+ self.rope_type = "default"
179
+ self.max_seq_len_cached = config.max_position_embeddings
180
+ self.original_max_seq_len = config.max_position_embeddings
181
+
182
+ self.config = config
183
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
184
+
185
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
186
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
187
+ self.original_inv_freq = self.inv_freq
188
+
189
+ def _dynamic_frequency_update(self, position_ids, device):
190
+ """
191
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
192
+ 1 - growing beyond the cached sequence length (allow scaling)
193
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
194
+ """
195
+ seq_len = torch.max(position_ids) + 1
196
+ if seq_len > self.max_seq_len_cached: # growth
197
+ inv_freq, self.attention_scaling = self.rope_init_fn(
198
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
199
+ )
200
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
201
+ self.max_seq_len_cached = seq_len
202
+
203
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
204
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
205
+ self.max_seq_len_cached = self.original_max_seq_len
206
+
207
+ @torch.no_grad()
208
+ def forward(self, x, position_ids):
209
+ if "dynamic" in self.rope_type:
210
+ self._dynamic_frequency_update(position_ids, device=x.device)
211
+
212
+ # Core RoPE block
213
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
214
+ position_ids_expanded = position_ids[:, None, :].float()
215
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
216
+ device_type = x.device.type
217
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
218
+ with torch.autocast(device_type=device_type, enabled=False):
219
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
220
+ emb = torch.cat((freqs, freqs), dim=-1)
221
+ cos = emb.cos()
222
+ sin = emb.sin()
223
+
224
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
225
+ cos = cos * self.attention_scaling
226
+ sin = sin * self.attention_scaling
227
+
228
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
229
+
230
+
231
+ # copied from transformers.models.olmoe.modeling_olmoe.rotate_half
232
+ def rotate_half(x):
233
+ """Rotates half the hidden dims of the input."""
234
+ x1 = x[..., : x.shape[-1] // 2]
235
+ x2 = x[..., x.shape[-1] // 2 :]
236
+ return torch.cat((-x2, x1), dim=-1)
237
+
238
+
239
+ # copied from transformers.models.olmoe.modeling_olmoe.apply_rotary_pos_emb
240
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
241
+ """Applies Rotary Position Embedding to the query and key tensors.
242
+
243
+ Args:
244
+ q (`torch.Tensor`): The query tensor.
245
+ k (`torch.Tensor`): The key tensor.
246
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
247
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
248
+ position_ids (`torch.Tensor`, *optional*):
249
+ Deprecated and unused.
250
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
251
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
252
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
253
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
254
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
255
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
256
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
257
+ Returns:
258
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
259
+ """
260
+ rotary_dim = cos.shape[-1]
261
+
262
+ cos = cos.unsqueeze(unsqueeze_dim)
263
+ sin = sin.unsqueeze(unsqueeze_dim)
264
+
265
+ q_rot = q[..., :rotary_dim]
266
+ q_pass = q[..., rotary_dim:]
267
+
268
+ k_rot = k[..., :rotary_dim]
269
+ k_pass = k[..., rotary_dim:]
270
+
271
+ q_rotated = (q_rot * cos) + (rotate_half(q_rot) * sin)
272
+ k_rotated = (k_rot * cos) + (rotate_half(k_rot) * sin)
273
+
274
+ q_final = torch.cat((q_rotated, q_pass), dim=-1)
275
+ k_final = torch.cat((k_rotated, k_pass), dim=-1)
276
+
277
+ return q_final, k_final
278
+
279
+
280
+ # copied from transformers.models.olmoe.modeling_olmoe.OlmoeMLP with OlmoeMLP->LLaDAMoEMLP
281
+ class LLaDAMoEMLP(nn.Module):
282
+ def __init__(self, config, mlp_type):
283
+ super().__init__()
284
+ self.config = config
285
+ self.hidden_size = config.hidden_size
286
+ if mlp_type == 'dense':
287
+ self.intermediate_size = config.dense_intermediate_size
288
+ elif mlp_type == 'expert':
289
+ self.intermediate_size = config.expert_intermediate_size
290
+ elif mlp_type == 'shared_expert':
291
+ self.intermediate_size = config.shared_expert_intermediate_size
292
+ else:
293
+ assert False, "unknown mlp type"
294
+
295
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
296
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
297
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
298
+ self.act_fn = ACT2FN[config.hidden_act]
299
+
300
+ def forward(self, x):
301
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
302
+
303
+
304
+ # copied from transformers.models.olmoe.modeling_olmoe.repeat_kv
305
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
306
+ """
307
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
308
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
309
+ """
310
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
311
+ if n_rep == 1:
312
+ return hidden_states
313
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
314
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
315
+
316
+
317
+ # copied from transformers.models.olmoe.modeling_olmoe.OlmoeAttention with OlmoeAttention->LLaDAMoEAttention
318
+ class LLaDAMoEAttention(nn.Module):
319
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
320
+
321
+ def __init__(self, config: LLaDAConfig, layer_idx: Optional[int] = None):
322
+ super().__init__()
323
+ self.config = config
324
+ self.layer_idx = layer_idx
325
+ if layer_idx is None:
326
+ logger.warning_once(
327
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
328
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
329
+ "when creating this class."
