Upload folder using huggingface_hub
Browse files- README.md +207 -0
- adapter_config.json +33 -0
- adapter_model.safetensors +3 -0
- additional_config.json +1 -0
- args.json +367 -0
- global_step1098/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step1098/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step1098/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step1098/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step1098/mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +2244 -0
- training_args.bin +3 -0
- zero_to_fp32.py +760 -0
README.md
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-Omni-7B
|
| 3 |
+
library_name: peft
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
+
tags:
|
| 6 |
+
- base_model:adapter:/workspace/haoran-cloud/models/Qwen2.5-Omni-7B/qwen/Qwen2___5-Omni-7B
|
| 7 |
+
- lora
|
| 8 |
+
- transformers
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Model Card for Model ID
|
| 12 |
+
|
| 13 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
## Model Details
|
| 18 |
+
|
| 19 |
+
### Model Description
|
| 20 |
+
|
| 21 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
- **Developed by:** [More Information Needed]
|
| 26 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 27 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 28 |
+
- **Model type:** [More Information Needed]
|
| 29 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 30 |
+
- **License:** [More Information Needed]
|
| 31 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 32 |
+
|
| 33 |
+
### Model Sources [optional]
|
| 34 |
+
|
| 35 |
+
<!-- Provide the basic links for the model. -->
|
| 36 |
+
|
| 37 |
+
- **Repository:** [More Information Needed]
|
| 38 |
+
- **Paper [optional]:** [More Information Needed]
|
| 39 |
+
- **Demo [optional]:** [More Information Needed]
|
| 40 |
+
|
| 41 |
+
## Uses
|
| 42 |
+
|
| 43 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 44 |
+
|
| 45 |
+
### Direct Use
|
| 46 |
+
|
| 47 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 48 |
+
|
| 49 |
+
[More Information Needed]
|
| 50 |
+
|
| 51 |
+
### Downstream Use [optional]
|
| 52 |
+
|
| 53 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 54 |
+
|
| 55 |
+
[More Information Needed]
|
| 56 |
+
|
| 57 |
+
### Out-of-Scope Use
|
| 58 |
+
|
| 59 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 60 |
+
|
| 61 |
+
[More Information Needed]
|
| 62 |
+
|
| 63 |
+
## Bias, Risks, and Limitations
|
| 64 |
+
|
| 65 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 66 |
+
|
| 67 |
+
[More Information Needed]
|
| 68 |
+
|
| 69 |
+
### Recommendations
|
| 70 |
+
|
| 71 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 72 |
+
|
| 73 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 74 |
+
|
| 75 |
+
## How to Get Started with the Model
|
| 76 |
+
|
| 77 |
+
Use the code below to get started with the model.
|
| 78 |
+
|
| 79 |
+
[More Information Needed]
|
| 80 |
+
|
| 81 |
+
## Training Details
|
| 82 |
+
|
| 83 |
+
### Training Data
|
| 84 |
+
|
| 85 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 86 |
+
|
| 87 |
+
[More Information Needed]
|
| 88 |
+
|
| 89 |
+
### Training Procedure
|
| 90 |
+
|
| 91 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 92 |
+
|
| 93 |
+
#### Preprocessing [optional]
|
| 94 |
+
|
| 95 |
+
[More Information Needed]
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
#### Training Hyperparameters
|
| 99 |
+
|
| 100 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 101 |
+
|
| 102 |
+
#### Speeds, Sizes, Times [optional]
|
| 103 |
+
|
| 104 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 105 |
+
|
| 106 |
+
[More Information Needed]
|
| 107 |
+
|
| 108 |
+
## Evaluation
|
| 109 |
+
|
| 110 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 111 |
+
|
| 112 |
+
### Testing Data, Factors & Metrics
|
| 113 |
+
|
| 114 |
+
#### Testing Data
|
| 115 |
+
|
| 116 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 117 |
+
|
| 118 |
+
[More Information Needed]
|
| 119 |
+
|
| 120 |
+
#### Factors
|
| 121 |
+
|
| 122 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 123 |
+
|
| 124 |
+
[More Information Needed]
|
| 125 |
+
|
| 126 |
+
#### Metrics
|
| 127 |
+
|
| 128 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 129 |
+
|
| 130 |
+
[More Information Needed]
|
| 131 |
+
|
| 132 |
+
### Results
|
| 133 |
+
|
| 134 |
+
[More Information Needed]
|
| 135 |
+
|
| 136 |
+
#### Summary
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
## Model Examination [optional]
|
| 141 |
+
|
| 142 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 143 |
+
|
| 144 |
+
[More Information Needed]
|
| 145 |
+
|
| 146 |
+
## Environmental Impact
|
| 147 |
+
|
| 148 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 149 |
+
|
| 150 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 151 |
+
|
| 152 |
+
- **Hardware Type:** [More Information Needed]
|
| 153 |
+
- **Hours used:** [More Information Needed]
|
| 154 |
+
- **Cloud Provider:** [More Information Needed]
|
| 155 |
+
- **Compute Region:** [More Information Needed]
|
| 156 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 157 |
+
|
| 158 |
+
## Technical Specifications [optional]
|
| 159 |
+
|
| 160 |
+
### Model Architecture and Objective
|
| 161 |
+
|
| 162 |
+
[More Information Needed]
|
| 163 |
+
|
| 164 |
+
### Compute Infrastructure
|
| 165 |
+
|
| 166 |
+
[More Information Needed]
|
| 167 |
+
|
| 168 |
+
#### Hardware
|
| 169 |
+
|
| 170 |
+
[More Information Needed]
|
| 171 |
+
|
| 172 |
+
#### Software
|
| 173 |
+
|
| 174 |
+
[More Information Needed]
|
| 175 |
+
|
| 176 |
+
## Citation [optional]
|
| 177 |
+
|
| 178 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 179 |
+
|
| 180 |
+
**BibTeX:**
|
| 181 |
+
|
| 182 |
+
[More Information Needed]
|
| 183 |
+
|
| 184 |
+
**APA:**
|
| 185 |
+
|
| 186 |
+
[More Information Needed]
|
| 187 |
+
|
| 188 |
+
## Glossary [optional]
|
| 189 |
+
|
| 190 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 191 |
+
|
| 192 |
+
[More Information Needed]
|
| 193 |
+
|
| 194 |
+
## More Information [optional]
|
| 195 |
+
|
| 196 |
+
[More Information Needed]
|
| 197 |
+
|
| 198 |
+
## Model Card Authors [optional]
|
| 199 |
+
|
| 200 |
+
[More Information Needed]
|
| 201 |
+
|
| 202 |
+
## Model Card Contact
|
| 203 |
+
|
| 204 |
+
[More Information Needed]
|
| 205 |
+
### Framework versions
|
| 206 |
+
|
| 207 |
+
- PEFT 0.16.0
|
adapter_config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "/workspace/haoran-cloud/models/Qwen2.5-Omni-7B/qwen/Qwen2___5-Omni-7B",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"corda_config": null,
|
| 7 |
+
"eva_config": null,
|
| 8 |
+
"exclude_modules": null,
|
| 9 |
+
"fan_in_fan_out": false,
|
| 10 |
+
"inference_mode": true,
|
| 11 |
+
"init_lora_weights": true,
|
| 12 |
+
"layer_replication": null,
|
| 13 |
+
"layers_pattern": null,
|
| 14 |
+
"layers_to_transform": null,
|
| 15 |
+
"loftq_config": {},
|
| 16 |
+
"lora_alpha": 32,
|
| 17 |
+
"lora_bias": false,
|
| 18 |
+
"lora_dropout": 0.05,
|
| 19 |
+
"megatron_config": null,
|
| 20 |
+
"megatron_core": "megatron.core",
|
| 21 |
+
"modules_to_save": [],
|
| 22 |
+
"peft_type": "LORA",
|
| 23 |
+
"qalora_group_size": 16,
|
| 24 |
+
"r": 8,
|
| 25 |
+
"rank_pattern": {},
|
| 26 |
+
"revision": null,
|
| 27 |
+
"target_modules": "^(thinker.model.*\\.(v_proj|gate_proj|o_proj|up_proj|down_proj|k_proj|q_proj))$",
|
| 28 |
+
"task_type": "CAUSAL_LM",
|
| 29 |
+
"trainable_token_indices": null,
|
| 30 |
+
"use_dora": false,
|
| 31 |
+
"use_qalora": false,
|
| 32 |
+
"use_rslora": false
|
| 33 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dbe70527e61de1778638f21c96914388e75884dfd71bced5df5ac87d0979f8be
|
| 3 |
+
size 40425344
|
additional_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lora_dtype": null, "lorap_lr_ratio": null, "lorap_emb_lr": 1e-06}
|
args.json
ADDED
|
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"output_dir": "/workspace/haoran-cloud/omni/OmniCritic/nothink-outputs/v1-20250918-084101",
|
| 3 |
+
"overwrite_output_dir": false,
|
| 4 |
+
"do_train": true,
|
| 5 |
+
"do_eval": false,
|
| 6 |
+
"do_predict": false,
|
| 7 |
+
"eval_strategy": "no",
|
| 8 |
+
"prediction_loss_only": false,
|
| 9 |
+
"per_device_train_batch_size": 1,
|
| 10 |
+
"per_device_eval_batch_size": 1,
|
| 11 |
+
"per_gpu_train_batch_size": null,
|
| 12 |
+
"per_gpu_eval_batch_size": null,
|
| 13 |
+
"gradient_accumulation_steps": 12,
|
| 14 |
+
"eval_accumulation_steps": null,
|
| 15 |
+
"eval_delay": 0,
|
| 16 |
+
"torch_empty_cache_steps": null,
|
| 17 |
+
"learning_rate": 5e-06,
|
| 18 |
+
"weight_decay": 0.1,
|
| 19 |
+
"adam_beta1": 0.9,
|
| 20 |
+
"adam_beta2": 0.95,
|
| 21 |
+
"adam_epsilon": 1e-08,
|
| 22 |
+
"max_grad_norm": 1.0,
|
| 23 |
+
"num_train_epochs": 2.0,
|
| 24 |
+
"max_steps": -1,
|
| 25 |
+
"lr_scheduler_type": "cosine",
|
| 26 |
+
"lr_scheduler_kwargs": null,
|
| 27 |
+
"warmup_ratio": 0.03,
|
| 28 |
+
"warmup_steps": 0,
|
| 29 |
+
"log_level": "passive",
|
| 30 |
+
"log_level_replica": "warning",
|
| 31 |
+
"log_on_each_node": true,
|
| 32 |
+
"logging_dir": "/workspace/haoran-cloud/omni/OmniCritic/nothink-outputs/v1-20250918-084101/runs",
|
| 33 |
+
"logging_strategy": "steps",
|
| 34 |
+
"logging_first_step": true,
|
| 35 |
+
"logging_steps": 5,
|
| 36 |
+
"logging_nan_inf_filter": true,
|
| 37 |
+
"save_strategy": "steps",
|
| 38 |
+
"save_steps": 100.0,
|
| 39 |
+
"save_total_limit": 4,
|
| 40 |
+
"save_safetensors": true,
|
| 41 |
+
"save_on_each_node": false,
|
| 42 |
+
"save_only_model": false,
|
| 43 |
+
"restore_callback_states_from_checkpoint": false,
|
| 44 |
+
"no_cuda": false,
|
| 45 |
+
"use_cpu": false,
|
| 46 |
+
"use_mps_device": false,
|
| 47 |
+
"seed": 42,
|
| 48 |
+
"data_seed": 42,
|
| 49 |
+
"jit_mode_eval": false,
|
| 50 |
+
"use_ipex": false,
|
| 51 |
+
"bf16": true,
|
| 52 |
+
"fp16": false,
|
| 53 |
+
"fp16_opt_level": "O1",
|
| 54 |
+
"half_precision_backend": "auto",
|
| 55 |
+
"bf16_full_eval": false,
|
| 56 |
+
"fp16_full_eval": false,
|
| 57 |
+
"tf32": null,
|
| 58 |
+
"local_rank": 0,
|
| 59 |
+
"ddp_backend": null,
|
| 60 |
+
"tpu_num_cores": null,
|
| 61 |
+
"tpu_metrics_debug": false,
|
| 62 |
+
"debug": null,
|
| 63 |
+
"dataloader_drop_last": false,
|
| 64 |
+
"eval_steps": 100.0,
|
| 65 |
+
"dataloader_num_workers": 2,
|
| 66 |
+
"dataloader_prefetch_factor": null,
|
| 67 |
+
"past_index": -1,
|
| 68 |
+
"run_name": "/workspace/haoran-cloud/omni/OmniCritic/nothink-outputs/v1-20250918-084101",
|
| 69 |
+
"disable_tqdm": null,
|
| 70 |
+
"remove_unused_columns": true,
|
| 71 |
+
"label_names": null,
|
| 72 |
+
"load_best_model_at_end": false,
|
| 73 |
+
"metric_for_best_model": "loss",
|
| 74 |
+
"greater_is_better": false,
|
| 75 |
+
"ignore_data_skip": false,
|
| 76 |
+
"fsdp": "",
|
| 77 |
+
"fsdp_min_num_params": 0,
|
| 78 |
+
"fsdp_config": null,
|
| 79 |
+
"fsdp_transformer_layer_cls_to_wrap": null,
|
| 80 |
+
