evaluation results
Browse files
README.md
CHANGED
|
@@ -58,27 +58,238 @@ output = tokenizer.batch_decode(output)
|
|
| 58 |
# print output
|
| 59 |
print(output)
|
| 60 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
**Model Architecture:**
|
| 63 |
Granite-3.1-1B-A400M-Base is based on a decoder-only sparse Mixture of Experts (MoE) transformer architecture. Core components of this architecture are: Fine-grained Experts, Dropless Token Routing, and Load Balancing Loss.
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
**Training Data:**
|
| 84 |
This model is trained on a mix of open source and proprietary data following a two-stage training strategy.
|
|
|
|
| 58 |
# print output
|
| 59 |
print(output)
|
| 60 |
```
|
| 61 |
+
**Evaluation Results:**
|
| 62 |
+
<table>
|
| 63 |
+
<caption><b>HuggingFace Open LLM Leaderboard V1</b></caption>
|
| 64 |
+
<thead>
|
| 65 |
+
<tr>
|
| 66 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
|
| 67 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">ARC-Challenge</th>
|
| 68 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Hellaswag</th>
|
| 69 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU</th>
|
| 70 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">TruthfulQA</th>
|
| 71 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Winogrande</th>
|
| 72 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">GSM8K</th>
|
| 73 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
|
| 74 |
+
</tr></thead>
|
| 75 |
+
<tbody>
|
| 76 |
+
<tr>
|
| 77 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Base</td>
|
| 78 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">63.99</td>
|
| 79 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">83.27</td>
|
| 80 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">63.45</td>
|
| 81 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">51.29</td>
|
| 82 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">78.92</td>
|
| 83 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">60.19</td>
|
| 84 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">66.85</td>
|
| 85 |
+
</tr>
|
| 86 |
+
<tr>
|
| 87 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
|
| 88 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.58</td>
|
| 89 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">77.67</td>
|
| 90 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">52.86</td>
|
| 91 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.02</td>
|
| 92 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">72.84</td>
|
| 93 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">47.99</td>
|
| 94 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">57.32</td>
|
| 95 |
+
</tr>
|
| 96 |
+
<tr>
|
| 97 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
|
| 98 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">50.76</td>
|
| 99 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">74.45</td>
|
| 100 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">48.31</td>
|
| 101 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">39.91</td>
|
| 102 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">69.29</td>
|
| 103 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">40.56</td>
|
| 104 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">53.88</td>
|
| 105 |
+
</tr>
|
| 106 |
+
<tr>
|
| 107 |
+
<td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
|
| 108 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">39.42</td>
|
| 109 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">66.13</td>
|
| 110 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">26.53</td>
|
| 111 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">37.67</td>
|
| 112 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.03</td>
|
| 113 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">18.87</td>
|
| 114 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">31.78</td>
|
| 115 |
+
</tr>
|
| 116 |
+
</tbody></table>
|
| 117 |
+
|
| 118 |
+
<table>
|
| 119 |
+
<caption><b>HuggingFace Open LLM Leaderboard V2</b></caption>
|
| 120 |
+
<thead>
|
| 121 |
+
<tr>
|
| 122 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Models</th>
|
| 123 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">IFEval</th>
|
| 124 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">BBH</th>
|
| 125 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MATH Lvl 5</th>
|
| 126 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">GPQA</th>
|
| 127 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MUSR</th>
|
| 128 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">MMLU-Pro</th>
|
| 129 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">Avg</th>
|
| 130 |
+
</tr></thead>
|
| 131 |
+
<tbody>
|
| 132 |
+
<tr>
|
| 133 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Granite-3.1-8B-Base</td>
|
| 134 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">42.21</td>
|
| 135 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">26.02</td>
|
| 136 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">9.52</td>
|
| 137 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">9.51</td>
|
| 138 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.36</td>
|
| 139 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">24.8</td>
|
| 140 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">20.07</td>
|
| 141 |
+
</tr>
|
| 142 |
+
<tr>
|
| 143 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-2B-Base</td>
|
| 144 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">35.22</td>
|
| 145 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">16.84</td>
|
| 146 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">5.59</td>
|
| 147 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
|
| 148 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.9</td>
|
| 149 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.9</td>
|
| 150 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">13.19</td>
|
| 151 |
+
</tr>
|
| 152 |
+
<tr>
|
| 153 |
+
<td style="text-align:left; background-color: #FFFFFF; color: #2D2D2D;">Granite-3.1-3B-A800M-Base</td>
|
| 154 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">29.96</td>
|
| 155 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">11.91</td>
|
| 156 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">4</td>
|
| 157 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">3.69</td>
|
| 158 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">1.11</td>
|
| 159 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">8.81</td>
|
| 160 |
+
<td style="text-align:center; background-color: #FFFFFF; color: #2D2D2D;">9.91</td>
|
| 161 |
+
</tr>
|
| 162 |
+
<tr>
|
| 163 |
+
<td style="text-align:left; background-color: #DAE8FF; color: #2D2D2D;">Granite-3.1-1B-A400M-Base</td>
|
| 164 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">25.19</td>
|
| 165 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">6.43</td>
|
| 166 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">2.19</td>
|
| 167 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">0.22</td>
|
| 168 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">1.76</td>
|
| 169 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">1.55</td>
|
| 170 |
+
<td style="text-align:center; background-color: #DAE8FF; color: #2D2D2D;">6.22</td>
|
| 171 |
+
</tr>
|
| 172 |
+
</tbody></table>
|
| 173 |
|
| 174 |
**Model Architecture:**
|
| 175 |
Granite-3.1-1B-A400M-Base is based on a decoder-only sparse Mixture of Experts (MoE) transformer architecture. Core components of this architecture are: Fine-grained Experts, Dropless Token Routing, and Load Balancing Loss.