330
+ )
331
+
332
+ self.attention_dropout = config.attention_dropout
333
+ self.hidden_size = config.hidden_size
334
+ self.num_heads = config.num_attention_heads
335
+ self.head_dim = self.hidden_size // self.num_heads
336
+ self.num_key_value_heads = config.num_key_value_heads
337
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
338
+ self.max_position_embeddings = config.max_position_embeddings
339
+ self.rope_theta = config.rope_theta
340
+
341
+ # **For diffusion language model, we set is_causal to False by default.**
342
+ self.is_causal = False
343
+
344
+ if (self.head_dim * self.num_heads) != self.hidden_size:
345
+ raise ValueError(
346
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
347
+ f" and `num_heads`: {self.num_heads})."
348
+ )
349
+
350
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
351
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
352
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
353
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
354
+ if config.qk_layernorm:
355
+ self.q_norm = LLaDAMoERMSNorm(self.head_dim, eps=config.rms_norm_eps)
356
+ self.k_norm = LLaDAMoERMSNorm(
357
+ self.head_dim, eps=config.rms_norm_eps
358
+ )
359
+
360
+ def forward(
361
+ self,
362
+ hidden_states: torch.Tensor,
363
+ attention_mask: Optional[torch.Tensor] = None,
364
+ position_ids: Optional[torch.LongTensor] = None,
365
+ past_key_value: Optional[Cache] = None,
366
+ output_attentions: bool = False,
367
+ use_cache: bool = False,
368
+ cache_position: Optional[torch.LongTensor] = None,
369
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
370
+ **kwargs,
371
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
372
+ bsz, q_len, _ = hidden_states.size()
373
+
374
+ query_states = self.q_proj(hidden_states)
375
+ key_states = self.k_proj(hidden_states)
376
+ if 'q_norm' in dir(self):
377
+ query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
378
+ key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
379
+ value_states = self.v_proj(hidden_states)
380
+
381
+ if self.config.clip_qkv is not None:
382
+ query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
383
+ key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
384
+ value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
385
+
386
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
387
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
388
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
389
+
390
+ cos, sin = position_embeddings
391
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
392
+
393
+ if past_key_value is not None:
394
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
395
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
396
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
397
+
398
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
399
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
400
+
401
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
402
+
403
+ # **For diffusion language model, attention_mask is set to None(full attention) by default.**
404
+ attention_mask = None
405
+
406
+ if attention_mask is not None: # no matter the length, we just slice it
407
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
408
+ attn_weights = attn_weights + causal_mask
409
+
410
+ # upcast attention to fp32
411
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
412
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
413
+ attn_output = torch.matmul(attn_weights, value_states)
414
+
415
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
416
+ raise ValueError(
417
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
418
+ f" {attn_output.size()}"
419
+ )
420
+
421
+ attn_output = attn_output.transpose(1, 2).contiguous()
422
+
423
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
424
+
425
+ attn_output = self.o_proj(attn_output)
426
+
427
+ if not output_attentions:
428
+ attn_weights = None
429
+
430
+ return attn_output, attn_weights, past_key_value
431
+
432
+
433
+ # copied from transformers.models.olmoe.modeling_olmoe.FlashAttention2 with OlmoeFlashAttention2->LLaDAMoEFlashAttention2
434
+ class LLaDAMoEFlashAttention2(LLaDAMoEAttention):
435
+ """
436
+ LLaDAMoE flash attention module. This module inherits from `LLaDAMoEAttention` as the weights of the module stays
437
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
438
+ flash attention and deal with padding tokens in case the input contains any of them.