"accelerator_config": {
|
| 81 |
+
"dispatch_batches": false
|
| 82 |
+
},
|
| 83 |
+
"deepspeed": {
|
| 84 |
+
"fp16": {
|
| 85 |
+
"enabled": "auto",
|
| 86 |
+
"loss_scale": 0,
|
| 87 |
+
"loss_scale_window": 1000,
|
| 88 |
+
"initial_scale_power": 16,
|
| 89 |
+
"hysteresis": 2,
|
| 90 |
+
"min_loss_scale": 1
|
| 91 |
+
},
|
| 92 |
+
"bf16": {
|
| 93 |
+
"enabled": "auto"
|
| 94 |
+
},
|
| 95 |
+
"zero_optimization": {
|
| 96 |
+
"stage": 2,
|
| 97 |
+
"offload_optimizer": {
|
| 98 |
+
"device": "none",
|
| 99 |
+
"pin_memory": true
|
| 100 |
+
},
|
| 101 |
+
"allgather_partitions": true,
|
| 102 |
+
"allgather_bucket_size": 200000000.0,
|
| 103 |
+
"overlap_comm": false,
|
| 104 |
+
"reduce_scatter": true,
|
| 105 |
+
"reduce_bucket_size": 200000000.0,
|
| 106 |
+
"contiguous_gradients": true
|
| 107 |
+
},
|
| 108 |
+
"gradient_accumulation_steps": "auto",
|
| 109 |
+
"gradient_clipping": "auto",
|
| 110 |
+
"steps_per_print": 2000,
|
| 111 |
+
"train_batch_size": "auto",
|
| 112 |
+
"train_micro_batch_size_per_gpu": "auto",
|
| 113 |
+
"wall_clock_breakdown": false
|
| 114 |
+
},
|
| 115 |
+
"label_smoothing_factor": 0.0,
|
| 116 |
+
"optim": "adamw_torch",
|
| 117 |
+
"optim_args": null,
|
| 118 |
+
"adafactor": false,
|
| 119 |
+
"group_by_length": false,
|
| 120 |
+
"length_column_name": "length",
|
| 121 |
+
"report_to": [
|
| 122 |
+
"tensorboard"
|
| 123 |
+
],
|
| 124 |
+
"ddp_find_unused_parameters": null,
|
| 125 |
+
"ddp_bucket_cap_mb": null,
|
| 126 |
+
"ddp_broadcast_buffers": null,
|
| 127 |
+
"dataloader_pin_memory": true,
|
| 128 |
+
"dataloader_persistent_workers": false,
|
| 129 |
+
"skip_memory_metrics": true,
|
| 130 |
+
"use_legacy_prediction_loop": false,
|
| 131 |
+
"push_to_hub": false,
|
| 132 |
+
"resume_from_checkpoint": null,
|
| 133 |
+
"hub_model_id": null,
|
| 134 |
+
"hub_strategy": "every_save",
|
| 135 |
+
"hub_token": null,
|
| 136 |
+
"hub_private_repo": null,
|
| 137 |
+
"hub_always_push": false,
|
| 138 |
+
"hub_revision": null,
|
| 139 |
+
"gradient_checkpointing": true,
|
| 140 |
+
"gradient_checkpointing_kwargs": null,
|
| 141 |
+
"include_inputs_for_metrics": false,
|
| 142 |
+
"include_for_metrics": [],
|
| 143 |
+
"eval_do_concat_batches": true,
|
| 144 |
+
"fp16_backend": "auto",
|
| 145 |
+
"push_to_hub_model_id": null,
|
| 146 |
+
"push_to_hub_organization": null,
|
| 147 |
+
"push_to_hub_token": null,
|
| 148 |
+
"mp_parameters": "",
|
| 149 |
+
"auto_find_batch_size": false,
|
| 150 |
+
"full_determinism": false,
|
| 151 |
+
"torchdynamo": null,
|
| 152 |
+
"ray_scope": "last",
|
| 153 |
+
"ddp_timeout": 18000000,
|
| 154 |
+
"torch_compile": false,
|
| 155 |
+
"torch_compile_backend": null,
|
| 156 |
+
"torch_compile_mode": null,
|
| 157 |
+
"include_tokens_per_second": false,
|
| 158 |
+
"include_num_input_tokens_seen": false,
|
| 159 |
+
"neftune_noise_alpha": null,
|
| 160 |
+
"optim_target_modules": null,
|
| 161 |
+
"batch_eval_metrics": false,
|
| 162 |
+
"eval_on_start": false,
|
| 163 |
+
"use_liger_kernel": false,
|
| 164 |
+
"liger_kernel_config": null,
|
| 165 |
+
"eval_use_gather_object": false,
|
| 166 |
+
"average_tokens_across_devices": false,
|
| 167 |
+
"sortish_sampler": false,
|
| 168 |
+
"predict_with_generate": false,
|
| 169 |
+
"generation_max_length": null,
|
| 170 |
+
"generation_num_beams": null,
|
| 171 |
+
"generation_config": null,
|
| 172 |
+
"vit_gradient_checkpointing": null,
|
| 173 |
+
"check_model": true,
|
| 174 |
+
"acc_strategy": "token",
|
| 175 |
+
"train_dataloader_shuffle": true,
|
| 176 |
+
"max_epochs": null,
|
| 177 |
+
"aligner_lr": null,
|
| 178 |
+
"vit_lr": null,
|
| 179 |
+
"optimizer": null,
|
| 180 |
+
"use_logits_to_keep": null,
|
| 181 |
+
"channels": null,
|
| 182 |
+
"ds3_gather_for_generation": true,
|
| 183 |
+
"resume_only_model": false,
|
| 184 |
+
"metric_warmup_step": 0,
|
| 185 |
+
"fsdp_num": 1,
|
| 186 |
+
"acc_steps": 1,
|
| 187 |
+
"eval_use_evalscope": false,
|
| 188 |
+
"eval_dataset": [],
|
| 189 |
+
"eval_dataset_args": null,
|
| 190 |
+
"eval_limit": null,
|
| 191 |
+
"eval_generation_config": null,
|
| 192 |
+
"model": "/workspace/haoran-cloud/models/Qwen2.5-Omni-7B/qwen/Qwen2___5-Omni-7B/",
|
| 193 |
+
"model_type": "qwen2_5_omni",
|
| 194 |
+
"model_revision": null,
|
| 195 |
+
"task_type": "causal_lm",
|
| 196 |
+
"torch_dtype": "bfloat16",
|
| 197 |
+
"attn_impl": null,
|
| 198 |
+
"new_special_tokens": [],
|
| 199 |
+
"num_labels": null,
|
| 200 |
+
"problem_type": null,
|
| 201 |
+
"rope_scaling": null,
|
| 202 |
+
"device_map": null,
|
| 203 |
+
"max_memory": {},
|
| 204 |
+
"local_repo_path": null,
|
| 205 |
+
"init_strategy": null,
|
| 206 |
+
"template": "qwen2_5_omni",
|
| 207 |
+
"system": null,
|
| 208 |
+
"max_length": 3072,
|
| 209 |
+
"truncation_strategy": "delete",
|
| 210 |
+
"max_pixels": null,
|
| 211 |
+
"agent_template": null,
|
| 212 |
+
"norm_bbox": null,
|
| 213 |
+
"use_chat_template": true,
|
| 214 |
+
"padding_free": false,
|
| 215 |
+
"padding_side": "right",
|
| 216 |
+
"loss_scale": "default",
|
| 217 |
+
"sequence_parallel_size": 1,
|
| 218 |
+
"response_prefix": null,
|
| 219 |
+
"template_backend": "swift",
|
| 220 |
+
"dataset": [
|
| 221 |
+
"/workspace/haoran-cloud/omni/nothinking-training/dataset/audio/new_final_sft_data.jsonl",
|
| 222 |
+
"/workspace/haoran-cloud/omni/nothinking-training/dataset/video/new_final_sft_data.jsonl",
|
| 223 |
+
"/workspace/haoran-cloud/omni/nothinking-training/dataset/image/new_final_sft_data.jsonl"
|
| 224 |
+
],
|
| 225 |
+
"val_dataset": [],
|
| 226 |
+
"split_dataset_ratio": 0.0,
|
| 227 |
+
"dataset_num_proc": 1,
|
| 228 |
+
"load_from_cache_file": true,
|
| 229 |
+
"dataset_shuffle": true,
|
| 230 |
+
"val_dataset_shuffle": false,
|
| 231 |
+
"streaming": false,
|
| 232 |
+
"interleave_prob": null,
|
| 233 |
+
"stopping_strategy": "first_exhausted",
|
| 234 |
+
"shuffle_buffer_size": 1000,
|
| 235 |
+
"download_mode": "reuse_dataset_if_exists",
|
| 236 |
+
"columns": {},
|
| 237 |
+
"strict": false,
|
| 238 |
+
"model_name": null,
|
| 239 |
+
"model_author": null,
|
| 240 |
+
"custom_dataset_info": [],
|
| 241 |
+
"quant_method": null,
|
| 242 |
+
"quant_bits": null,
|
| 243 |
+
"hqq_axis": null,
|
| 244 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
| 245 |
+
"bnb_4bit_quant_type": "nf4",
|
| 246 |
+
"bnb_4bit_use_double_quant": true,
|
| 247 |
+
"bnb_4bit_quant_storage": null,
|
| 248 |
+
"max_new_tokens": 64,
|
| 249 |
+
"temperature": 0.0,
|
| 250 |
+
"top_k": null,
|
| 251 |
+
"top_p": null,
|
| 252 |
+
"repetition_penalty": null,
|
| 253 |
+
"num_beams": 1,
|
| 254 |
+
"stream": false,
|
| 255 |
+
"stop_words": [],
|
| 256 |
+
"logprobs": false,
|
| 257 |
+
"top_logprobs": null,
|
| 258 |
+
"ckpt_dir": null,
|
| 259 |
+
"lora_modules": [],
|
| 260 |
+
"tuner_backend": "peft",
|
| 261 |
+
"train_type": "lora",
|
| 262 |
+
"adapters": [],
|
| 263 |
+
"external_plugins": [],
|
| 264 |
+
"model_kwargs": {},
|
| 265 |
+
"load_args": false,
|
| 266 |
+
"load_data_args": false,
|
| 267 |
+
"packing": false,
|
| 268 |
+
"custom_register_path": [],
|
| 269 |
+
"use_hf": false,
|
| 270 |
+
"ignore_args_error": false,
|
| 271 |
+
"use_swift_lora": false,
|
| 272 |
+
"freeze_parameters": [],
|
| 273 |
+
"freeze_parameters_regex": null,
|
| 274 |
+
"freeze_parameters_ratio": 0.0,
|
| 275 |
+
"trainable_parameters": [],
|
| 276 |
+
"trainable_parameters_regex": null,
|
| 277 |
+
"freeze_llm": false,
|
| 278 |
+
"freeze_vit": true,
|
| 279 |
+
"freeze_aligner": true,
|
| 280 |
+
"target_modules": [
|
| 281 |
+
"all-linear"
|
| 282 |
+
],
|
| 283 |
+
"target_regex": null,
|
| 284 |
+
"modules_to_save": [],
|
| 285 |
+
"lora_rank": 8,
|
| 286 |
+
"lora_alpha": 32,
|
| 287 |
+
"lora_dropout": 0.05,
|
| 288 |
+
"lora_bias": "none",
|
| 289 |
+
"lora_dtype": null,
|
| 290 |
+
"lorap_lr_ratio": null,
|
| 291 |
+
"use_rslora": false,
|
| 292 |
+
"use_dora": false,
|
| 293 |
+
"lora_ga_batch_size": 2,
|
| 294 |
+
"lora_ga_iters": 2,
|
| 295 |
+
"lora_ga_max_length": 1024,
|
| 296 |
+
"lora_ga_direction": "ArB2r",
|
| 297 |
+
"lora_ga_scale": "stable",
|
| 298 |
+
"lora_ga_stable_gamma": 16,
|
| 299 |
+
"init_weights": true,
|
| 300 |
+
"fourier_n_frequency": 2000,
|
| 301 |
+
"fourier_scaling": 300.0,
|
| 302 |
+
"boft_block_size": 4,
|
| 303 |
+
"boft_block_num": 0,
|
| 304 |
+
"boft_n_butterfly_factor": 1,
|
| 305 |
+
"boft_dropout": 0.0,
|
| 306 |
+
"vera_rank": 256,
|
| 307 |
+
"vera_projection_prng_key": 0,
|
| 308 |
+
"vera_dropout": 0.0,
|
| 309 |
+
"vera_d_initial": 0.1,
|
| 310 |
+
"adapter_act": "gelu",
|
| 311 |
+
"adapter_length": 128,
|
| 312 |
+
"use_galore": false,
|
| 313 |
+
"galore_target_modules": null,
|
| 314 |
+
"galore_rank": 128,
|
| 315 |
+
"galore_update_proj_gap": 50,
|
| 316 |
+
"galore_scale": 1.0,
|
| 317 |
+
"galore_proj_type": "std",
|
| 318 |
+
"galore_optim_per_parameter": false,
|
| 319 |
+
"galore_with_embedding": false,
|
| 320 |
+
"galore_quantization": false,
|
| 321 |
+
"galore_proj_quant": false,
|
| 322 |
+
"galore_proj_bits": 4,
|
| 323 |
+
"galore_proj_group_size": 256,
|
| 324 |
+
"galore_cos_threshold": 0.4,
|
| 325 |
+
"galore_gamma_proj": 2,
|
| 326 |
+
"galore_queue_size": 5,
|
| 327 |
+
"adalora_target_r": 8,
|
| 328 |
+
"adalora_init_r": 12,
|
| 329 |
+
"adalora_tinit": 0,
|
| 330 |
+
"adalora_tfinal": 0,
|
| 331 |
+
"adalora_deltaT": 1,
|
| 332 |
+
"adalora_beta1": 0.85,
|
| 333 |
+
"adalora_beta2": 0.85,
|
| 334 |
+
"adalora_orth_reg_weight": 0.5,
|
| 335 |
+
"llamapro_num_new_blocks": 4,
|
| 336 |
+
"llamapro_num_groups": null,
|
| 337 |
+
"lisa_activated_layers": 0,
|
| 338 |
+
"lisa_step_interval": 20,
|
| 339 |
+
"reft_layer_key": null,
|
| 340 |
+
"reft_layers": null,
|
| 341 |
+
"reft_rank": 4,
|
| 342 |
+
"reft_intervention_type": "LoreftIntervention",
|
| 343 |
+
"reft_args": null,
|
| 344 |
+
"swanlab_token": null,
|
| 345 |
+
"swanlab_project": null,
|
| 346 |
+
"swanlab_workspace": null,
|
| 347 |
+
"swanlab_exp_name": null,
|
| 348 |
+
"swanlab_lark_webhook_url": null,
|
| 349 |
+
"swanlab_lark_secret": null,
|
| 350 |
+
"swanlab_mode": "cloud",
|
| 351 |
+
"add_version": true,
|
| 352 |
+
"create_checkpoint_symlink": false,
|
| 353 |
+
"lazy_tokenize": true,
|
| 354 |
+
"loss_type": null,
|
| 355 |
+
"metric": null,
|
| 356 |
+
"zero_hpz_partition_size": null,
|
| 357 |
+
"rank": 0,
|
| 358 |
+
"global_world_size": 4,
|
| 359 |
+
"local_world_size": 4,
|
| 360 |
+
"model_suffix": "Qwen2.5-Omni-7B",
|
| 361 |
+
"model_info": "ModelInfo(model_type='qwen2_5_omni', model_dir='/workspace/haoran-cloud/models/Qwen2.5-Omni-7B/qwen/Qwen2___5-Omni-7B', torch_dtype=torch.bfloat16, max_model_len=32768, quant_method=None, quant_bits=None, rope_scaling={'mrope_section': [16, 24, 24], 'rope_type': 'default', 'type': 'default'}, is_moe_model=False, config=None, task_type='causal_lm', num_labels=None)",
|
| 362 |
+