|
| 176 |
|
| 177 |
+
<table>
|
| 178 |
+
<thead>
|
| 179 |
+
<tr>
|
| 180 |
+
<th style="text-align:left; background-color: #001d6c; color: white;">Model</th>
|
| 181 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">2B Dense</th>
|
| 182 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">8B Dense</th>
|
| 183 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">1B MoE</th>
|
| 184 |
+
<th style="text-align:center; background-color: #001d6c; color: white;">3B MoE</th>
|
| 185 |
+
</tr></thead>
|
| 186 |
+
<tbody>
|
| 187 |
+
<tr>
|
| 188 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Embedding size</td>
|
| 189 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">2048</td>
|
| 190 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">4096</td>
|
| 191 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">1024</td>
|
| 192 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">1536</td>
|
| 193 |
+
</tr>
|
| 194 |
+
<tr>
|
| 195 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of layers</td>
|
| 196 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
|
| 197 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
|
| 198 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">24</td>
|
| 199 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
|
| 200 |
+
</tr>
|
| 201 |
+
<tr>
|
| 202 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Attention head size</td>
|
| 203 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
|
| 204 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128</td>
|
| 205 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">64</td>
|
| 206 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">64</td>
|
| 207 |
+
</tr>
|
| 208 |
+
<tr>
|
| 209 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of attention heads</td>
|
| 210 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
|
| 211 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">32</td>
|
| 212 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">16</td>
|
| 213 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">24</td>
|
| 214 |
+
</tr>
|
| 215 |
+
<tr>
|
| 216 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of KV heads</td>
|
| 217 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
| 218 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
| 219 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
|
| 220 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
| 221 |
+
</tr>
|
| 222 |
+
<tr>
|
| 223 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">MLP hidden size</td>
|
| 224 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8192</td>
|
| 225 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">12800</td>
|
| 226 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">512</td>
|
| 227 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">512</td>
|
| 228 |
+
</tr>
|
| 229 |
+
<tr>
|
| 230 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">MLP activation</td>
|
| 231 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
|
| 232 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
|
| 233 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">SwiGLU</td>
|
| 234 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">SwiGLU</td>
|
| 235 |
+
</tr>
|
| 236 |
+
<tr>
|
| 237 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Number of experts</td>
|
| 238 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
| 239 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
| 240 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">32</td>
|
| 241 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">40</td>
|
| 242 |
+
</tr>
|
| 243 |
+
<tr>
|
| 244 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">MoE TopK</td>
|
| 245 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
| 246 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">—</td>
|
| 247 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">8</td>
|
| 248 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8</td>
|
| 249 |
+
</tr>
|
| 250 |
+
<tr>
|
| 251 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Initialization std</td>
|
| 252 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
|
| 253 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
|
| 254 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">0.1</td>
|
| 255 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">0.1</td>
|
| 256 |
+
</tr>
|
| 257 |
+
<tr>
|
| 258 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Sequence length</td>
|
| 259 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
|
| 260 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
|
| 261 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">128K</td>
|
| 262 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">128K</td>
|
| 263 |
+
</tr>
|
| 264 |
+
<tr>
|
| 265 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;">Position embedding</td>
|
| 266 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
|
| 267 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
|
| 268 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">RoPE</td>
|
| 269 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">RoPE</td>
|
| 270 |
+
</tr>
|
| 271 |
+
<tr>
|
| 272 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Parameters</td>
|
| 273 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
|
| 274 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
|
| 275 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">1.3B</td>
|
| 276 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">3.3B</td>
|
| 277 |
+
</tr>
|
| 278 |
+
<tr>
|
| 279 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Active parameters</td>
|
| 280 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">2.5B</td>
|
| 281 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">8.1B</td>
|
| 282 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">400M</td>
|
| 283 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">800M</td>
|
| 284 |
+
</tr>
|
| 285 |
+
<tr>
|
| 286 |
+
<td style="text-align:left; background-color: #FFFFFF; color: black;"># Training tokens</td>
|
| 287 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
|
| 288 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">12T</td>
|
| 289 |
+
<td style="text-align:center; background-color: #DAE8FF; color: black;">10T</td>
|
| 290 |
+
<td style="text-align:center; background-color: #FFFFFF; color: black;">10T</td>
|
| 291 |
+
</tr>
|
| 292 |
+
</tbody></table>
|
| 293 |
|
| 294 |
**Training Data:**
|
| 295 |
This model is trained on a mix of open source and proprietary data following a two-stage training strategy.
|