439
+ """
440
+
441
+ # copied from transformers.models.olmoe.modeling_olmoe.OlmoeFlashAttention2.__init__
442
+ def __init__(self, *args, **kwargs):
443
+ super().__init__(*args, **kwargs)
444
+
445
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
446
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
447
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
448
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
449
+
450
+ def forward(
451
+ self,
452
+ hidden_states: torch.Tensor,
453
+ attention_mask: Optional[torch.LongTensor] = None,
454
+ position_ids: Optional[torch.LongTensor] = None,
455
+ past_key_value: Optional[Cache] = None,
456
+ output_attentions: bool = False,
457
+ use_cache: bool = False,
458
+ cache_position: Optional[torch.LongTensor] = None,
459
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
460
+ **kwargs,
461
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
462
+ output_attentions = False
463
+
464
+ bsz, q_len, _ = hidden_states.size()
465
+
466
+ query_states = self.q_proj(hidden_states)
467
+ key_states = self.k_proj(hidden_states)
468
+ if 'q_norm' in dir(self):
469
+ query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
470
+ key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
471
+ value_states = self.v_proj(hidden_states)
472
+ if self.config.clip_qkv is not None:
473
+ query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
474
+ key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
475
+ value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
476
+
477
+ # Flash attention requires the input to have the shape
478
+ # batch_size x seq_length x head_dim x hidden_dim
479
+ # therefore we just need to keep the original shape
480
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
481
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
482
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
483
+
484
+ cos, sin = position_embeddings
485
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
486
+
487
+ if past_key_value is not None:
488
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
489
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
490
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
491
+
492
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
493
+ # to be able to avoid many of these transpose/reshape/view.
494
+ query_states = query_states.transpose(1, 2)
495
+ key_states = key_states.transpose(1, 2)
496
+ value_states = value_states.transpose(1, 2)
497
+
498
+ dropout_rate = self.attention_dropout if self.training else 0.0
499
+
500
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
501
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
502
+ # cast them back in the correct dtype just to be sure everything works as expected.
503
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
504
+ # in fp32. (LLaDAMoERMSNorm handles it correctly)
505
+
506
+ input_dtype = query_states.dtype
507
+ if input_dtype == torch.float32:
508
+ if torch.is_autocast_enabled():
509
+ target_dtype = torch.get_autocast_gpu_dtype()
510
+ # Handle the case where the model is quantized
511
+ elif hasattr(self.config, "_pre_quantization_dtype"):
512
+ target_dtype = self.config._pre_quantization_dtype
513
+ else:
514
+ target_dtype = self.q_proj.weight.dtype
515
+
516
+ logger.warning_once(
517
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
518
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
519
+ f" {target_dtype}."
520
+ )
521
+
522
+ query_states = query_states.to(target_dtype)
523
+ key_states = key_states.to(target_dtype)
524
+ value_states = value_states.to(target_dtype)
525
+
526
+ # **For diffusion language model, attention_mask is set to None(full attention) by default.**
527
+ attention_mask = None
528
+ self.is_causal = False
529
+
530
+ attn_output = _flash_attention_forward(
531
+ query_states,
532
+ key_states,
533
+ value_states,
534
+ attention_mask,
535
+ q_len,
536
+ dropout=dropout_rate,
537
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
538
+ is_causal=self.is_causal,
539
+ )
540
+
541
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
542
+ attn_output = self.o_proj(attn_output)
543
+
544
+ if not output_attentions:
545
+ attn_weights = None
546
+
547
+ return attn_output, attn_weights, past_key_value
548
+
549
+
550
+ # copied from transformers.models.olmoe.modeling_olmoe.OlmoeSdpaAttention with OlmoeSdpaAttention->LLaDAMoESdpaAttention
551
+ class LLaDAMoESdpaAttention(LLaDAMoEAttention):
552
+ """
553
+ LLaDAMoE attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
554
+ `LLaDAMoEAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
555
+ SDPA API.
556
+ """
557
+ def forward(
558
+ self,
559
+ hidden_states: torch.Tensor,
560
+ attention_mask: Optional[torch.Tensor] = None,
561
+ position_ids: Optional[torch.LongTensor] = None,
562
+ past_key_value: Optional[Cache] = None,
563
+ output_attentions: bool = False,
564
+ use_cache: bool = False,
565
+ cache_position: Optional[torch.LongTensor] = None,
566
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
567
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
568
+ if output_attentions:
569
+ logger.warning_once(
570
+ "LLaDAModel is using LLaDAMoESdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
571
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
572
+ )
573
+ return super().forward(
574
+ hidden_states=hidden_states,
575
+ attention_mask=attention_mask,
576
+ position_ids=position_ids,
577
+ past_key_value=past_key_value,
578
+ output_attentions=output_attentions,
579
+ use_cache=use_cache,
580
+ cache_position=cache_position,
581
+ position_embeddings=position_embeddings,
582
+ )
583
+
584
+ bsz, q_len, _ = hidden_states.size()
585
+
586
+ query_states = self.q_proj(hidden_states)
587
+ key_states = self.k_proj(hidden_states)
588
+ if 'q_norm' in dir(self):
589
+ query_states = self.q_norm(query_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
590
+ key_states = self.k_norm(key_states.reshape(-1, self.head_dim)).reshape(bsz, q_len, -1)
591
+ value_states = self.v_proj(hidden_states)
592
+
593
+ if self.config.clip_qkv is not None:
594
+ query_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
595
+ key_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
596
+ value_states.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
597
+
598