"model_meta": "ModelMeta(model_type='qwen2_5_omni', model_groups=[ModelGroup(models=[Model(ms_model_id='Qwen/Qwen2.5-Omni-3B', hf_model_id='Qwen/Qwen2.5-Omni-3B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Omni-7B', hf_model_id='Qwen/Qwen2.5-Omni-7B', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='qwen2_5_omni', get_function=<function get_model_tokenizer_qwen2_5_omni at 0x7f6750ba7420>, model_arch='qwen2_5_omni', architectures=['Qwen2_5OmniModel', 'Qwen2_5OmniForConditionalGeneration'], additional_saved_files=['spk_dict.pt'], torch_dtype=None, is_multimodal=True, is_reward=False, task_type=None, ignore_patterns=[], requires=['transformers>=4.50', 'soundfile', 'qwen_omni_utils', 'decord'], tags=['vision', 'video', 'audio'])",
|
| 363 |
+
"model_dir": "/workspace/haoran-cloud/models/Qwen2.5-Omni-7B/qwen/Qwen2___5-Omni-7B",
|
| 364 |
+
"hub": "<class 'swift.hub.hub.MSHub'>",
|
| 365 |
+
"evaluation_strategy": "steps",
|
| 366 |
+
"training_args": "Seq2SeqTrainingArguments(output_dir='/workspace/haoran-cloud/omni/OmniCritic/nothink-outputs/v1-20250918-084101', overwrite_output_dir=False, do_train=True, do_eval=False, do_predict=False, eval_strategy=<IntervalStrategy.NO: 'no'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=12, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=5e-06, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=2.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.03, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/workspace/haoran-cloud/omni/OmniCritic/nothink-outputs/v1-20250918-084101/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=100, save_total_limit=4, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=100.0, dataloader_num_workers=2, dataloader_prefetch_factor=10, past_index=-1, run_name='/workspace/haoran-cloud/omni/OmniCritic/nothink-outputs/v1-20250918-084101', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 2, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'allgather_partitions': True, 'allgather_bucket_size': 200000000.0, 'overlap_comm': False, 'reduce_scatter': True, 'reduce_bucket_size': 200000000.0, 'contiguous_gradients': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, hub_revision=None, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=18000000, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, liger_kernel_config=None, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, vit_gradient_checkpointing=True, check_model=True, acc_strategy='token', train_dataloader_shuffle=True, max_epochs=None, aligner_lr=None, vit_lr=None, optimizer=None, use_logits_to_keep=None, channels=None, ds3_gather_for_generation=True, resume_only_model=False, metric_warmup_step=0, fsdp_num=1, acc_steps=1, eval_use_evalscope=False, eval_dataset=[], eval_dataset_args=None, eval_limit=None, eval_generation_config=None, sft_alpha=0, train_type='lora', local_repo_path=None, galore_config=None)"
|
| 367 |
+
}
|
global_step1098/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fa2800f7cb28f5a6e5bd08ccfa247ec1ad4bb8425c85bac7adc1cf0086e4822d
|
| 3 |
+
size 60570224
|
global_step1098/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dbfbb2cc207d9b4a4ec27e5ddd806c7cc922f16eaeae3aac40965398bbf0779f
|
| 3 |
+
size 60570288
|
global_step1098/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:57f7273127a5090701c8853e1462719576db19fd017481d16d1dfa4063b64ac6
|
| 3 |
+
size 60570352
|
global_step1098/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:78d88c5efd388646ad06842420291df0dbf1ad1093b54fcfe19eea6437a02032
|
| 3 |
+
size 60570352
|
global_step1098/mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ecc5e2020b9048676daf8ae5fa8f3d2eb3d6eeb8cac020f18579f52ae40c8ded
|
| 3 |
+
size 40901816
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step1098
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:44db698130de8a15418c674ee00a25c86d0d4dec58e9bf7a888def28ea3b2d4a
|
| 3 |
+
size 15024
|
rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:557232deb7c22baf07e93e20a562ff1bcf79026611e8896b43bee52d0169c848
|
| 3 |
+
size 15024
|
rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:98629a99a0bbea55ffd2edbbbec950d83e2411b407c75bb13562ff478b4d61cd
|
| 3 |
+
size 15024
|
rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3cf86bde132c134fc8c349ff9821df3c09d776e7ff9b0384bf545f0473ea45e3
|
| 3 |
+
size 15024
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd94944a325240c3c366378ddb559791cf9fe3903dde65a230985e02116cab81
|
| 3 |
+
size 1064
|
trainer_state.json
ADDED
|
@@ -0,0 +1,2244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 2.0,
|
| 6 |
+
"eval_steps": 100.0,
|
| 7 |
+
"global_step": 1100,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.0018203883495145632,
|
| 14 |
+
"grad_norm": 3.6015546321868896,
|
| 15 |
+
"learning_rate": 1.5151515151515152e-07,
|
| 16 |
+
"loss": 0.5787061452865601,
|
| 17 |
+
"memory(GiB)": 40.37,
|
| 18 |
+
"step": 1,
|
| 19 |
+
"token_acc": 0.8690476190476191,
|
| 20 |
+
"train_speed(iter/s)": 0.029162
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"epoch": 0.009101941747572815,
|
| 24 |
+
"grad_norm": 3.435741424560547,
|
| 25 |
+
"learning_rate": 7.575757575757576e-07,
|
| 26 |
+
"loss": 0.5881168842315674,
|
| 27 |
+
"memory(GiB)": 40.37,
|
| 28 |
+
"step": 5,
|
| 29 |
+
"token_acc": 0.8701684836471755,
|
| 30 |
+
"train_speed(iter/s)": 0.06174
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.01820388349514563,
|
| 34 |
+
"grad_norm": 3.448568105697632,
|
| 35 |
+
"learning_rate": 1.5151515151515152e-06,
|
| 36 |
+
"loss": 0.5851926326751709,
|
| 37 |
+
"memory(GiB)": 40.39,
|
| 38 |
+
"step": 10,
|
| 39 |
+
"token_acc": 0.8622327790973872,
|
| 40 |
+
"train_speed(iter/s)": 0.067399
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"epoch": 0.027305825242718445,
|
| 44 |
+
"grad_norm": 3.405535936355591,
|
| 45 |
+
"learning_rate": 2.2727272727272728e-06,
|
| 46 |
+
"loss": 0.6001698970794678,
|
| 47 |
+
"memory(GiB)": 40.39,
|
| 48 |
+
"step": 15,
|
| 49 |
+
"token_acc": 0.8716323296354992,
|
| 50 |
+
"train_speed(iter/s)": 0.068625
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"epoch": 0.03640776699029126,
|
| 54 |
+
"grad_norm": 3.6892027854919434,
|
| 55 |
+
"learning_rate": 3.0303030303030305e-06,
|
| 56 |
+
"loss": 0.5676679611206055,
|
| 57 |
+
"memory(GiB)": 40.39,
|
| 58 |
+
"step": 20,
|
| 59 |
+
"token_acc": 0.8715305313243458,
|
| 60 |
+
"train_speed(iter/s)": 0.069219
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"epoch": 0.04550970873786408,
|
| 64 |
+
"grad_norm": 3.9115183353424072,
|
| 65 |
+
"learning_rate": 3.7878787878787882e-06,
|
| 66 |
+
"loss": 0.5411659717559815,
|
| 67 |
+
"memory(GiB)": 40.39,
|
| 68 |
+
"step": 25,
|
| 69 |
+
"token_acc": 0.8685669041963578,
|
| 70 |
+
"train_speed(iter/s)": 0.071459
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"epoch": 0.05461165048543689,
|
| 74 |
+
"grad_norm": 3.357640027999878,
|
| 75 |
+
"learning_rate": 4.5454545454545455e-06,
|
| 76 |
+
"loss": 0.4885613441467285,
|
| 77 |
+
"memory(GiB)": 40.39,
|
| 78 |
+
"step": 30,
|
| 79 |
+
"token_acc": 0.8682539682539683,
|
| 80 |
+
"train_speed(iter/s)": 0.072567
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.06371359223300971,
|
| 84 |
+
"grad_norm": 3.3015964031219482,
|
| 85 |
+
"learning_rate": 4.999956654935265e-06,
|
| 86 |
+
"loss": 0.4215705871582031,
|
| 87 |
+
"memory(GiB)": 40.39,
|
| 88 |
+
"step": 35,
|
| 89 |
+
"token_acc": 0.8692551505546752,
|
| 90 |
+
"train_speed(iter/s)": 0.07282
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"epoch": 0.07281553398058252,
|
| 94 |
+
"grad_norm": 2.447498321533203,
|
| 95 |
+
"learning_rate": 4.999469040218251e-06,
|
| 96 |
+
"loss": 0.2957149982452393,
|
| 97 |
+
"memory(GiB)": 40.39,
|
| 98 |
+
"step": 40,
|
| 99 |
+
"token_acc": 0.8690476190476191,
|
| 100 |
+
"train_speed(iter/s)": 0.074291
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.08191747572815535,
|
| 104 |
+
"grad_norm": 0.8801060914993286,
|
| 105 |
+
"learning_rate": 4.9984397354824345e-06,
|
| 106 |
+
"loss": 0.21340658664703369,
|
| 107 |
+
"memory(GiB)": 40.39,
|
| 108 |
+
"step": 45,
|
| 109 |
+
"token_acc": 0.9135606661379857,
|
| 110 |
+
"train_speed(iter/s)": 0.074508
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"epoch": 0.09101941747572816,
|
| 114 |
+
"grad_norm": 0.7226303815841675,
|
| 115 |
+
"learning_rate": 4.996868963800831e-06,
|
| 116 |
+
"loss": 0.1777859926223755,
|
| 117 |
+
"memory(GiB)": 40.39,
|
| 118 |
+
"step": 50,
|
| 119 |
+
"token_acc": 0.9239904988123515,
|
| 120 |
+
"train_speed(iter/s)": 0.075304
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"epoch": 0.10012135922330097,
|
| 124 |
+
"grad_norm": 0.7329442501068115,
|
| 125 |
+
"learning_rate": 4.99475706559428e-06,
|
| 126 |
+
"loss": 0.17081427574157715,
|
| 127 |
+
"memory(GiB)": 40.39,
|
| 128 |
+
"step": 55,
|
| 129 |
+
"token_acc": 0.9238699444885012,
|
| 130 |
+
"train_speed(iter/s)": 0.075664
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"epoch": 0.10922330097087378,
|
| 134 |
+
"grad_norm": 0.48636820912361145,
|
| 135 |
+
"learning_rate": 4.992104498557657e-06,
|
| 136 |
+
"loss": 0.15634163618087768,
|
| 137 |
+
"memory(GiB)": 40.39,
|
| 138 |
+
"step": 60,
|
| 139 |
+
"token_acc": 0.9262490087232356,
|
| 140 |
+
"train_speed(iter/s)": 0.076641
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"epoch": 0.1183252427184466,
|
| 144 |
+
"grad_norm": 0.44267499446868896,
|
| 145 |
+
"learning_rate": 4.988911837560691e-06,
|
| 146 |
+
"loss": 0.1444383144378662,
|
| 147 |
+
"memory(GiB)": 40.39,
|
| 148 |
+
"step": 65,
|
| 149 |
+
"token_acc": 0.9350237717908082,
|
| 150 |
+
"train_speed(iter/s)": 0.074923
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"epoch": 0.12742718446601942,
|
| 154 |
+
"grad_norm": 0.4311356544494629,
|
| 155 |
+
"learning_rate": 4.985179774523375e-06,
|
| 156 |
+
"loss": 0.14677078723907472,
|
| 157 |
+
"memory(GiB)": 40.39,
|
| 158 |
+
"step": 70,
|
| 159 |
+
"token_acc": 0.9444444444444444,
|
| 160 |
+
"train_speed(iter/s)": 0.075087
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"epoch": 0.13652912621359223,
|
| 164 |
+
"grad_norm": 0.3981742858886719,
|
| 165 |
+
"learning_rate": 4.980909118266006e-06,
|
| 166 |
+
"loss": 0.13511970043182372,
|
| 167 |
+
"memory(GiB)": 40.39,
|
| 168 |
+
"step": 75,
|
| 169 |
+
"token_acc": 0.9484944532488114,
|
| 170 |
+
"train_speed(iter/s)": 0.074414
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.14563106796116504,
|
| 174 |
+
"grad_norm": 0.4317033290863037,
|
| 175 |
+
"learning_rate": 4.976100794333903e-06,
|
| 176 |
+
"loss": 0.12185637950897217,
|
| 177 |
+
"memory(GiB)": 40.39,
|
| 178 |
+
"step": 80,
|
| 179 |
+
"token_acc": 0.9627279936558287,
|
| 180 |
+
"train_speed(iter/s)": 0.074464
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"epoch": 0.15473300970873785,
|
| 184 |
+
"grad_norm": 0.3179706335067749,
|
| 185 |
+
"learning_rate": 4.970755844796817e-06,
|
| 186 |
+
"loss": 0.12840776443481444,
|
| 187 |
+
"memory(GiB)": 40.39,
|
| 188 |
+
"step": 85,
|
| 189 |
+
