See axolotl config
axolotl version: 0.8.0.dev0
base_model: AliMaatouk/LLama-3-8B-Tele
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: true
load_in_4bit: false
datasets:
- path: ilahgel/train_dataset
type: completion
field: Statement # <-- colonne question / entrée
response_field: Answer # <-- colonne réponse / cible
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: false
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 6
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
eos_token: <|end_of_text|>
# save_first_step: true # uncomment this to validate checkpoint saving works with your config
outputs/lora-out
This model is a fine-tuned version of AliMaatouk/LLama-3-8B-Tele on the ilahgel/train_dataset dataset. It achieves the following results on the evaluation set:
- Loss: 2.0893
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 647
- num_epochs: 6.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 4.4515 | 0.0009 | 1 | 5.3572 |
| 1.106 | 0.2502 | 270 | 1.6036 |
| 0.818 | 0.5003 | 540 | 1.5649 |
| 1.0485 | 0.7505 | 810 | 1.4442 |
| 1.4447 | 1.0 | 1080 | 1.4195 |
| 0.9753 | 1.2502 | 1350 | 1.5863 |
| 0.7307 | 1.5003 | 1620 | 1.4133 |
| 0.6976 | 1.7505 | 1890 | 1.4350 |
| 0.7043 | 2.0 | 2160 | 1.5619 |
| 0.5593 | 2.2502 | 2430 | 1.5128 |
| 0.6806 | 2.5003 | 2700 | 1.5410 |
| 0.5136 | 2.7505 | 2970 | 1.5258 |
| 0.6413 | 3.0 | 3240 | 1.5198 |
| 0.5054 | 3.2502 | 3510 | 1.6675 |
| 0.4392 | 3.5003 | 3780 | 1.6507 |
| 0.511 | 3.7505 | 4050 | 1.7479 |
| 0.4954 | 4.0 | 4320 | 1.6402 |
| 0.396 | 4.2502 | 4590 | 1.8868 |
| 0.4947 | 4.5003 | 4860 | 1.8823 |
| 0.4051 | 4.7505 | 5130 | 1.8906 |
| 0.4297 | 5.0 | 5400 | 1.8975 |
| 0.3414 | 5.2502 | 5670 | 2.0067 |
| 0.377 | 5.5003 | 5940 | 2.0694 |
| 0.3128 | 5.7505 | 6210 | 2.0893 |
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for ilahgel/llama-8-b
Base model
AliMaatouk/LLama-3-8B-Tele