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
599
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
600
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
601
+
602
+ cos, sin = position_embeddings
603
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
604
+
605
+ if past_key_value is not None:
606
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
607
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
608
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
609
+
610
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
611
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
612
+
613
+ causal_mask = attention_mask
614
+ # if attention_mask is not None and cache_position is not None:
615
+ if attention_mask is not None:
616
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
617
+
618
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
619
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
620
+ if query_states.device.type == "cuda" and causal_mask is not None:
621
+ query_states = query_states.contiguous()
622
+ key_states = key_states.contiguous()
623
+ value_states = value_states.contiguous()
624
+
625
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
626
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
627
+ is_causal = True if causal_mask is None and q_len > 1 else False
628
+
629
+ # **For diffusion language model, attention_mask is set to None(full attention) by default.**
630
+ is_causal = False
631
+ causal_mask = None
632
+
633
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
634
+ query_states,
635
+ key_states,
636
+ value_states,
637
+ attn_mask=causal_mask,
638
+ dropout_p=self.attention_dropout if self.training else 0.0,
639
+ is_causal=is_causal,
640
+ )
641
+
642
+ attn_output = attn_output.transpose(1, 2).contiguous()
643
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
644
+
645
+ attn_output = self.o_proj(attn_output)
646
+
647
+ return attn_output, None, past_key_value
648
+
649
+
650
+ LLADAMOE_ATTENTION_CLASSES = {
651
+ "eager": LLaDAMoEAttention,
652
+ "flash_attention_2": LLaDAMoEFlashAttention2,
653
+ "sdpa": LLaDAMoESdpaAttention,
654
+ }
655
+
656
+
657
+ # copied from transformers.models.olmoe.modeling_olmoe.OlmoeSparseMoeBlock with OlmoeSparseMoeBlock->LLaDAMoESparseMoeBlock
658
+ class LLaDAMoESparseMoeBlock(nn.Module):
659
+ def __init__(self, config):
660
+ super().__init__()
661
+ self.num_experts = config.num_experts
662
+ self.top_k = config.num_experts_per_tok
663
+ self.norm_topk_prob = False
664
+ self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False)
665
+ self.experts = nn.ModuleList([LLaDAMoEMLP(config, 'expert') for _ in range(self.num_experts)])
666
+ self.score_func = config.moe_router_score_function
667
+ if config.moe_router_enable_expert_bias:
668
+ self.register_buffer("expert_bias", torch.zeros(self.num_experts))
669
+ else:
670
+ self.expert_bias = None
671
+
672
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
673
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
674
+ hidden_states = hidden_states.view(-1, hidden_dim)
675
+ # router_logits: (batch * sequence_length, n_experts)
676
+ router_logits = self.gate(hidden_states)
677
+
678
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
679
+
680
+ if self.expert_bias is not None:
681
+ routing_weights += self.expert_bias
682
+
683
+ routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
684
+ if self.norm_topk_prob:
685
+ routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
686
+ # we cast back to the input dtype
687
+ routing_weights = routing_weights.to(hidden_states.dtype)
688
+
689
+ final_hidden_states = torch.zeros(
690
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
691
+ )
692
+
693
+ # One hot encode the selected experts to create an expert mask
694
+ # this will be used to easily index which expert is going to be selected
695
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
696
+
697
+ # Loop over all available experts in the model and perform the computation on each expert
698
+ for expert_idx in range(self.num_experts):
699
+ expert_layer = self.experts[expert_idx]
700
+ idx, top_x = torch.where(expert_mask[expert_idx])
701
+
702
+ # Index the correct hidden states and compute the expert hidden state for
703
+ # the current expert. We need to make sure to multiply the output hidden
704
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
705
+ current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
706
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
707
+
708
+ # However `index_add_` only support torch tensors for indexing so we'll use
709
+ # the `top_x` tensor here.
710
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
711
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
712
+ return final_hidden_states
713
+
714
+
715
+ class LLaDAMoEDecoderLayer(nn.Module):
716
+ def __init__(self, config: LLaDAConfig, layer_idx: int):
717
+ super().__init__()
718
+ self.hidden_size = config.hidden_size
719
+ self.mlp_type = 'dense' if config.moe_layer_freq[layer_idx] == 0 else 'moe'
720
+
721
+ self.self_attn = LLADAMOE_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
722
+
723
+ self.mlp = LLaDAMoESparseMoeBlock(config) if self.mlp_type == 'moe' else LLaDAMoEMLP(config, 'dense')
724
+ self.input_layernorm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
725
+ self.post_attention_layernorm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
726
+ if config.shared_expert_intermediate_size is not None and self.mlp_type == 'moe':
727
+ self.shared_expert = LLaDAMoEMLP(config, 'shared_expert')
728
+
729
+ def forward(
730
+ self,
731
+ hidden_states: torch.Tensor,
732
+ attention_mask: Optional[torch.Tensor] = None,
733
+ position_ids: Optional[torch.LongTensor] = None,
734
+ past_key_value: Optional[Cache] = None,
735
+ output_attentions: Optional[bool] = False,
736
+ output_router_logits: Optional[bool] = False,
737
+ use_cache: Optional[bool] = False,
738
+ cache_position: Optional[torch.LongTensor] = None,
739
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
740
+ **kwargs,
741
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
742
+ """
743
+ Args:
744
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
745
+ attention_mask (`torch.FloatTensor`, *optional*):
746
+ For diffusion language model, attention_mask is set to None(full attention).