"token_acc": 0.9492063492063492,
|
| 190 |
+
"train_speed(iter/s)": 0.074996
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"epoch": 0.1638349514563107,
|
| 194 |
+
"grad_norm": 0.3189823031425476,
|
| 195 |
+
"learning_rate": 4.964875428023093e-06,
|
| 196 |
+
"loss": 0.12376663684844971,
|
| 197 |
+
"memory(GiB)": 40.39,
|
| 198 |
+
"step": 90,
|
| 199 |
+
"token_acc": 0.957936507936508,
|
| 200 |
+
"train_speed(iter/s)": 0.075144
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"epoch": 0.1729368932038835,
|
| 204 |
+
"grad_norm": 0.33377909660339355,
|
| 205 |
+
"learning_rate": 4.958460818428627e-06,
|
| 206 |
+
"loss": 0.11574116945266724,
|
| 207 |
+
"memory(GiB)": 40.39,
|
| 208 |
+
"step": 95,
|
| 209 |
+
"token_acc": 0.9563492063492064,
|
| 210 |
+
"train_speed(iter/s)": 0.075617
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"epoch": 0.1820388349514563,
|
| 214 |
+
"grad_norm": 0.4928111433982849,
|
| 215 |
+
"learning_rate": 4.951513406200667e-06,
|
| 216 |
+
"loss": 0.1149444341659546,
|
| 217 |
+
"memory(GiB)": 40.39,
|
| 218 |
+
"step": 100,
|
| 219 |
+
"token_acc": 0.9508716323296355,
|
| 220 |
+
"train_speed(iter/s)": 0.075828
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"epoch": 0.19114077669902912,
|
| 224 |
+
"grad_norm": 0.3134707808494568,
|
| 225 |
+
"learning_rate": 4.944034696996534e-06,
|
| 226 |
+
"loss": 0.11119295358657837,
|
| 227 |
+
"memory(GiB)": 40.39,
|
| 228 |
+
"step": 105,
|
| 229 |
+
"token_acc": 0.9595238095238096,
|
| 230 |
+
"train_speed(iter/s)": 0.075066
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"epoch": 0.20024271844660194,
|
| 234 |
+
"grad_norm": 0.2365858554840088,
|
| 235 |
+
"learning_rate": 4.936026311617316e-06,
|
| 236 |
+
"loss": 0.11442217826843262,
|
| 237 |
+
"memory(GiB)": 40.39,
|
| 238 |
+
"step": 110,
|
| 239 |
+
"token_acc": 0.9588281868566905,
|
| 240 |
+
"train_speed(iter/s)": 0.075061
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.20934466019417475,
|
| 244 |
+
"grad_norm": 0.3145173490047455,
|
| 245 |
+
"learning_rate": 4.927489985656591e-06,
|
| 246 |
+
"loss": 0.10322239398956298,
|
| 247 |
+
"memory(GiB)": 40.39,
|
| 248 |
+
"step": 115,
|
| 249 |
+
"token_acc": 0.9658730158730159,
|
| 250 |
+
"train_speed(iter/s)": 0.074479
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"epoch": 0.21844660194174756,
|
| 254 |
+
"grad_norm": 0.33202633261680603,
|
| 255 |
+
"learning_rate": 4.918427569124302e-06,
|
| 256 |
+
"loss": 0.10661822557449341,
|
| 257 |
+
"memory(GiB)": 40.39,
|
| 258 |
+
"step": 120,
|
| 259 |
+
"token_acc": 0.9556259904912837,
|
| 260 |
+
"train_speed(iter/s)": 0.074637
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"epoch": 0.2275485436893204,
|
| 264 |
+
"grad_norm": 0.3093946874141693,
|
| 265 |
+
"learning_rate": 4.908841026045809e-06,
|
| 266 |
+
"loss": 0.10065805912017822,
|
| 267 |
+
"memory(GiB)": 40.39,
|
| 268 |
+
"step": 125,
|
| 269 |
+
"token_acc": 0.9540412044374009,
|
| 270 |
+
"train_speed(iter/s)": 0.074905
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"epoch": 0.2366504854368932,
|
| 274 |
+
"grad_norm": 0.39363232254981995,
|
| 275 |
+
"learning_rate": 4.8987324340362445e-06,
|
| 276 |
+
"loss": 0.114447021484375,
|
| 277 |
+
"memory(GiB)": 40.39,
|
| 278 |
+
"step": 130,
|
| 279 |
+
"token_acc": 0.9571428571428572,
|
| 280 |
+
"train_speed(iter/s)": 0.075072
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"epoch": 0.24575242718446602,
|
| 284 |
+
"grad_norm": 0.37065446376800537,
|
| 285 |
+
"learning_rate": 4.888103983850245e-06,
|
| 286 |
+
"loss": 0.10610785484313964,
|
| 287 |
+
"memory(GiB)": 40.39,
|
| 288 |
+
"step": 135,
|
| 289 |
+
"token_acc": 0.9565217391304348,
|
| 290 |
+
"train_speed(iter/s)": 0.075167
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"epoch": 0.25485436893203883,
|
| 294 |
+
"grad_norm": 0.542117714881897,
|
| 295 |
+
"learning_rate": 4.876957978907176e-06,
|
| 296 |
+
"loss": 0.0954114019870758,
|
| 297 |
+
"memory(GiB)": 40.39,
|
| 298 |
+
"step": 140,
|
| 299 |
+
"token_acc": 0.9666666666666667,
|
| 300 |
+
"train_speed(iter/s)": 0.075346
|
| 301 |
+
},
|
| 302 |
+
{
|
| 303 |
+
"epoch": 0.26395631067961167,
|
| 304 |
+
"grad_norm": 0.3225058913230896,
|
| 305 |
+
"learning_rate": 4.865296834791918e-06,
|
| 306 |
+
"loss": 0.0959049105644226,
|
| 307 |
+
"memory(GiB)": 40.39,
|
| 308 |
+
"step": 145,
|
| 309 |
+
"token_acc": 0.9587955625990491,
|
| 310 |
+
"train_speed(iter/s)": 0.075467
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.27305825242718446,
|
| 314 |
+
"grad_norm": 0.3421016037464142,
|
| 315 |
+
"learning_rate": 4.853123078731363e-06,
|
| 316 |
+
"loss": 0.09874246120452881,
|
| 317 |
+
"memory(GiB)": 40.39,
|
| 318 |
+
"step": 150,
|
| 319 |
+
"token_acc": 0.9650793650793651,
|
| 320 |
+
"train_speed(iter/s)": 0.075618
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"epoch": 0.2821601941747573,
|
| 324 |
+
"grad_norm": 0.3102968633174896,
|
| 325 |
+
"learning_rate": 4.8404393490467085e-06,
|
| 326 |
+
"loss": 0.09461469650268554,
|
| 327 |
+
"memory(GiB)": 40.39,
|
| 328 |
+
"step": 155,
|
| 329 |
+
"token_acc": 0.9547977795400476,
|
| 330 |
+
"train_speed(iter/s)": 0.075855
|
| 331 |
+
},
|
| 332 |
+
{
|
| 333 |
+
"epoch": 0.2912621359223301,
|
| 334 |
+
"grad_norm": 0.4729763865470886,
|
| 335 |
+
"learning_rate": 4.827248394581672e-06,
|
| 336 |
+
"loss": 0.10038878917694091,
|
| 337 |
+
"memory(GiB)": 40.39,
|
| 338 |
+
"step": 160,
|
| 339 |
+
"token_acc": 0.9650793650793651,
|
| 340 |
+
"train_speed(iter/s)": 0.075945
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"epoch": 0.3003640776699029,
|
| 344 |
+
"grad_norm": 0.3695836365222931,
|
| 345 |
+
"learning_rate": 4.813553074106761e-06,
|
| 346 |
+
"loss": 0.09139147400856018,
|
| 347 |
+
"memory(GiB)": 40.39,
|
| 348 |
+
"step": 165,
|
| 349 |
+
"token_acc": 0.9627279936558287,
|
| 350 |
+
"train_speed(iter/s)": 0.075756
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"epoch": 0.3094660194174757,
|
| 354 |
+
"grad_norm": 0.47110962867736816,
|
| 355 |
+
"learning_rate": 4.799356355699708e-06,
|
| 356 |
+
"loss": 0.09496045112609863,
|
| 357 |
+
"memory(GiB)": 40.39,
|
| 358 |
+
"step": 170,
|
| 359 |
+
"token_acc": 0.9698412698412698,
|
| 360 |
+
"train_speed(iter/s)": 0.075898
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.31856796116504854,
|
| 364 |
+
"grad_norm": 0.3773088753223419,
|
| 365 |
+
"learning_rate": 4.784661316102229e-06,
|
| 366 |
+
"loss": 0.09658662080764771,
|
| 367 |
+
"memory(GiB)": 40.4,
|
| 368 |
+
"step": 175,
|
| 369 |
+
"token_acc": 0.96513470681458,
|
| 370 |
+
"train_speed(iter/s)": 0.075914
|
| 371 |
+
},
|
| 372 |
+
{
|
| 373 |
+
"epoch": 0.3276699029126214,
|
| 374 |
+
"grad_norm": 0.3394829034805298,
|
| 375 |
+
"learning_rate": 4.769471140053221e-06,
|
| 376 |
+
"loss": 0.08639374971389771,
|
| 377 |
+
"memory(GiB)": 40.4,
|
| 378 |
+
"step": 180,
|
| 379 |
+
"token_acc": 0.969047619047619,
|
| 380 |
+
"train_speed(iter/s)": 0.076076
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.33677184466019416,
|
| 384 |
+
"grad_norm": 0.4525506794452667,
|
| 385 |
+
"learning_rate": 4.753789119598563e-06,
|
| 386 |
+
"loss": 0.09742268323898315,
|
| 387 |
+
"memory(GiB)": 40.4,
|
| 388 |
+
"step": 185,
|
| 389 |
+
"token_acc": 0.9587301587301588,
|
| 390 |
+
"train_speed(iter/s)": 0.076177
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"epoch": 0.345873786407767,
|
| 394 |
+
"grad_norm": 0.3789404332637787,
|
| 395 |
+
"learning_rate": 4.737618653377651e-06,
|
| 396 |
+
"loss": 0.09391134977340698,
|
| 397 |
+
"memory(GiB)": 40.4,
|
| 398 |
+
"step": 190,
|
| 399 |
+
"token_acc": 0.9651070578905631,
|
| 400 |
+
"train_speed(iter/s)": 0.07649
|
| 401 |
+
},
|
| 402 |
+
{
|
| 403 |
+
"epoch": 0.3549757281553398,
|
| 404 |
+
"grad_norm": 0.5464370250701904,
|
| 405 |
+
"learning_rate": 4.720963245886846e-06,
|
| 406 |
+
"loss": 0.0969527006149292,
|
| 407 |
+
"memory(GiB)": 40.4,
|
| 408 |
+
"step": 195,
|
| 409 |
+
"token_acc": 0.9659270998415214,
|
| 410 |
+
"train_speed(iter/s)": 0.076513
|
| 411 |
+
},
|
| 412 |
+
{
|
| 413 |
+
"epoch": 0.3640776699029126,
|
| 414 |
+
"grad_norm": 0.3459813892841339,
|
| 415 |
+
"learning_rate": 4.703826506719964e-06,
|
| 416 |
+
"loss": 0.08732333183288574,
|
| 417 |
+
"memory(GiB)": 40.4,
|
| 418 |
+
"step": 200,
|
| 419 |
+
"token_acc": 0.96513470681458,
|
| 420 |
+
"train_speed(iter/s)": 0.076587
|
| 421 |
+
},
|
| 422 |
+
{
|
| 423 |
+
"epoch": 0.3731796116504854,
|
| 424 |
+
"grad_norm": 0.3549191653728485,
|
| 425 |
+
"learning_rate": 4.686212149786007e-06,
|
| 426 |
+
"loss": 0.08515737056732178,
|
| 427 |
+
"memory(GiB)": 40.4,
|
| 428 |
+
"step": 205,
|
| 429 |
+
"token_acc": 0.96513470681458,
|
| 430 |
+
"train_speed(iter/s)": 0.076344
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"epoch": 0.38228155339805825,
|
| 434 |
+
"grad_norm": 0.7434160709381104,
|
| 435 |
+
"learning_rate": 4.668123992504267e-06,
|
| 436 |
+
"loss": 0.09526927471160888,
|
| 437 |
+
"memory(GiB)": 40.4,
|
| 438 |
+
"step": 210,
|
| 439 |
+
"token_acc": 0.9666666666666667,
|
| 440 |
+
"train_speed(iter/s)": 0.076513
|
| 441 |
+
},
|
| 442 |
+
{
|
| 443 |
+
"epoch": 0.3913834951456311,
|
| 444 |
+
"grad_norm": 0.464631587266922,
|
| 445 |
+
"learning_rate": 4.649565954977015e-06,
|
| 446 |
+
"loss": 0.09264343380928039,
|
| 447 |
+
"memory(GiB)": 40.4,
|
| 448 |
+
"step": 215,
|
| 449 |
+
"token_acc": 0.9620253164556962,
|
| 450 |
+
"train_speed(iter/s)": 0.076143
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.40048543689320387,
|
| 454 |
+
"grad_norm": 0.5145648121833801,
|
| 455 |
+
"learning_rate": 4.630542059139923e-06,
|
| 456 |
+
"loss": 0.09688866138458252,
|
| 457 |
+
"memory(GiB)": 40.4,
|
| 458 |
+
"step": 220,
|
| 459 |
+
"token_acc": 0.9667458432304038,
|
| 460 |
+
"train_speed(iter/s)": 0.076292
|
| 461 |
+
},
|
| 462 |
+
{
|
| 463 |
+
"epoch": 0.4095873786407767,
|
| 464 |
+
"grad_norm": 0.33657485246658325,
|
| 465 |
+
"learning_rate": 4.611056427890428e-06,
|
| 466 |
+
"loss": 0.09414277076721192,
|
| 467 |
+
"memory(GiB)": 40.4,
|
| 468 |
+
"step": 225,
|
| 469 |
+
"token_acc": 0.9587301587301588,
|
| 470 |
+
"train_speed(iter/s)": 0.076275
|
| 471 |
+
},
|
| 472 |
+
{
|
| 473 |
+
"epoch": 0.4186893203883495,
|
| 474 |
+
"grad_norm": 0.47585147619247437,
|
| 475 |
+
"learning_rate": 4.5911132841942e-06,
|
| 476 |
+
"loss": 0.08656486272811889,
|
| 477 |
+
"memory(GiB)": 40.4,
|
| 478 |
+
"step": 230,
|
| 479 |
+
"token_acc": 0.9698651863600317,
|
| 480 |
+
"train_speed(iter/s)": 0.076342
|
| 481 |
+
},
|
| 482 |
+
{
|
| 483 |
+
"epoch": 0.42779126213592233,
|
| 484 |
+
"grad_norm": 0.3516729176044464,
|
| 485 |
+
"learning_rate": 4.570716950169944e-06,
|
| 486 |
+
"loss": 0.08657894730567932,
|
| 487 |
+
"memory(GiB)": 40.4,
|
| 488 |
+
"step": 235,
|
| 489 |
+
"token_acc": 0.9642857142857143,
|
| 490 |
+
"train_speed(iter/s)": 0.076493
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"epoch": 0.4368932038834951,
