--- license: cc-by-nc-nd-4.0 --- # Vietnamese Speech-to-Text (ASR) โ€” ZipFormer-30M-RNNT-6000h ## ๐Ÿ” Overview The **Vietnamese Speech-to-Text (ASR)** model is built on the **ZipFormer architecture** โ€” an improved variant of the Conformer โ€” featuring only **30 million parameters** yet achieving **exceptional performance** in both speed and accuracy. On CPU, the model can transcribe a **12-second audio clip in just 0.3 seconds**, significantly faster than most traditional ASR systems without requiring a GPU. --- ## ๐Ÿš€ Online Demo You can try the model directly here: ๐Ÿ‘‰ https://huggingface.co/spaces/hynt/k2-automatic-speech-recognition-demo --- ## โš™๏ธ Model Architecture and Training strategy: - **Architecture:** ZipFormer - **Parameters:** ~30M - **Language:** Vietnamese - **Loss Function:** RNN-Transducer (RNNT Loss) - **Framework:** PyTorch + k2 - **Training strategy**: Carefully preprocess the data, apply an augmentation strategy based on the distribution of out-of-vocabulary (OOV) tokens and refine the transcriptions using Whisper. - **Optimized for:** High-speed CPU inference --- ## ๐Ÿง  Training Data The model was trained on approximately **6000 hours of high-quality Vietnamese speech** collected from various public datasets: | Dataset | | | |----------|----------|----------| | VLSP2020 | VLSP2021 | VLSP2023-voting-pseudo-labeled | | VLSP2023 | FPT | VIET_BUD500 | | VietSpeech | FLEURS | VietMed_Labeled | | Sub-GigaSpeech2-Vi | ViVoice | Sub-PhoAudioBook | --- ## ๐Ÿงช Evaluation Results | **Dataset** | **ZipFormer-30M-6000h** | **ChunkFormer-110M-3000h** | **PhoWhisper-Large-1.5B-800h** | **VietASR-ZipFormer-68M-70.000h** | |--------------|--------------------------|-----------------------------|--------------------------------|---------------------------------| | **VLSP2020-Test-T1** | **12.29** | 14.09 | 13.75 | 14.45 | | **VLSP2023-PublicTest** | **10.40** | 16.15 | 16.83 | 14.70 | | **VLSP2023-PrivateTest** | **11.10** | 17.12 | 17.10 | 15.07 | | **VLSP2025-PublicTest** | **7.97** | 15.55 | 16.14 | 13.55 | | **VLSP2025-PrivateTest** | **8.10** | 16.07 | 16.31 | 13.97 | | **GigaSpeech2-Test** | 7.56 | 10.35 | 10.00 | **6.88** | > Lower is better (WER %) --- ## ๐Ÿ† Achievements By training this model architecture on 4,000 hours of data, I **won First Place** in the **Vietnamese Language Speech Processing (VLSP)** competition **2025**. Comprehensive details about **training data**, **optimization strategies**, **architecture improvements**, and **evaluation methodologies** are available in the paper below: ๐Ÿ‘‰ [Read the full paper on Overleaf](https://www.overleaf.com/read/wjntrgchhbgv#48aa25) --- ## โšก Inference Speed | **Device** | **Audio Length** | **Inference Time** | |-------------|------------------|--------------------| | CPU (Hugging Face Basic) | 12 seconds | **0.3 s** | | GPU (RTX 3090) | 12 seconds | **< 0.1 s** | --- ## โš™๏ธ How to Run This Model Please refer to the following guides for instructions on how to run and deploy this model: - **For Torch JIT Script:** [https://k2-fsa.github.io/sherpa/](https://k2-fsa.github.io/sherpa/) - **For ONNX:** [https://k2-fsa.github.io/sherpa/onnx/](https://k2-fsa.github.io/sherpa/onnx/) ## ๐Ÿ’ฌ Summary The **ZipFormer-30M-RNNT-6000h** model demonstrates that a lightweight architecture can still achieve state-of-the-art accuracy for Vietnamese ASR. It is designed for **fast deployment on CPU-based systems**, making it ideal for **real-time speech recognition**, **callbots**, and **embedded speech interfaces**. ---