747
+ output_attentions (`bool`, *optional*):
748
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
749
+ returned tensors for more detail.
750
+ output_router_logits (`bool`, *optional*):
751
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss,
752
+ and should not be returned during inference.
753
+ use_cache (`bool`, *optional*):
754
+ For diffusion language model, use_cache is set to False by default.
755
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
756
+ For diffusion language model, past_key_value is set to None by default.
757
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
758
+ For diffusion language model, cache_position is set to None by default.
759
+ position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
760
+ Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
761
+ with `head_dim` being the embedding dimension of each attention head.
762
+ kwargs (`dict`, *optional*):
763
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
764
+ into the model
765
+ """
766
+ residual = hidden_states
767
+
768
+ hidden_states = self.input_layernorm(hidden_states)
769
+
770
+ # **For diffusion language model, attention_mask is set to None(full attention) by default.**
771
+ use_cache = False
772
+ attention_mask = None
773
+
774
+ # Self Attention
775
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
776
+ hidden_states=hidden_states,
777
+ attention_mask=attention_mask,
778
+ position_ids=position_ids,
779
+ past_key_value=past_key_value,
780
+ output_attentions=output_attentions,
781
+ use_cache=use_cache,
782
+ cache_position=cache_position,
783
+ position_embeddings=position_embeddings,
784
+ **kwargs,
785
+ )
786
+ hidden_states = residual + hidden_states
787
+
788
+ # Fully Connected
789
+ residual = hidden_states
790
+ hidden_states = self.post_attention_layernorm(hidden_states)
791
+ shared_expert_states = hidden_states
792
+
793
+ hidden_states = self.mlp(hidden_states)
794
+
795
+ if hasattr(self, "shared_expert"):
796
+ hidden_states = hidden_states + self.shared_expert(shared_expert_states)
797
+ hidden_states = residual + hidden_states
798
+
799
+ outputs = (hidden_states,)
800
+
801
+ if output_attentions:
802
+ outputs += (self_attn_weights,)
803
+
804
+ if use_cache:
805
+ outputs += (present_key_value,)
806
+
807
+ return outputs
808
+
809
+
810
+ LLADAMOE_START_DOCSTRING = r"""
811
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
812
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
813
+ etc.)
814
+
815
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
816
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
817
+ and behavior.
818
+
819
+ Parameters:
820
+ config ([`LLaDAConfig`]):
821
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
822
+ load the weights associated with the model, only the configuration. Check out the
823
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
824
+ """
825
+
826
+
827
+ @add_start_docstrings(
828
+ "The bare LLaDAMoE Model outputting raw hidden-states without any specific head on top.",
829
+ LLADAMOE_START_DOCSTRING,
830
+ )
831
+ # copied from transformers.models.olmoe.modeling_olmoe.OlmoeModel with OlmoePreTrainedModel->LLaDAMoEPreTrainedModel
832
+ class LLaDAMoEPreTrainedModel(PreTrainedModel):
833
+ config_class = LLaDAConfig
834
+ base_model_prefix = "model"
835
+ supports_gradient_checkpointing = True
836
+ _no_split_modules = ["LLaDAMoEDecoderLayer"]
837
+ _skip_keys_device_placement = ["past_key_values"]
838
+ _supports_flash_attn_2 = True
839
+ _supports_sdpa = True
840
+ _supports_cache_class = True
841
+ _supports_quantized_cache = True
842
+ _supports_static_cache = True
843
+
844
+ def _init_weights(self, module):
845
+ std = self.config.initializer_range
846
+ if isinstance(module, nn.Linear):
847
+ module.weight.data.normal_(mean=0.0, std=std)
848
+ if module.bias is not None:
849
+ module.bias.data.zero_()
850
+ elif isinstance(module, nn.Embedding):
851
+ module.weight.data.normal_(mean=0.0, std=std)
852
+ if module.padding_idx is not None:
853
+ module.weight.data[module.padding_idx].zero_()
854
+
855
+
856
+ LLADAMOE_INPUTS_DOCSTRING = r"""
857
+ Args:
858
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
859
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
860
+ it.