|
| 494 |
+
"grad_norm": 0.48757559061050415,
|
| 495 |
+
"learning_rate": 4.5498718461526895e-06,
|
| 496 |
+
"loss": 0.09453780055046082,
|
| 497 |
+
"memory(GiB)": 40.4,
|
| 498 |
+
"step": 240,
|
| 499 |
+
"token_acc": 0.9643705463182898,
|
| 500 |
+
"train_speed(iter/s)": 0.07656
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"epoch": 0.44599514563106796,
|
| 504 |
+
"grad_norm": 0.5283713936805725,
|
| 505 |
+
"learning_rate": 4.528582489735818e-06,
|
| 506 |
+
"loss": 0.08740494847297668,
|
| 507 |
+
"memory(GiB)": 40.4,
|
| 508 |
+
"step": 245,
|
| 509 |
+
"token_acc": 0.9587628865979382,
|
| 510 |
+
"train_speed(iter/s)": 0.07663
|
| 511 |
+
},
|
| 512 |
+
{
|
| 513 |
+
"epoch": 0.4550970873786408,
|
| 514 |
+
"grad_norm": 0.3577844500541687,
|
| 515 |
+
"learning_rate": 4.506853494791992e-06,
|
| 516 |
+
"loss": 0.08014656901359558,
|
| 517 |
+
"memory(GiB)": 40.4,
|
| 518 |
+
"step": 250,
|
| 519 |
+
"token_acc": 0.971473851030111,
|
| 520 |
+
"train_speed(iter/s)": 0.076543
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.4641990291262136,
|
| 524 |
+
"grad_norm": 0.5026013851165771,
|
| 525 |
+
"learning_rate": 4.484689570473232e-06,
|
| 526 |
+
"loss": 0.08635783195495605,
|
| 527 |
+
"memory(GiB)": 40.4,
|
| 528 |
+
"step": 255,
|
| 529 |
+
"token_acc": 0.9682791435368755,
|
| 530 |
+
"train_speed(iter/s)": 0.076578
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"epoch": 0.4733009708737864,
|
| 534 |
+
"grad_norm": 0.45232078433036804,
|
| 535 |
+
"learning_rate": 4.462095520190336e-06,
|
| 536 |
+
"loss": 0.08593440055847168,
|
| 537 |
+
"memory(GiB)": 40.4,
|
| 538 |
+
"step": 260,
|
| 539 |
+
"token_acc": 0.9699367088607594,
|
| 540 |
+
"train_speed(iter/s)": 0.076538
|
| 541 |
+
},
|
| 542 |
+
{
|
| 543 |
+
"epoch": 0.4824029126213592,
|
| 544 |
+
"grad_norm": 0.47390663623809814,
|
| 545 |
+
"learning_rate": 4.43907624057188e-06,
|
| 546 |
+
"loss": 0.08747667074203491,
|
| 547 |
+
"memory(GiB)": 40.4,
|
| 548 |
+
"step": 265,
|
| 549 |
+
"token_acc": 0.9619047619047619,
|
| 550 |
+
"train_speed(iter/s)": 0.076588
|
| 551 |
+
},
|
| 552 |
+
{
|
| 553 |
+
"epoch": 0.49150485436893204,
|
| 554 |
+
"grad_norm": 0.43587085604667664,
|
| 555 |
+
"learning_rate": 4.415636720403005e-06,
|
| 556 |
+
"loss": 0.08902972340583801,
|
| 557 |
+
"memory(GiB)": 40.4,
|
| 558 |
+
"step": 270,
|
| 559 |
+
"token_acc": 0.9619349722442506,
|
| 560 |
+
"train_speed(iter/s)": 0.076484
|
| 561 |
+
},
|
| 562 |
+
{
|
| 563 |
+
"epoch": 0.5006067961165048,
|
| 564 |
+
"grad_norm": 0.41671204566955566,
|
| 565 |
+
"learning_rate": 4.391782039544239e-06,
|
| 566 |
+
"loss": 0.08426393270492553,
|
| 567 |
+
"memory(GiB)": 40.4,
|
| 568 |
+
"step": 275,
|
| 569 |
+
"token_acc": 0.9603489294210944,
|
| 570 |
+
"train_speed(iter/s)": 0.076586
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"epoch": 0.5097087378640777,
|
| 574 |
+
"grad_norm": 0.3852890133857727,
|
| 575 |
+
"learning_rate": 4.367517367830581e-06,
|
| 576 |
+
"loss": 0.08224607706069946,
|
| 577 |
+
"memory(GiB)": 40.4,
|
| 578 |
+
"step": 280,
|
| 579 |
+
"token_acc": 0.9730372720063442,
|
| 580 |
+
"train_speed(iter/s)": 0.0767
|
| 581 |
+
},
|
| 582 |
+
{
|
| 583 |
+
"epoch": 0.5188106796116505,
|
| 584 |
+
"grad_norm": 0.5980095863342285,
|
| 585 |
+
"learning_rate": 4.342847963951085e-06,
|
| 586 |
+
"loss": 0.09114923477172851,
|
| 587 |
+
"memory(GiB)": 40.4,
|
| 588 |
+
"step": 285,
|
| 589 |
+
"token_acc": 0.9642857142857143,
|
| 590 |
+
"train_speed(iter/s)": 0.076804
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.5279126213592233,
|
| 594 |
+
"grad_norm": 0.5370866656303406,
|
| 595 |
+
"learning_rate": 4.317779174309179e-06,
|
| 596 |
+
"loss": 0.09176770448684693,
|
| 597 |
+
"memory(GiB)": 40.4,
|
| 598 |
+
"step": 290,
|
| 599 |
+
"token_acc": 0.9595879556259905,
|
| 600 |
+
"train_speed(iter/s)": 0.076902
|
| 601 |
+
},
|
| 602 |
+
{
|
| 603 |
+
"epoch": 0.5370145631067961,
|
| 604 |
+
"grad_norm": 0.5857056975364685,
|
| 605 |
+
"learning_rate": 4.292316431863991e-06,
|
| 606 |
+
"loss": 0.08232347965240479,
|
| 607 |
+
"memory(GiB)": 40.4,
|
| 608 |
+
"step": 295,
|
| 609 |
+
"token_acc": 0.9635210150674068,
|
| 610 |
+
"train_speed(iter/s)": 0.076861
|
| 611 |
+
},
|
| 612 |
+
{
|
| 613 |
+
"epoch": 0.5461165048543689,
|
| 614 |
+
"grad_norm": 0.45398032665252686,
|
| 615 |
+
"learning_rate": 4.2664652549528995e-06,
|
| 616 |
+
"loss": 0.0860186755657196,
|
| 617 |
+
"memory(GiB)": 40.4,
|
| 618 |
+
"step": 300,
|
| 619 |
+
"token_acc": 0.9603174603174603,
|
| 620 |
+
"train_speed(iter/s)": 0.076918
|
| 621 |
+
},
|
| 622 |
+
{
|
| 623 |
+
"epoch": 0.5552184466019418,
|
| 624 |
+
"grad_norm": 0.4008013904094696,
|
| 625 |
+
"learning_rate": 4.240231246095593e-06,
|
| 626 |
+
"loss": 0.08663930892944335,
|
| 627 |
+
"memory(GiB)": 40.4,
|
| 628 |
+
"step": 305,
|
| 629 |
+
"token_acc": 0.9698651863600317,
|
| 630 |
+
"train_speed(iter/s)": 0.076723
|
| 631 |
+
},
|
| 632 |
+
{
|
| 633 |
+
"epoch": 0.5643203883495146,
|
| 634 |
+
"grad_norm": 0.6199547052383423,
|
| 635 |
+
"learning_rate": 4.213620090779877e-06,
|
| 636 |
+
"loss": 0.08223216533660889,
|
| 637 |
+
"memory(GiB)": 40.4,
|
| 638 |
+
"step": 310,
|
| 639 |
+
"token_acc": 0.9674861221252974,
|
| 640 |
+
"train_speed(iter/s)": 0.076805
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.5734223300970874,
|
| 644 |
+
"grad_norm": 0.37448298931121826,
|
| 645 |
+
"learning_rate": 4.186637556229508e-06,
|
| 646 |
+
"loss": 0.08296606540679932,
|
| 647 |
+
"memory(GiB)": 40.4,
|
| 648 |
+
"step": 315,
|
| 649 |
+
"token_acc": 0.9666931007137193,
|
| 650 |
+
"train_speed(iter/s)": 0.076708
|
| 651 |
+
},
|
| 652 |
+
{
|
| 653 |
+
"epoch": 0.5825242718446602,
|
| 654 |
+
"grad_norm": 0.4003507196903229,
|
| 655 |
+
"learning_rate": 4.159289490154305e-06,
|
| 656 |
+
"loss": 0.07931501269340516,
|
| 657 |
+
"memory(GiB)": 40.4,
|
| 658 |
+
"step": 320,
|
| 659 |
+
"token_acc": 0.9642857142857143,
|
| 660 |
+
"train_speed(iter/s)": 0.076845
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 0.591626213592233,
|
| 664 |
+
"grad_norm": 0.49439844489097595,
|
| 665 |
+
"learning_rate": 4.1315818194828196e-06,
|
| 666 |
+
"loss": 0.08067693710327148,
|
| 667 |
+
"memory(GiB)": 40.4,
|
| 668 |
+
"step": 325,
|
| 669 |
+
"token_acc": 0.9698412698412698,
|
| 670 |
+
"train_speed(iter/s)": 0.076875
|
| 671 |
+
},
|
| 672 |
+
{
|
| 673 |
+
"epoch": 0.6007281553398058,
|
| 674 |
+
"grad_norm": 0.584017813205719,
|
| 675 |
+
"learning_rate": 4.1035205490778505e-06,
|
| 676 |
+
"loss": 0.09277031421661378,
|
| 677 |
+
"memory(GiB)": 40.4,
|
| 678 |
+
"step": 330,
|
| 679 |
+
"token_acc": 0.9595879556259905,
|
| 680 |
+
"train_speed(iter/s)": 0.076692
|
| 681 |
+
},
|
| 682 |
+
{
|
| 683 |
+
"epoch": 0.6098300970873787,
|
| 684 |
+
"grad_norm": 0.47020280361175537,
|
| 685 |
+
"learning_rate": 4.075111760435045e-06,
|
| 686 |
+
"loss": 0.07749168276786804,
|
| 687 |
+
"memory(GiB)": 40.4,
|
| 688 |
+
"step": 335,
|
| 689 |
+
"token_acc": 0.96513470681458,
|
| 690 |
+
"train_speed(iter/s)": 0.076884
|
| 691 |
+
},
|
| 692 |
+
{
|
| 693 |
+
"epoch": 0.6189320388349514,
|
| 694 |
+
"grad_norm": 0.4876089096069336,
|
| 695 |
+
"learning_rate": 4.046361610364913e-06,
|
| 696 |
+
"loss": 0.07796428203582764,
|
| 697 |
+
"memory(GiB)": 40.4,
|
| 698 |
+
"step": 340,
|
| 699 |
+
"token_acc": 0.9691699604743083,
|
| 700 |
+
"train_speed(iter/s)": 0.076913
|
| 701 |
+
},
|
| 702 |
+
{
|
| 703 |
+
"epoch": 0.6280339805825242,
|
| 704 |
+
"grad_norm": 0.5511714220046997,
|
| 705 |
+
"learning_rate": 4.017276329658506e-06,
|
| 706 |
+
"loss": 0.08419817090034484,
|
| 707 |
+
"memory(GiB)": 40.4,
|
| 708 |
+
"step": 345,
|
| 709 |
+
"token_acc": 0.9707278481012658,
|
| 710 |
+
"train_speed(iter/s)": 0.07696
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"epoch": 0.6371359223300971,
|
| 714 |
+
"grad_norm": 0.5659735798835754,
|
| 715 |
+
"learning_rate": 3.987862221737072e-06,
|
| 716 |
+
"loss": 0.0797402322292328,
|
| 717 |
+
"memory(GiB)": 40.4,
|
| 718 |
+
"step": 350,
|
| 719 |
+
"token_acc": 0.9659270998415214,
|
| 720 |
+
"train_speed(iter/s)": 0.076995
|
| 721 |
+
},
|
| 722 |
+
{
|
| 723 |
+
"epoch": 0.6462378640776699,
|
| 724 |
+
"grad_norm": 0.5157150030136108,
|
| 725 |
+
"learning_rate": 3.958125661285959e-06,
|
| 726 |
+
"loss": 0.0838176965713501,
|
| 727 |
+
"memory(GiB)": 40.4,
|
| 728 |
+
"step": 355,
|
| 729 |
+
"token_acc": 0.9690721649484536,
|
| 730 |
+
"train_speed(iter/s)": 0.076909
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.6553398058252428,
|
| 734 |
+
"grad_norm": 0.5069080591201782,
|
| 735 |
+
"learning_rate": 3.928073092873088e-06,
|
| 736 |
+
"loss": 0.07343612313270569,
|
| 737 |
+
"memory(GiB)": 40.4,
|
| 738 |
+
"step": 360,
|
| 739 |
+
"token_acc": 0.9746233148295004,
|
| 740 |
+
"train_speed(iter/s)": 0.076991
|
| 741 |
+
},
|
| 742 |
+
{
|
| 743 |
+
"epoch": 0.6644417475728155,
|
| 744 |
+
"grad_norm": 0.49923259019851685,
|
| 745 |
+
"learning_rate": 3.897711029552264e-06,
|
| 746 |
+
"loss": 0.07626074552536011,
|
| 747 |
+
"memory(GiB)": 40.4,
|
| 748 |
+
"step": 365,
|
| 749 |
+
"token_acc": 0.9683544303797469,
|
| 750 |
+
"train_speed(iter/s)": 0.076983
|
| 751 |
+
},
|
| 752 |
+
{
|
| 753 |
+
"epoch": 0.6735436893203883,
|
| 754 |
+
"grad_norm": 0.35883885622024536,
|
| 755 |
+
"learning_rate": 3.8670460514516615e-06,
|
| 756 |
+
"loss": 0.08405499458312989,
|
| 757 |
+
"memory(GiB)": 40.4,
|
| 758 |
+
"step": 370,
|
| 759 |
+
"token_acc": 0.9635499207606973,
|
| 760 |
+
"train_speed(iter/s)": 0.077013
|
| 761 |
+
},
|
| 762 |
+
{
|
| 763 |
+
"epoch": 0.6826456310679612,
|
| 764 |
+
"grad_norm": 0.4520786702632904,
|
| 765 |
+
"learning_rate": 3.836084804347763e-06,
|
| 766 |
+
"loss": 0.07998884916305542,
|
| 767 |
+
"memory(GiB)": 40.4,
|
| 768 |
+
"step": 375,
|
| 769 |
+
"token_acc": 0.9698412698412698,
|
| 770 |
+
"train_speed(iter/s)": 0.07694
|
| 771 |
+
},
|
| 772 |
+
{
|
| 773 |
+
"epoch": 0.691747572815534,
|
| 774 |
+
"grad_norm": 0.47654658555984497,
|
| 775 |
+
"learning_rate": 3.8048339982250705e-06,
|
| 776 |
+
"loss": 0.08119775056838989,
|
| 777 |
+
"memory(GiB)": 40.4,
|
| 778 |
+
"step": 380,
|
| 779 |
+
"token_acc": 0.9667194928684627,
|
| 780 |
+
"train_speed(iter/s)": 0.077002
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"epoch": 0.7008495145631068,
|
| 784 |
+
"grad_norm": 0.5640057325363159,
|
| 785 |
+
"learning_rate": 3.773300405821908e-06,
|
| 786 |
+
"loss": 0.08841820359230042,
|
| 787 |
+
"memory(GiB)": 40.4,
|
| 788 |
+
"step": 385,
|
| 789 |
+
"token_acc": 0.9595559080095163,
|
| 790 |
+
"train_speed(iter/s)": 0.077061
|
| 791 |
+
},
|
| 792 |
+
{
|
| 793 |
+
"epoch": 0.7099514563106796,
|
| 794 |
+
"grad_norm": 0.42381900548934937,
|
| 795 |
+
"learning_rate": 3.7414908611626162e-06,
|
| 796 |
+
"loss": 0.08166542053222656,
|
| 797 |
+
"memory(GiB)": 40.4,
|
| 798 |
+
"step": 390,
|
| 799 |
+
"token_acc": 0.969047619047619,
|
| 800 |
+
"train_speed(iter/s)": 0.077092
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.7190533980582524,
|
| 804 |
+
"grad_norm": 0.510867714881897,
|
| 805 |
+
"learning_rate": 3.709412258076471e-06,
|
| 806 |
+
"loss": 0.08081957101821899,
|
| 807 |
+
"memory(GiB)": 40.4,
|
| 808 |
+
"step": 395,
|
| 809 |
+
"token_acc": 0.9699129057798892,
|
| 810 |
+
"train_speed(iter/s)": 0.077233
|
| 811 |
+
},
|
| 812 |
+
{
|
| 813 |
+
"epoch": 0.7281553398058253,
|
| 814 |
+
"grad_norm": 0.5211343169212341,
|
| 815 |
+
"learning_rate": 3.6770715487036413e-06,
|
| 816 |
+
"loss": 0.08312466740608215,
|
| 817 |
+
"memory(GiB)": 40.4,
|
| 818 |
+
"step": 400,
|
| 819 |
+
"token_acc": 0.9611419508326725,
|
| 820 |
+
"train_speed(iter/s)": 0.077264
|
| 821 |
+
},
|
| 822 |
+
{
|
| 823 |
+
"epoch": 0.7372572815533981,
|
| 824 |
+
"grad_norm": 0.46672672033309937,
|
| 825 |
+
"learning_rate": 3.644475741988499e-06,
|
| 826 |
+
"loss": 0.08163590431213379,
|
| 827 |
+
"memory(GiB)": 40.4,
|
| 828 |
+
"step": 405,
|
| 829 |
+
"token_acc": 0.9666666666666667,
|
| 830 |
+
"train_speed(iter/s)": 0.07706
|
| 831 |
+
},
|
| 832 |
+
{
|
| 833 |
+
"epoch": 0.7463592233009708,
|
| 834 |
+
"grad_norm": 0.4190872013568878,
|
| 835 |
+
"learning_rate": 3.6116319021606345e-06,
|
| 836 |
+
"loss": 0.08278034925460816,
|
| 837 |
+
"memory(GiB)": 40.4,
|
| 838 |
+
"step": 410,
|
| 839 |
+
"token_acc": 0.9603803486529319,
|
| 840 |
+
"train_speed(iter/s)": 0.077071
|
| 841 |
+
},
|
| 842 |
+
{
|
| 843 |
+
"epoch": 0.7554611650485437,
|
| 844 |
+
"grad_norm": 0.4177815318107605,
|
| 845 |
+
"learning_rate": 3.5785471472038784e-06,
|
| 846 |
+
"loss": 0.07709290385246277,
|
| 847 |
+
"memory(GiB)": 40.4,
|
| 848 |
+
"step": 415,
|
| 849 |
+
"token_acc": 0.9714512291831879,
|
| 850 |
+
"train_speed(iter/s)": 0.077076
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.7645631067961165,
|
| 854 |
+
"grad_norm": 0.7115554213523865,
|
| 855 |
+
"learning_rate": 3.545228647313679e-06,
|
| 856 |
+
"loss": 0.08126543164253235,
|
| 857 |
+
"memory(GiB)": 40.4,
|
| 858 |
+
"step": 420,
|
| 859 |
+
"token_acc": 0.9674861221252974,
|
| 860 |
+
"train_speed(iter/s)": 0.07706
|
| 861 |
+
},
|
| 862 |
+
{
|
| 863 |
+
"epoch": 0.7736650485436893,
|
| 864 |
+
"grad_norm": 0.43985486030578613,
|
| 865 |
+
"learning_rate": 3.5116836233431616e-06,
|
| 866 |
+
"loss": 0.08477982282638549,
|
| 867 |
+
"memory(GiB)": 40.4,
|
| 868 |
+
"step": 425,
|
| 869 |
+
"token_acc": 0.9628164556962026,
|
| 870 |
+
"train_speed(iter/s)": 0.077154
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 0.7827669902912622,
|
| 874 |
+
"grad_norm": 0.48275941610336304,
|
| 875 |
+
"learning_rate": 3.477919345238213e-06,
|
| 876 |
+
"loss": 0.07978797554969788,
|
| 877 |
+
"memory(GiB)": 40.4,
|
| 878 |
+
"step": 430,
|
| 879 |
+
"token_acc": 0.9627279936558287,
|
| 880 |
+
"train_speed(iter/s)": 0.077173
|
| 881 |
+
},
|
| 882 |
+
{
|
| 883 |
+
"epoch": 0.7918689320388349,
|
| 884 |
+
"grad_norm": 0.5005500912666321,
|
| 885 |
+
"learning_rate": 3.4439431304619207e-06,
|
| 886 |
+
"loss": 0.07624109983444213,
|
| 887 |
+
"memory(GiB)": 40.4,
|
| 888 |
+
"step": 435,
|
| 889 |
+
"token_acc": 0.9659270998415214,
|
| 890 |
+
"train_speed(iter/s)": 0.077238
|
| 891 |
+
},
|
| 892 |
+
{
|
| 893 |
+
"epoch": 0.8009708737864077,
|
| 894 |
+
"grad_norm": 0.5146210789680481,
|
| 895 |
+
"learning_rate": 3.4097623424087196e-06,
|
| 896 |
+
"loss": 0.080259507894516,
|
| 897 |
+
"memory(GiB)": 40.4,
|
| 898 |
+
"step": 440,
|
| 899 |
+
"token_acc": 0.9706582077716098,
|
| 900 |
+
"train_speed(iter/s)": 0.077241
|
| 901 |
+
},
|
| 902 |
+
{
|
| 903 |
+
"epoch": 0.8100728155339806,
|
| 904 |
+
"grad_norm": 0.558778703212738,
|
| 905 |
+
"learning_rate": 3.3753843888085806e-06,
|
| 906 |
+
"loss": 0.07813260555267335,
|
| 907 |
+
"memory(GiB)": 40.4,
|
| 908 |
+
"step": 445,
|
| 909 |
+
"token_acc": 0.9658730158730159,
|
| 910 |
+
"train_speed(iter/s)": 0.077226
|
| 911 |
+
},
|
| 912 |
+
{
|
| 913 |
+
"epoch": 0.8191747572815534,
|
| 914 |
+
"grad_norm": 0.574676513671875,
|
| 915 |
+
"learning_rate": 3.340816720121597e-06,
|
| 916 |
+
"loss": 0.0761204183101654,
|
| 917 |
+
"memory(GiB)": 40.4,
|
| 918 |
+
"step": 450,
|
| 919 |
+
"token_acc": 0.9691699604743083,
|
| 920 |
+
"train_speed(iter/s)": 0.077059
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"epoch": 0.8282766990291263,
|
| 924 |
+
"grad_norm": 0.5359216332435608,
|
| 925 |
+
"learning_rate": 3.3060668279232964e-06,
|
| 926 |
+
"loss": 0.07063559293746949,
|
| 927 |
+
"memory(GiB)": 40.4,
|
| 928 |
+
"step": 455,
|
| 929 |
+
"token_acc": 0.9746233148295004,
|
| 930 |
+
"train_speed(iter/s)": 0.077103
|
| 931 |
+
},
|
| 932 |
+
{
|
| 933 |
+
"epoch": 0.837378640776699,
|
| 934 |
+
"grad_norm": 0.5926820635795593,
|
| 935 |
+
"learning_rate": 3.2711422432810624e-06,
|
| 936 |
+
"loss": 0.07327613830566407,
|
| 937 |
+
"memory(GiB)": 40.4,
|
| 938 |
+
"step": 460,
|
| 939 |
+
"token_acc": 0.9666666666666667,
|
| 940 |
+
"train_speed(iter/s)": 0.077136
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 0.8464805825242718,
|
| 944 |
+
"grad_norm": 0.4923359155654907,
|
| 945 |
+
"learning_rate": 3.236050535121976e-06,
|
| 946 |
+
"loss": 0.0849435031414032,
|
| 947 |
+
"memory(GiB)": 40.4,
|
| 948 |
+
"step": 465,
|
| 949 |
+
"token_acc": 0.9628164556962026,
|
| 950 |
+
"train_speed(iter/s)": 0.077175
|
| 951 |
+
},
|
| 952 |
+
{
|
| 953 |
+
"epoch": 0.8555825242718447,
|
| 954 |
+
"grad_norm": 0.5079782605171204,
|
| 955 |
+
"learning_rate": 3.2007993085924694e-06,
|
| 956 |
+
"loss": 0.07131590843200683,
|
| 957 |
+
"memory(GiB)": 40.4,
|
| 958 |
+
"step": 470,
|
| 959 |
+
"token_acc": 0.9603489294210944,
|
| 960 |
+
"train_speed(iter/s)": 0.077219
|
| 961 |
+
},
|
| 962 |
+
{
|
| 963 |
+
"epoch": 0.8646844660194175,
|
| 964 |
+
"grad_norm": 0.47359853982925415,
|
| 965 |
+
"learning_rate": 3.165396203410121e-06,
|
| 966 |
+
"loss": 0.08230514526367187,
|
| 967 |
+
"memory(GiB)": 40.4,
|
| 968 |
+
"step": 475,
|
| 969 |
+
"token_acc": 0.9603489294210944,
|
| 970 |
+
"train_speed(iter/s)": 0.077276
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"epoch": 0.8737864077669902,
|
| 974 |
+
"grad_norm": 0.5094448328018188,
|
| 975 |
+
"learning_rate": 3.1298488922079597e-06,
|
| 976 |
+
"loss": 0.07572669386863709,
|
| 977 |
+
"memory(GiB)": 40.4,
|
| 978 |
+
"step": 480,
|
| 979 |
+
"token_acc": 0.9683042789223455,
|
| 980 |
+
"train_speed(iter/s)": 0.077301
|
| 981 |
+
},
|
| 982 |
+
{
|
| 983 |
+
"epoch": 0.8828883495145631,
|
| 984 |
+
"grad_norm": 0.6144260764122009,
|
| 985 |
+
"learning_rate": 3.094165078871634e-06,
|
| 986 |
+
"loss": 0.07770437002182007,
|
| 987 |
+
"memory(GiB)": 40.4,
|
| 988 |
+
"step": 485,
|
| 989 |
+
"token_acc": 0.9674603174603175,
|
| 990 |
+
"train_speed(iter/s)": 0.077291
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"epoch": 0.8919902912621359,
|
| 994 |
+
"grad_norm": 0.7166838049888611,
|
| 995 |
+
"learning_rate": 3.0583524968698176e-06,
|
| 996 |
+
"loss": 0.07593016624450684,
|
| 997 |
+
"memory(GiB)": 40.4,
|
| 998 |
+
"step": 490,
|
| 999 |
+
"token_acc": 0.9706582077716098,
|
| 1000 |
+
"train_speed(iter/s)": 0.077337
|
| 1001 |
+
},
|
| 1002 |
+
{
|
| 1003 |
+
"epoch": 0.9010922330097088,
|
| 1004 |
+
"grad_norm": 0.5843172073364258,
|
| 1005 |
+
"learning_rate": 3.0224189075781886e-06,
|
| 1006 |
+
"loss": 0.0753251850605011,
|
| 1007 |
+
"memory(GiB)": 40.4,
|
| 1008 |
+
"step": 495,
|
| 1009 |
+
"token_acc": 0.9675889328063241,
|
| 1010 |
+
"train_speed(iter/s)": 0.077398
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 0.9101941747572816,
|
| 1014 |
+
"grad_norm": 0.4273771643638611,
|
| 1015 |
+
"learning_rate": 2.9863720985973697e-06,
|
| 1016 |
+
"loss": 0.07616569995880126,
|
| 1017 |
+
"memory(GiB)": 40.4,
|
| 1018 |
+
"step": 500,
|
| 1019 |
+
"token_acc": 0.9746031746031746,
|
| 1020 |
+
"train_speed(iter/s)": 0.077368
|
| 1021 |
+
},
|
| 1022 |
+
{
|
| 1023 |
+
"epoch": 0.9192961165048543,
|
| 1024 |
+
"grad_norm": 0.5440679788589478,
|
| 1025 |
+
"learning_rate": 2.9502198820651903e-06,
|
| 1026 |
+
"loss": 0.07991842031478882,
|
| 1027 |
+
"memory(GiB)": 40.4,
|
| 1028 |
+
"step": 505,
|
| 1029 |
+
"token_acc": 0.9642857142857143,
|
| 1030 |
+
"train_speed(iter/s)": 0.077195
|
| 1031 |
+
},
|
| 1032 |
+
{
|
| 1033 |
+
"epoch": 0.9283980582524272,
|
| 1034 |
+
"grad_norm": 0.6545736789703369,
|
| 1035 |
+
"learning_rate": 2.9139700929636134e-06,
|
| 1036 |
+
"loss": 0.07855194211006164,
|
| 1037 |
+
"memory(GiB)": 40.4,
|
| 1038 |
+
"step": 510,
|
| 1039 |
+
"token_acc": 0.9587301587301588,
|
| 1040 |
+
"train_speed(iter/s)": 0.077178
|
| 1041 |
+
},
|
| 1042 |
+
{
|
| 1043 |
+
"epoch": 0.9375,
|
| 1044 |
+
"grad_norm": 0.5470529794692993,
|
| 1045 |
+
"learning_rate": 2.8776305874207305e-06,
|
| 1046 |
+
"loss": 0.07507063150405884,
|
| 1047 |
+
"memory(GiB)": 40.4,
|
| 1048 |
+
"step": 515,
|
| 1049 |
+
"token_acc": 0.9675376088677752,
|
| 1050 |
+
"train_speed(iter/s)": 0.077176
|
| 1051 |
+
},
|
| 1052 |
+
{
|
| 1053 |
+
"epoch": 0.9466019417475728,
|
| 1054 |
+
"grad_norm": 0.5262081623077393,
|
| 1055 |
+
"learning_rate": 2.8412092410081645e-06,
|
| 1056 |
+
"loss": 0.08568469285964966,
|
| 1057 |
+
"memory(GiB)": 40.4,
|
| 1058 |
+
"step": 520,
|
| 1059 |
+
"token_acc": 0.9659270998415214,
|
| 1060 |
+
"train_speed(iter/s)": 0.077164
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"epoch": 0.9557038834951457,
|
| 1064 |
+
"grad_norm": 0.48101773858070374,
|
| 1065 |
+
"learning_rate": 2.804713947034254e-06,
|
| 1066 |
+
"loss": 0.07408897280693054,
|
| 1067 |
+
"memory(GiB)": 40.4,
|
| 1068 |
+
"step": 525,
|
| 1069 |
+
"token_acc": 0.9715189873417721,
|
| 1070 |
+
"train_speed(iter/s)": 0.077248
|
| 1071 |
+
},
|
| 1072 |
+
{
|
| 1073 |
+
"epoch": 0.9648058252427184,
|
| 1074 |
+
"grad_norm": 0.7088754773139954,
|
| 1075 |
+
"learning_rate": 2.7681526148334074e-06,
|
| 1076 |
+
"loss": 0.07859846353530883,
|
| 1077 |
+
"memory(GiB)": 40.4,
|
| 1078 |
+
"step": 530,
|
| 1079 |
+
"token_acc": 0.9651070578905631,
|
| 1080 |
+
"train_speed(iter/s)": 0.077348
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 0.9739077669902912,
|
| 1084 |
+
"grad_norm": 0.5357980728149414,
|
| 1085 |
+
"learning_rate": 2.73153316805197e-06,
|
| 1086 |
+
"loss": 0.07618768811225891,
|
| 1087 |
+
"memory(GiB)": 40.4,
|
| 1088 |
+
"step": 535,
|
| 1089 |
+
"token_acc": 0.9683042789223455,
|
| 1090 |
+
"train_speed(iter/s)": 0.077388
|
| 1091 |
+
},
|
| 1092 |
+
{
|
| 1093 |
+
"epoch": 0.9830097087378641,
|
| 1094 |
+
"grad_norm": 0.4719216823577881,
|
| 1095 |
+
"learning_rate": 2.6948635429309984e-06,
|
| 1096 |
+
"loss": 0.08283294439315796,
|
| 1097 |
+
"memory(GiB)": 40.4,
|
| 1098 |
+
"step": 540,
|
| 1099 |
+
"token_acc": 0.9666666666666667,
|
| 1100 |
+
"train_speed(iter/s)": 0.077404
|
| 1101 |
+
},
|
| 1102 |
+
{
|
| 1103 |
+
"epoch": 0.9921116504854369,
|
| 1104 |
+