861
+
862
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
863
+ [`PreTrainedTokenizer.__call__`] for details.
864
+
865
+ [What are input IDs?](../glossary#input-ids)
866
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
867
+ Mask to avoid performing attention on padding token indices.
868
+ **For diffusion language model, attention_mask is set to None(full attention) by default.**
869
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
870
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
871
+ config.n_positions - 1]`.
872
+
873
+ [What are position IDs?](../glossary#position-ids)
874
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
875
+ **For diffusion language model, past_key_values can not be applied by default.**
876
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
877
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
878
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
879
+ model's internal embedding lookup matrix.
880
+ use_cache (`bool`, *optional*):
881
+ For diffusion languagem model, the use_cache and past_key_values can not be enabled for default setting.
882
+ output_attentions (`bool`, *optional*):
883
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
884
+ tensors for more detail.
885
+ output_hidden_states (`bool`, *optional*):
886
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
887
+ more detail.
888
+ output_router_logits (`bool`, *optional*):
889
+ Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
890
+ should not be returned during inference.
891
+ return_dict (`bool`, *optional*):
892
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
893
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
894
+ **For diffusion language model, cache_position can not be applied by default.**
895
+ """
896
+
897
+
898
+ @add_start_docstrings(
899
+ "The bare LLaDAMoE Model outputting raw hidden-states without any specific head on top.",
900
+ LLADAMOE_START_DOCSTRING,
901
+ )
902
+ # copied from transformers.models.olmoe.modeling_olmoe.OlmoeModel with OlmoeModel->LLaDAMoEModel
903
+ class LLaDAMoEModel(LLaDAMoEPreTrainedModel):
904
+ """
905
+ Transformer encoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaDAMoEDecoderLayer`]
906
+
907
+ Args:
908
+ config: LLaDAConfig
909
+ """
910
+
911
+ def __init__(self, config: LLaDAConfig):
912
+ super().__init__(config)
913
+ self.padding_idx = config.pad_token_id
914
+ self.vocab_size = config.vocab_size
915
+
916
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
917
+ self.layers = nn.ModuleList(
918
+ [LLaDAMoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
919
+ )
920
+ self.norm = LLaDAMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
921
+ self.rotary_emb = LLaDAMoERotaryEmbedding(config=config)
922
+ self.gradient_checkpointing = False
923
+
924
+ # Initialize weights and apply final processing
925
+ self.post_init()
926
+
927
+ def get_input_embeddings(self):
928
+ return self.embed_tokens
929
+
930
+ def set_input_embeddings(self, value):
931
+ self.embed_tokens = value
932
+
933
+ @add_start_docstrings_to_model_forward(LLADAMOE_INPUTS_DOCSTRING)
934
+ def forward(
935
+ self,
936
+ input_ids: torch.LongTensor = None,
937
+ attention_mask: Optional[torch.Tensor] = None,
938
+ position_ids: Optional[torch.LongTensor] = None,
939
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
940
+ inputs_embeds: Optional[torch.FloatTensor] = None,
941
+ use_cache: Optional[bool] = None,
942
+ output_attentions: Optional[bool] = None,
943
+ output_hidden_states: Optional[bool] = None,
944
+ output_router_logits: Optional[bool] = None,
945
+ return_dict: Optional[bool] = None,
946
+ cache_position: Optional[torch.LongTensor] = None,
947
+ ) -> Union[Tuple, MoeModelOutputWithPast]:
948
+ assert (not use_cache and past_key_values is None and cache_position is None), "The cache mechanism is not suppotred for LLaDA MoE by default."