"grad_norm": 0.4105032980442047,
|
| 1105 |
+
"learning_rate": 2.6581516865863006e-06,
|
| 1106 |
+
"loss": 0.07635112404823304,
|
| 1107 |
+
"memory(GiB)": 40.4,
|
| 1108 |
+
"step": 545,
|
| 1109 |
+
"token_acc": 0.9666666666666667,
|
| 1110 |
+
"train_speed(iter/s)": 0.077461
|
| 1111 |
+
},
|
| 1112 |
+
{
|
| 1113 |
+
"epoch": 1.0,
|
| 1114 |
+
"grad_norm": 0.4639950096607208,
|
| 1115 |
+
"learning_rate": 2.6214055552861213e-06,
|
| 1116 |
+
"loss": 0.07352917194366455,
|
| 1117 |
+
"memory(GiB)": 40.4,
|
| 1118 |
+
"step": 550,
|
| 1119 |
+
"token_acc": 0.9652014652014652,
|
| 1120 |
+
"train_speed(iter/s)": 0.077567
|
| 1121 |
+
},
|
| 1122 |
+
{
|
| 1123 |
+
"epoch": 1.0091019417475728,
|
| 1124 |
+
"grad_norm": 0.5708960294723511,
|
| 1125 |
+
"learning_rate": 2.5846331127268432e-06,
|
| 1126 |
+
"loss": 0.06939817667007446,
|
| 1127 |
+
"memory(GiB)": 40.4,
|
| 1128 |
+
"step": 555,
|
| 1129 |
+
"token_acc": 0.9746634996041171,
|
| 1130 |
+
"train_speed(iter/s)": 0.077516
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"epoch": 1.0182038834951457,
|
| 1134 |
+
"grad_norm": 0.5500112771987915,
|
| 1135 |
+
"learning_rate": 2.5478423283070797e-06,
|
| 1136 |
+
"loss": 0.08004761338233948,
|
| 1137 |
+
"memory(GiB)": 40.4,
|
| 1138 |
+
"step": 560,
|
| 1139 |
+
"token_acc": 0.9666666666666667,
|
| 1140 |
+
"train_speed(iter/s)": 0.077461
|
| 1141 |
+
},
|
| 1142 |
+
{
|
| 1143 |
+
"epoch": 1.0273058252427185,
|
| 1144 |
+
"grad_norm": 0.6031087040901184,
|
| 1145 |
+
"learning_rate": 2.5110411754005277e-06,
|
| 1146 |
+
"loss": 0.07369757890701294,
|
| 1147 |
+
"memory(GiB)": 40.4,
|
| 1148 |
+
"step": 565,
|
| 1149 |
+
"token_acc": 0.9675118858954042,
|
| 1150 |
+
"train_speed(iter/s)": 0.077479
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"epoch": 1.0364077669902914,
|
| 1154 |
+
"grad_norm": 0.6123142242431641,
|
| 1155 |
+
"learning_rate": 2.4742376296279656e-06,
|
| 1156 |
+
"loss": 0.07673358917236328,
|
| 1157 |
+
"memory(GiB)": 40.4,
|
| 1158 |
+
"step": 570,
|
| 1159 |
+
"token_acc": 0.96513470681458,
|
| 1160 |
+
"train_speed(iter/s)": 0.077492
|
| 1161 |
+
},
|
| 1162 |
+
{
|
| 1163 |
+
"epoch": 1.045509708737864,
|
| 1164 |
+
"grad_norm": 0.4750412404537201,
|
| 1165 |
+
"learning_rate": 2.437439667128757e-06,
|
| 1166 |
+
"loss": 0.07482797503471375,
|
| 1167 |
+
"memory(GiB)": 40.4,
|
| 1168 |
+
"step": 575,
|
| 1169 |
+
"token_acc": 0.9722222222222222,
|
| 1170 |
+
"train_speed(iter/s)": 0.077462
|
| 1171 |
+
},
|
| 1172 |
+
{
|
| 1173 |
+
"epoch": 1.0546116504854368,
|
| 1174 |
+
"grad_norm": 0.6936323642730713,
|
| 1175 |
+
"learning_rate": 2.4006552628322495e-06,
|
| 1176 |
+
"loss": 0.07669172286987305,
|
| 1177 |
+
"memory(GiB)": 40.4,
|
| 1178 |
+
"step": 580,
|
| 1179 |
+
"token_acc": 0.9698890649762282,
|
| 1180 |
+
"train_speed(iter/s)": 0.077497
|
| 1181 |
+
},
|
| 1182 |
+
{
|
| 1183 |
+
"epoch": 1.0637135922330097,
|
| 1184 |
+
"grad_norm": 0.5415986180305481,
|
| 1185 |
+
"learning_rate": 2.3638923887294252e-06,
|
| 1186 |
+
"loss": 0.07764337062835694,
|
| 1187 |
+
"memory(GiB)": 40.4,
|
| 1188 |
+
"step": 585,
|
| 1189 |
+
"token_acc": 0.9722662440570523,
|
| 1190 |
+
"train_speed(iter/s)": 0.077534
|
| 1191 |
+
},
|
| 1192 |
+
{
|
| 1193 |
+
"epoch": 1.0728155339805825,
|
| 1194 |
+
"grad_norm": 0.5562268495559692,
|
| 1195 |
+
"learning_rate": 2.3271590121452034e-06,
|
| 1196 |
+
"loss": 0.07850711941719055,
|
| 1197 |
+
"memory(GiB)": 40.4,
|
| 1198 |
+
"step": 590,
|
| 1199 |
+
"token_acc": 0.9627575277337559,
|
| 1200 |
+
"train_speed(iter/s)": 0.077312
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"epoch": 1.0819174757281553,
|
| 1204 |
+
"grad_norm": 0.5438592433929443,
|
| 1205 |
+
"learning_rate": 2.2904630940117383e-06,
|
| 1206 |
+
"loss": 0.07206880450248718,
|
| 1207 |
+
"memory(GiB)": 40.4,
|
| 1208 |
+
"step": 595,
|
| 1209 |
+
"token_acc": 0.9706582077716098,
|
| 1210 |
+
"train_speed(iter/s)": 0.077329
|
| 1211 |
+
},
|
| 1212 |
+
{
|
| 1213 |
+
"epoch": 1.0910194174757282,
|
| 1214 |
+
"grad_norm": 0.7570096254348755,
|
| 1215 |
+
"learning_rate": 2.253812587143113e-06,
|
| 1216 |
+
"loss": 0.07922015190124512,
|
| 1217 |
+
"memory(GiB)": 40.4,
|
| 1218 |
+
"step": 600,
|
| 1219 |
+
"token_acc": 0.9675632911392406,
|
| 1220 |
+
"train_speed(iter/s)": 0.077373
|
| 1221 |
+
},
|
| 1222 |
+
{
|
| 1223 |
+
"epoch": 1.100121359223301,
|
| 1224 |
+
"grad_norm": 0.44248196482658386,
|
| 1225 |
+
"learning_rate": 2.2172154345117896e-06,
|
| 1226 |
+
"loss": 0.07421438097953796,
|
| 1227 |
+
"memory(GiB)": 40.4,
|
| 1228 |
+
"step": 605,
|
| 1229 |
+
"token_acc": 0.969047619047619,
|
| 1230 |
+
"train_speed(iter/s)": 0.077227
|
| 1231 |
+
},
|
| 1232 |
+
{
|
| 1233 |
+
"epoch": 1.1092233009708738,
|
| 1234 |
+
"grad_norm": 0.8693225383758545,
|
| 1235 |
+
"learning_rate": 2.18067956752719e-06,
|
| 1236 |
+
"loss": 0.07179425954818726,
|
| 1237 |
+
"memory(GiB)": 40.4,
|
| 1238 |
+
"step": 610,
|
| 1239 |
+
"token_acc": 0.9738302934179223,
|
| 1240 |
+
"train_speed(iter/s)": 0.077227
|
| 1241 |
+
},
|
| 1242 |
+
{
|
| 1243 |
+
"epoch": 1.1183252427184467,
|
| 1244 |
+
"grad_norm": 0.6093197464942932,
|
| 1245 |
+
"learning_rate": 2.1442129043167877e-06,
|
| 1246 |
+
"loss": 0.07261105179786682,
|
| 1247 |
+
"memory(GiB)": 40.4,
|
| 1248 |
+
"step": 615,
|
| 1249 |
+
"token_acc": 0.972244250594766,
|
| 1250 |
+
"train_speed(iter/s)": 0.077265
|
| 1251 |
+
},
|
| 1252 |
+
{
|
| 1253 |
+
"epoch": 1.1274271844660193,
|
| 1254 |
+
"grad_norm": 0.47732552886009216,
|
| 1255 |
+
"learning_rate": 2.1078233480100708e-06,
|
| 1256 |
+
"loss": 0.07763968706130982,
|
| 1257 |
+
"memory(GiB)": 40.4,
|
| 1258 |
+
"step": 620,
|
| 1259 |
+
"token_acc": 0.9746233148295004,
|
| 1260 |
+
"train_speed(iter/s)": 0.077083
|
| 1261 |
+
},
|
| 1262 |
+
{
|
| 1263 |
+
"epoch": 1.1365291262135921,
|
| 1264 |
+
"grad_norm": 0.6436070799827576,
|
| 1265 |
+
"learning_rate": 2.0715187850257645e-06,
|
| 1266 |
+
"loss": 0.07869491577148438,
|
| 1267 |
+
"memory(GiB)": 40.4,
|
| 1268 |
+
"step": 625,
|
| 1269 |
+
"token_acc": 0.9675632911392406,
|
| 1270 |
+
"train_speed(iter/s)": 0.077031
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"epoch": 1.145631067961165,
|
| 1274 |
+
"grad_norm": 0.6669154167175293,
|
| 1275 |
+
"learning_rate": 2.0353070833626684e-06,
|
| 1276 |
+
"loss": 0.07925596237182617,
|
| 1277 |
+
"memory(GiB)": 40.4,
|
| 1278 |
+
"step": 630,
|
| 1279 |
+
"token_acc": 0.964314036478985,
|
| 1280 |
+
"train_speed(iter/s)": 0.077048
|
| 1281 |
+
},
|
| 1282 |
+
{
|
| 1283 |
+
"epoch": 1.1547330097087378,
|
| 1284 |
+
"grad_norm": 0.6365996599197388,
|
| 1285 |
+
"learning_rate": 1.999196090894485e-06,
|
| 1286 |
+
"loss": 0.06456078886985779,
|
| 1287 |
+
"memory(GiB)": 40.4,
|
| 1288 |
+
"step": 635,
|
| 1289 |
+
"token_acc": 0.9667194928684627,
|
| 1290 |
+
"train_speed(iter/s)": 0.077101
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 1.1638349514563107,
|
| 1294 |
+
"grad_norm": 0.5614244341850281,
|
| 1295 |
+
"learning_rate": 1.963193633669018e-06,
|
| 1296 |
+
"loss": 0.07243520021438599,
|
| 1297 |
+
"memory(GiB)": 40.4,
|
| 1298 |
+
"step": 640,
|
| 1299 |
+
"token_acc": 0.9666931007137193,
|
| 1300 |
+
"train_speed(iter/s)": 0.077155
|
| 1301 |
+
},
|
| 1302 |
+
{
|
| 1303 |
+
"epoch": 1.1729368932038835,
|
| 1304 |
+
"grad_norm": 0.8191459774971008,
|
| 1305 |
+
"learning_rate": 1.927307514212089e-06,
|
| 1306 |
+
"loss": 0.0762752890586853,
|
| 1307 |
+
"memory(GiB)": 40.4,
|
| 1308 |
+
"step": 645,
|
| 1309 |
+
"token_acc": 0.9698412698412698,
|
| 1310 |
+
"train_speed(iter/s)": 0.077153
|
| 1311 |
+
},
|
| 1312 |
+
{
|
| 1313 |
+
"epoch": 1.1820388349514563,
|
| 1314 |
+
"grad_norm": 0.523980438709259,
|
| 1315 |
+
"learning_rate": 1.8915455098365651e-06,
|
| 1316 |
+
"loss": 0.0773351550102234,
|
| 1317 |
+
"memory(GiB)": 40.4,
|
| 1318 |
+
"step": 650,
|
| 1319 |
+
"token_acc": 0.9675118858954042,
|
| 1320 |
+
"train_speed(iter/s)": 0.077211
|
| 1321 |
+
},
|
| 1322 |
+
{
|
| 1323 |
+
"epoch": 1.1911407766990292,
|
| 1324 |
+
"grad_norm": 0.5650423169136047,
|
| 1325 |
+
"learning_rate": 1.8559153709568393e-06,
|
| 1326 |
+
"loss": 0.07858687043190002,
|
| 1327 |
+
"memory(GiB)": 40.4,
|
| 1328 |
+
"step": 655,
|
| 1329 |
+
"token_acc": 0.9635499207606973,
|
| 1330 |
+
"train_speed(iter/s)": 0.077253
|
| 1331 |
+
},
|
| 1332 |
+
{
|
| 1333 |
+
"epoch": 1.200242718446602,
|
| 1334 |
+
"grad_norm": 0.3905327022075653,
|
| 1335 |
+
"learning_rate": 1.8204248194091429e-06,
|
| 1336 |
+
"loss": 0.07570682168006897,
|
| 1337 |
+
"memory(GiB)": 40.4,
|
| 1338 |
+
"step": 660,
|
| 1339 |
+
"token_acc": 0.9674861221252974,
|
| 1340 |
+
"train_speed(iter/s)": 0.077222
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"epoch": 1.2093446601941746,
|
| 1344 |
+
"grad_norm": 0.6456849575042725,
|
| 1345 |
+
"learning_rate": 1.7850815467780616e-06,
|
| 1346 |
+
"loss": 0.06978952884674072,
|
| 1347 |
+
"memory(GiB)": 40.4,
|
| 1348 |
+
"step": 665,
|
| 1349 |
+
"token_acc": 0.976984126984127,
|
| 1350 |
+
"train_speed(iter/s)": 0.077238
|
| 1351 |
+
},
|
| 1352 |
+
{
|
| 1353 |
+
"epoch": 1.2184466019417475,
|
| 1354 |
+
"grad_norm": 0.49169182777404785,
|
| 1355 |
+
"learning_rate": 1.7498932127295892e-06,
|
| 1356 |
+
"loss": 0.06932756900787354,
|
| 1357 |
+
"memory(GiB)": 40.4,
|
| 1358 |
+
"step": 670,
|
| 1359 |
+
"token_acc": 0.9674603174603175,
|
| 1360 |
+
"train_speed(iter/s)": 0.077305
|
| 1361 |
+
},
|
| 1362 |
+
{
|
| 1363 |
+
"epoch": 1.2275485436893203,
|
| 1364 |
+
"grad_norm": 0.8174545764923096,
|
| 1365 |
+
"learning_rate": 1.7148674433511176e-06,
|
| 1366 |
+
"loss": 0.07247714400291443,
|
| 1367 |
+
"memory(GiB)": 40.4,
|
| 1368 |
+
"step": 675,
|
| 1369 |
+
"token_acc": 0.9785714285714285,
|
| 1370 |
+
"train_speed(iter/s)": 0.077358
|
| 1371 |
+
},
|
| 1372 |
+
{
|
| 1373 |
+
"epoch": 1.2366504854368932,
|
| 1374 |
+
"grad_norm": 0.5874563455581665,
|
| 1375 |
+
"learning_rate": 1.6800118294986936e-06,
|
| 1376 |
+
"loss": 0.08156619668006897,
|
| 1377 |
+
"memory(GiB)": 40.4,
|
| 1378 |
+
"step": 680,
|
| 1379 |
+
"token_acc": 0.9619952494061758,
|
| 1380 |
+
"train_speed(iter/s)": 0.077379
|
| 1381 |
+
},
|
| 1382 |
+
{
|
| 1383 |
+
"epoch": 1.245752427184466,
|
| 1384 |
+
"grad_norm": 0.7023929357528687,
|
| 1385 |
+
"learning_rate": 1.645333925151908e-06,
|
| 1386 |
+
"loss": 0.0740778088569641,
|
| 1387 |
+
"memory(GiB)": 40.4,
|
| 1388 |
+
"step": 685,
|
| 1389 |
+
"token_acc": 0.9643423137876387,
|
| 1390 |
+
"train_speed(iter/s)": 0.077282
|
| 1391 |
+
},
|
| 1392 |
+
{
|
| 1393 |
+
"epoch": 1.2548543689320388,
|
| 1394 |
+
"grad_norm": 0.6284681558609009,
|
| 1395 |
+
"learning_rate": 1.610841245776789e-06,
|
| 1396 |
+
"loss": 0.07937963008880615,
|
| 1397 |
+
"memory(GiB)": 40.4,
|
| 1398 |
+
"step": 690,
|
| 1399 |
+
"token_acc": 0.9682791435368755,
|
| 1400 |
+
"train_speed(iter/s)": 0.077267
|
| 1401 |
+
},
|
| 1402 |
+
{
|
| 1403 |
+
"epoch": 1.2639563106796117,
|
| 1404 |
+