949
+
950
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
951
+ output_router_logits = (
952
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
953
+ )
954
+ output_hidden_states = (
955
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
956
+ )
957
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
958
+
959
+ if (input_ids is None) ^ (inputs_embeds is not None):
960
+ raise ValueError(
961
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
962
+ )
963
+
964
+ if inputs_embeds is None:
965
+ inputs_embeds = self.embed_tokens(input_ids)
966
+
967
+ return_legacy_cache = False
968
+ if cache_position is None:
969
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
970
+ cache_position = torch.arange(
971
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
972
+ )
973
+ if position_ids is None:
974
+ position_ids = cache_position.unsqueeze(0)
975
+
976
+ causal_mask = None
977
+ logger.warning_once(
978
+ f"Please note that, unlike autoregressive models, LLaDA MoE employs a bidirectional attention mechanism. "
979
+ f"In the forward code in modeling_lladamoe.py, we set both attention_mask and causal_mask to None, "
980
+ f"which affects the default causal attention and causes the input attention_mask parameter to become ineffective. "
981
+ f"If you pass an attention mask and expect the model to use it for computing other attention mechanisms, "
982
+ f"it may lead to logits and aux_loss returned by the model being inconsistent with your expectations. "
983
+ )
984
+
985
+ # embed positions
986
+ hidden_states = inputs_embeds
987
+
988
+ # create position embeddings to be shared across the decoder layers
989
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
990
+
991
+ # decoder layers
992
+ all_hidden_states = () if output_hidden_states else None
993
+ all_self_attns = () if output_attentions else None
994
+ all_router_logits = () if output_router_logits else None
995
+ next_decoder_cache = None
996
+
997
+ for decoder_layer in self.layers:
998
+ if output_hidden_states:
999
+ all_hidden_states += (hidden_states,)
1000
+
1001
+ if self.gradient_checkpointing and self.training:
1002
+ layer_outputs = self._gradient_checkpointing_func(
1003
+ decoder_layer.__call__,
1004
+ hidden_states,
1005
+ causal_mask,
1006
+ position_ids,
1007
+ past_key_values,
1008
+ output_attentions,
1009
+ output_router_logits,
1010
+ use_cache,
1011
+ cache_position,
1012
+ position_embeddings,
1013
+ )
1014
+ else:
1015
+ layer_outputs = decoder_layer(
1016
+ hidden_states,
1017
+ attention_mask=causal_mask,
1018
+ position_ids=position_ids,
1019
+ past_key_value=past_key_values,
1020
+ output_attentions=output_attentions,
1021
+ output_router_logits=output_router_logits,
1022
+ use_cache=use_cache,
1023
+ cache_position=cache_position,
1024
+ position_embeddings=position_embeddings,
1025
+ )
1026
+
1027
+ hidden_states = layer_outputs[0]
1028
+
1029
+ if use_cache:
1030
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1031
+
1032
+ if output_attentions:
1033
+ all_self_attns += (layer_outputs[1],)
1034
+
1035
+ if output_router_logits and layer_outputs[-1] is not None:
1036
+ all_router_logits += (layer_outputs[-1],)
1037
+
1038
+ hidden_states = self.norm(hidden_states)
1039
+
1040
+ # add hidden states from the last layer
1041
+ if output_hidden_states:
1042
+ all_hidden_states += (hidden_states,)
1043
+
1044
+ next_cache = next_decoder_cache if use_cache else None
1045
+ if return_legacy_cache:
1046
+ next_cache = next_cache.to_legacy_cache()
1047
+
1048
+ if not return_dict:
1049
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1050
+ return MoeModelOutputWithPast(
1051
+ last_hidden_state=hidden_states,
1052
+ past_key_values=next_cache,
1053
+ hidden_states=all_hidden_states,
1054
+ attentions=all_self_attns,
1055
+ router_logits=all_router_logits,
1056
+ )
1057
+
1058
+
1059
+ class LLaDAMoEModelLM(LLaDAMoEPreTrainedModel):
1060
+ _tied_weights_keys = ["lm_head.weight"]
1061
+
1062
+ def __init__(self, config):
1063
+ super().__init__(config)
1064
+ self.model = LLaDAMoEModel(config)
1065
+ self.vocab_size = config.vocab_size
1066
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1067
+
1068
+ self.router_aux_loss_coef = config.router_aux_loss_coef
1069
+ self.num_experts = config.num_experts
1070
+ self.num_experts_per_tok = config.num_experts_per_tok
1071
+ # Initialize weights and apply final processing
1072
+ self.post_init()
1073
+
1074
+ def get_input_embeddings(self):
1075
+ return self.model.embed_tokens
1076
+
1077
+ def set_input_embeddings(self, value):
1078
+ self.model.embed_tokens = value
1079
+
1080
+ def get_output_embeddings(self):
1081
+ return self.lm_head
1082
+
1083
+ def set_output_embeddings(self, new_embeddings):
1084
+ self.lm_head = new_embeddings
1085
+
1086
+ def set_decoder(self, decoder):
1087
+ self.model = decoder
1088
+
1089
+ def get_decoder(self):
1090
+ return self.model
1091
+
1092
+ @add_start_docstrings_to_model_forward(LLADAMOE_INPUTS_DOCSTRING)
1093
+ @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1094
+ def forward(
1095
+ self,
1096
+ input_ids: torch.LongTensor = None,
1097
+ attention_mask: Optional[torch.Tensor] = None,
1098
+ position_ids: Optional[torch.LongTensor] = None,
1099
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1100
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1101
+ labels: Optional[torch.LongTensor] = None,
1102
+ use_cache: Optional[bool] = None,
1103
+ output_attentions: Optional[bool] = None,
1104
+ output_hidden_states: Optional[bool] = None,
1105
+ output_router_logits: Optional[bool] = None,
1106
+ return_dict: Optional[bool] = None,
1107
+ cache_position: Optional[torch.LongTensor] = None,
1108
+ num_logits_to_keep: int = 0,
1109
+ ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
1110
+ r"""
1111
+ For the current inference code of the diffusion language model, passing the parameters `labels` and `num_logits_to_keep` to compute loss is not supported.
1112
+ Please note that for the diffusion language model, you cannot use model.generate() to generate responses. Please use the provided sampling code to generate model outputs.
1113
+
1114
+ Returns:
1115
+
1116
+ Example:
1117
+
1118
+ ```python
1119
+ >>> from transformers import AutoTokenizer, AutoModel
1120
+
1121
+ >>> model = AutoModel.from_pretrained("path/to/LLaDAMoE")
1122
+ >>> tokenizer = AutoTokenizer.from_pretrained("path/to/LLaDAMoE")
1123
+
1124
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1125
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1126
+
1127
+ >>> # Generate
1128
+ >>> generate_ids = generate() # Please use the customized generate method instead of model.generate().
1129
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1130
+ 'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
1131
+ ```
1132
+ """
1133
+ assert (labels is None and num_logits_to_keep == 0), "LLaDAMoE model does not support calculate loss in the forward pass."
1134
+
1135
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1136
+ output_router_logits = (
1137
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
1138
+ )
1139
+ output_hidden_states = (
1140
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1141
+ )
1142
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1143
+
1144
+ outputs = self.model(
1145
+ input_ids=input_ids,
1146
+ attention_mask=attention_mask,
1147
+ position_ids=position_ids,
1148
+ past_key_values=past_key_values,
1149
+ inputs_embeds=inputs_embeds,
1150
+ use_cache=use_cache,
1151
+ output_attentions=output_attentions,
1152
+ output_hidden_states=output_hidden_states,
1153
+ output_router_logits=output_router_logits,
1154
+ return_dict=return_dict,
1155
+ cache_position=cache_position,
1156
+ )
1157
+
1158
+ hidden_states = outputs[0]
1159
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
1160
+
1161
+ loss = None
1162
+
1163
+ aux_loss = None
1164
+ if output_router_logits:
1165
+ aux_loss = load_balancing_loss_func(
1166
+ outputs.router_logits if return_dict else outputs[-1],
1167
+ self.num_experts,
1168
+ self.num_experts_per_tok,
1169
+ attention_mask,
1170
+ )
1171
+
1172
+ if not return_dict:
1173
+ output = (logits,) + outputs[1:]
1174
+ if output_router_logits:
1175
+ output = (aux_loss,) + output
1176
+ return (loss,) + output if loss is not None else output
1177
+
1178
+ return MoeCausalLMOutputWithPast(
1179
+ loss=loss,
1180
+ aux_loss=aux_loss,
1181
+ logits=logits,
1182
+ past_key_values=outputs.past_key_values,
1183
+ hidden_states=outputs.hidden_states,
1184
+ attentions=outputs.attentions,
1185
+ router_logits=outputs.router_logits,
1186
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|startoftext|>",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "<|endoftext|>",
5
+ "gmask_token": "[gMASK]",
6
+ "pad_token": "<|endoftext|>",
7
+ "mask_token": "<|mask|>"
8
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "bos_token": "<|startoftext|>",
5
+ "chat_template": "{% set thinking_option = 'off' %}\n{{- '<role>SYSTEM</role>' }}\n{%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n' }}\n{%- endif %}\n{%- if tools %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call>\\n\" }}\n{%- endif %}\n{{- 'detailed thinking ' + thinking_option + '<|role_end|>' }}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if message.role == \"user\" %}\n {{- '<role>HUMAN</role>' + message.content + '<|role_end|>' }}\n {%- elif message.role == \"system\" and not loop.first %}\n {{- '<role>SYSTEM</role>' + message.content + '<|role_end|>' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if reasoning_content %}\n {{- '<role>ASSISTANT</role>' + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<role>ASSISTANT</role>' + content }}\n {%- endif %}\n {%- else %}\n {{- '<role>ASSISTANT</role>' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|role_end|>' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<role>OBSERVATION</role>' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|role_end|>' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<role>ASSISTANT</role>' }}\n{%- endif %}",
6
+ "clean_up_tokenization_spaces": false,
7
+ "cls_token": "[CLS]",
8
+ "eos_token": "<|endoftext|>",
9
+ "fast_tokenizer": true,
10
+ "gmask_token": "[gMASK]",
11
+ "merges_file": null,
12
+ "model_max_length": 1000000000000000019884624838656,
13
+ "pad_token": "<|endoftext|>",
14
+ "tokenizer_class": "PreTrainedTokenizerFast",
15
+ "trust_remote_code": true,
16
+ "vocab_file": null
17
+ }