"grad_norm": 0.4900761544704437,
|
| 1405 |
+
"learning_rate": 1.5765412666970302e-06,
|
| 1406 |
+
"loss": 0.07481481432914734,
|
| 1407 |
+
"memory(GiB)": 40.4,
|
| 1408 |
+
"step": 695,
|
| 1409 |
+
"token_acc": 0.9714512291831879,
|
| 1410 |
+
"train_speed(iter/s)": 0.077241
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"epoch": 1.2730582524271845,
|
| 1414 |
+
"grad_norm": 0.7159978747367859,
|
| 1415 |
+
"learning_rate": 1.5424414214739258e-06,
|
| 1416 |
+
"loss": 0.07213735580444336,
|
| 1417 |
+
"memory(GiB)": 40.4,
|
| 1418 |
+
"step": 700,
|
| 1419 |
+
"token_acc": 0.9738302934179223,
|
| 1420 |
+
"train_speed(iter/s)": 0.077237
|
| 1421 |
+
},
|
| 1422 |
+
{
|
| 1423 |
+
"epoch": 1.2821601941747574,
|
| 1424 |
+
"grad_norm": 0.6261754631996155,
|
| 1425 |
+
"learning_rate": 1.5085491002953535e-06,
|
| 1426 |
+
"loss": 0.07179176211357116,
|
| 1427 |
+
"memory(GiB)": 40.4,
|
| 1428 |
+
"step": 705,
|
| 1429 |
+
"token_acc": 0.969047619047619,
|
| 1430 |
+
"train_speed(iter/s)": 0.077083
|
| 1431 |
+
},
|
| 1432 |
+
{
|
| 1433 |
+
"epoch": 1.29126213592233,
|
| 1434 |
+
"grad_norm": 0.9063695073127747,
|
| 1435 |
+
"learning_rate": 1.4748716483741562e-06,
|
| 1436 |
+
"loss": 0.07754602432250976,
|
| 1437 |
+
"memory(GiB)": 40.4,
|
| 1438 |
+
"step": 710,
|
| 1439 |
+
"token_acc": 0.96513470681458,
|
| 1440 |
+
"train_speed(iter/s)": 0.077061
|
| 1441 |
+
},
|
| 1442 |
+
{
|
| 1443 |
+
"epoch": 1.300364077669903,
|
| 1444 |
+
"grad_norm": 0.6574028134346008,
|
| 1445 |
+
"learning_rate": 1.4414163643562755e-06,
|
| 1446 |
+
"loss": 0.07884335517883301,
|
| 1447 |
+
"memory(GiB)": 40.4,
|
| 1448 |
+
"step": 715,
|
| 1449 |
+
"token_acc": 0.9675376088677752,
|
| 1450 |
+
"train_speed(iter/s)": 0.077069
|
| 1451 |
+
},
|
| 1452 |
+
{
|
| 1453 |
+
"epoch": 1.3094660194174756,
|
| 1454 |
+
"grad_norm": 0.5524230599403381,
|
| 1455 |
+
"learning_rate": 1.4081904987389701e-06,
|
| 1456 |
+
"loss": 0.07660083174705505,
|
| 1457 |
+
"memory(GiB)": 40.4,
|
| 1458 |
+
"step": 720,
|
| 1459 |
+
"token_acc": 0.9635210150674068,
|
| 1460 |
+
"train_speed(iter/s)": 0.077072
|
| 1461 |
+
},
|
| 1462 |
+
{
|
| 1463 |
+
"epoch": 1.3185679611650485,
|
| 1464 |
+
"grad_norm": 0.5381263494491577,
|
| 1465 |
+
"learning_rate": 1.375201252299479e-06,
|
| 1466 |
+
"loss": 0.07187164425849915,
|
| 1467 |
+
"memory(GiB)": 40.4,
|
| 1468 |
+
"step": 725,
|
| 1469 |
+
"token_acc": 0.9690966719492868,
|
| 1470 |
+
"train_speed(iter/s)": 0.077084
|
| 1471 |
+
},
|
| 1472 |
+
{
|
| 1473 |
+
"epoch": 1.3276699029126213,
|
| 1474 |
+
"grad_norm": 0.6094266176223755,
|
| 1475 |
+
"learning_rate": 1.3424557745344508e-06,
|
| 1476 |
+
"loss": 0.07152368426322937,
|
| 1477 |
+
"memory(GiB)": 40.4,
|
| 1478 |
+
"step": 730,
|
| 1479 |
+
"token_acc": 0.9690966719492868,
|
| 1480 |
+
"train_speed(iter/s)": 0.07712
|
| 1481 |
+
},
|
| 1482 |
+
{
|
| 1483 |
+
"epoch": 1.3367718446601942,
|
| 1484 |
+
"grad_norm": 0.37662273645401,
|
| 1485 |
+
"learning_rate": 1.3099611621104875e-06,
|
| 1486 |
+
"loss": 0.07852091193199158,
|
| 1487 |
+
"memory(GiB)": 40.4,
|
| 1488 |
+
"step": 735,
|
| 1489 |
+
"token_acc": 0.9698412698412698,
|
| 1490 |
+
"train_speed(iter/s)": 0.077111
|
| 1491 |
+
},
|
| 1492 |
+
{
|
| 1493 |
+
"epoch": 1.345873786407767,
|
| 1494 |
+
"grad_norm": 0.8660151958465576,
|
| 1495 |
+
"learning_rate": 1.2777244573261479e-06,
|
| 1496 |
+
"loss": 0.0761515736579895,
|
| 1497 |
+
"memory(GiB)": 40.4,
|
| 1498 |
+
"step": 740,
|
| 1499 |
+
"token_acc": 0.9650793650793651,
|
| 1500 |
+
"train_speed(iter/s)": 0.077083
|
| 1501 |
+
},
|
| 1502 |
+
{
|
| 1503 |
+
"epoch": 1.3549757281553398,
|
| 1504 |
+
"grad_norm": 0.8635317087173462,
|
| 1505 |
+
"learning_rate": 1.245752646585719e-06,
|
| 1506 |
+
"loss": 0.07429265975952148,
|
| 1507 |
+
"memory(GiB)": 40.4,
|
| 1508 |
+
"step": 745,
|
| 1509 |
+
"token_acc": 0.9706582077716098,
|
| 1510 |
+
"train_speed(iter/s)": 0.077017
|
| 1511 |
+
},
|
| 1512 |
+
{
|
| 1513 |
+
"epoch": 1.3640776699029127,
|
| 1514 |
+
"grad_norm": 0.6921953558921814,
|
| 1515 |
+
"learning_rate": 1.214052658885113e-06,
|
| 1516 |
+
"loss": 0.08055119514465332,
|
| 1517 |
+
"memory(GiB)": 40.4,
|
| 1518 |
+
"step": 750,
|
| 1519 |
+
"token_acc": 0.9659000793021412,
|
| 1520 |
+
"train_speed(iter/s)": 0.07705
|
| 1521 |
+
},
|
| 1522 |
+
{
|
| 1523 |
+
"epoch": 1.3731796116504853,
|
| 1524 |
+
"grad_norm": 0.512025773525238,
|
| 1525 |
+
"learning_rate": 1.182631364310199e-06,
|
| 1526 |
+
"loss": 0.07414981126785278,
|
| 1527 |
+
"memory(GiB)": 40.4,
|
| 1528 |
+
"step": 755,
|
| 1529 |
+
"token_acc": 0.9738095238095238,
|
| 1530 |
+
"train_speed(iter/s)": 0.077125
|
| 1531 |
+
},
|
| 1532 |
+
{
|
| 1533 |
+
"epoch": 1.3822815533980584,
|
| 1534 |
+
"grad_norm": 0.47374847531318665,
|
| 1535 |
+
"learning_rate": 1.1514955725479057e-06,
|
| 1536 |
+
"loss": 0.07829545140266418,
|
| 1537 |
+
"memory(GiB)": 40.4,
|
| 1538 |
+
"step": 760,
|
| 1539 |
+
"token_acc": 0.9675118858954042,
|
| 1540 |
+
"train_speed(iter/s)": 0.077061
|
| 1541 |
+
},
|
| 1542 |
+
{
|
| 1543 |
+
"epoch": 1.391383495145631,
|
| 1544 |
+
"grad_norm": 0.5193628072738647,
|
| 1545 |
+
"learning_rate": 1.1206520314104083e-06,
|
| 1546 |
+
"loss": 0.06979748606681824,
|
| 1547 |
+
"memory(GiB)": 40.4,
|
| 1548 |
+
"step": 765,
|
| 1549 |
+
"token_acc": 0.9730799683293745,
|
| 1550 |
+
"train_speed(iter/s)": 0.077097
|
| 1551 |
+
},
|
| 1552 |
+
{
|
| 1553 |
+
"epoch": 1.4004854368932038,
|
| 1554 |
+
"grad_norm": 0.5398116707801819,
|
| 1555 |
+
"learning_rate": 1.0901074253727338e-06,
|
| 1556 |
+
"loss": 0.07316485643386841,
|
| 1557 |
+
"memory(GiB)": 40.4,
|
| 1558 |
+
"step": 770,
|
| 1559 |
+
"token_acc": 0.9674861221252974,
|
| 1560 |
+
"train_speed(iter/s)": 0.077134
|
| 1561 |
+
},
|
| 1562 |
+
{
|
| 1563 |
+
"epoch": 1.4095873786407767,
|
| 1564 |
+
"grad_norm": 0.9198482036590576,
|
| 1565 |
+
"learning_rate": 1.0598683741240861e-06,
|
| 1566 |
+
"loss": 0.0778656005859375,
|
| 1567 |
+
"memory(GiB)": 40.4,
|
| 1568 |
+
"step": 775,
|
| 1569 |
+
"token_acc": 0.9714512291831879,
|
| 1570 |
+
"train_speed(iter/s)": 0.077187
|
| 1571 |
+
},
|
| 1572 |
+
{
|
| 1573 |
+
"epoch": 1.4186893203883495,
|
| 1574 |
+
"grad_norm": 0.5479600429534912,
|
| 1575 |
+
"learning_rate": 1.0299414311332107e-06,
|
| 1576 |
+
"loss": 0.0758398413658142,
|
| 1577 |
+
"memory(GiB)": 40.4,
|
| 1578 |
+
"step": 780,
|
| 1579 |
+
"token_acc": 0.9706582077716098,
|
| 1580 |
+
"train_speed(iter/s)": 0.077204
|
| 1581 |
+
},
|
| 1582 |
+
{
|
| 1583 |
+
"epoch": 1.4277912621359223,
|
| 1584 |
+
"grad_norm": 0.562239944934845,
|
| 1585 |
+
"learning_rate": 1.0003330822281188e-06,
|
| 1586 |
+
"loss": 0.08118345737457275,
|
| 1587 |
+
"memory(GiB)": 40.4,
|
| 1588 |
+
"step": 785,
|
| 1589 |
+
"token_acc": 0.9658730158730159,
|
| 1590 |
+
"train_speed(iter/s)": 0.077197
|
| 1591 |
+
},
|
| 1592 |
+
{
|
| 1593 |
+
"epoch": 1.4368932038834952,
|
| 1594 |
+
"grad_norm": 0.608139157295227,
|
| 1595 |
+
"learning_rate": 9.710497441904614e-07,
|
| 1596 |
+
"loss": 0.07277892231941223,
|
| 1597 |
+
"memory(GiB)": 40.4,
|
| 1598 |
+
"step": 790,
|
| 1599 |
+
"token_acc": 0.9739130434782609,
|
| 1600 |
+
"train_speed(iter/s)": 0.077169
|
| 1601 |
+
},
|
| 1602 |
+
{
|
| 1603 |
+
"epoch": 1.445995145631068,
|
| 1604 |
+
"grad_norm": 0.6108372807502747,
|
| 1605 |
+
"learning_rate": 9.420977633648739e-07,
|
| 1606 |
+
"loss": 0.0743071436882019,
|
| 1607 |
+
"memory(GiB)": 40.4,
|
| 1608 |
+
"step": 795,
|
| 1609 |
+
"token_acc": 0.9651070578905631,
|
| 1610 |
+
"train_speed(iter/s)": 0.077195
|
| 1611 |
+
},
|
| 1612 |
+
{
|
| 1613 |
+
"epoch": 1.4550970873786409,
|
| 1614 |
+
"grad_norm": 0.5900782346725464,
|
| 1615 |
+
"learning_rate": 9.134834142835794e-07,
|
| 1616 |
+
"loss": 0.07513993978500366,
|
| 1617 |
+
"memory(GiB)": 40.4,
|
| 1618 |
+
"step": 800,
|
| 1619 |
+
"token_acc": 0.9738302934179223,
|
| 1620 |
+
"train_speed(iter/s)": 0.07724
|
| 1621 |
+
},
|
| 1622 |
+
{
|
| 1623 |
+
"epoch": 1.4641990291262137,
|
| 1624 |
+
"grad_norm": 0.5346866846084595,
|
| 1625 |
+
"learning_rate": 8.852128983065653e-07,
|
| 1626 |
+
"loss": 0.07092651724815369,
|
| 1627 |
+
"memory(GiB)": 40.4,
|
| 1628 |
+
"step": 805,
|
| 1629 |
+
"token_acc": 0.9722662440570523,
|
| 1630 |
+
"train_speed(iter/s)": 0.077133
|
| 1631 |
+
},
|
| 1632 |
+
{
|
| 1633 |
+
"epoch": 1.4733009708737863,
|
| 1634 |
+
"grad_norm": 0.504199743270874,
|
| 1635 |
+
"learning_rate": 8.572923422776055e-07,
|
| 1636 |
+
"loss": 0.07900516986846924,
|
| 1637 |
+
"memory(GiB)": 40.4,
|
| 1638 |
+
"step": 810,
|
| 1639 |
+
"token_acc": 0.9524564183835182,
|
| 1640 |
+
"train_speed(iter/s)": 0.077129
|
| 1641 |
+
},
|
| 1642 |
+
{
|
| 1643 |
+
"epoch": 1.4824029126213591,
|
| 1644 |
+
"grad_norm": 0.5348660349845886,
|
| 1645 |
+
"learning_rate": 8.297277971964443e-07,
|
| 1646 |
+
"loss": 0.07192928791046142,
|
| 1647 |
+
"memory(GiB)": 40.4,
|
| 1648 |
+
"step": 815,
|
| 1649 |
+
"token_acc": 0.9706349206349206,
|
| 1650 |
+
"train_speed(iter/s)": 0.077153
|
| 1651 |
+
},
|
| 1652 |
+
{
|
| 1653 |
+
"epoch": 1.491504854368932,
|
| 1654 |
+
"grad_norm": 0.7142664194107056,
|
| 1655 |
+
"learning_rate": 8.025252369074077e-07,
|
| 1656 |
+
"loss": 0.07966341972351074,
|
| 1657 |
+
"memory(GiB)": 40.4,
|
| 1658 |
+
"step": 820,
|
| 1659 |
+
"token_acc": 0.9714285714285714,
|
| 1660 |
+
"train_speed(iter/s)": 0.077158
|
| 1661 |
+
},
|
| 1662 |
+
{
|
| 1663 |
+
"epoch": 1.5006067961165048,
|
| 1664 |
+
"grad_norm": 0.670011579990387,
|
| 1665 |
+
"learning_rate": 7.756905568047393e-07,
|
| 1666 |
+
"loss": 0.07460339069366455,
|
| 1667 |
+
"memory(GiB)": 40.4,
|
| 1668 |
+
"step": 825,
|
| 1669 |
+
"token_acc": 0.9698412698412698,
|
| 1670 |
+
"train_speed(iter/s)": 0.077072
|
| 1671 |
+
},
|
| 1672 |
+
{
|
| 1673 |
+
"epoch": 1.5097087378640777,
|
| 1674 |
+
"grad_norm": 0.9091220498085022,
|
| 1675 |
+
"learning_rate": 7.492295725549423e-07,
|
| 1676 |
+
"loss": 0.07916736602783203,
|
| 1677 |
+
"memory(GiB)": 40.4,
|
| 1678 |
+
"step": 830,
|
| 1679 |
+
"token_acc": 0.9714512291831879,
|
| 1680 |
+
"train_speed(iter/s)": 0.077125
|
| 1681 |
+
},
|
| 1682 |
+
{
|
| 1683 |
+
"epoch": 1.5188106796116505,
|
| 1684 |
+
"grad_norm": 0.5154448747634888,
|
| 1685 |
+
"learning_rate": 7.231480188363906e-07,
|
| 1686 |
+
"loss": 0.07609822750091552,
|
| 1687 |
+
"memory(GiB)": 40.4,
|
| 1688 |
+
"step": 835,
|
| 1689 |
+
"token_acc": 0.9619047619047619,
|
| 1690 |
+
"train_speed(iter/s)": 0.077151
|
| 1691 |
+
},
|
| 1692 |
+
{
|
| 1693 |
+
"epoch": 1.5279126213592233,
|
| 1694 |
+
"grad_norm": 0.5767259001731873,
|
| 1695 |
+
"learning_rate": 6.974515480965038e-07,
|
| 1696 |
+
"loss": 0.07642306089401245,
|
| 1697 |
+
"memory(GiB)": 40.4,
|
| 1698 |
+
"step": 840,
|
| 1699 |
+
"token_acc": 0.9635499207606973,
|
| 1700 |
+
"train_speed(iter/s)": 0.077169
|
| 1701 |
+
},
|
| 1702 |
+
{
|
| 1703 |
+
"epoch": 1.537014563106796,
|
| 1704 |
+
"grad_norm": 0.559921145439148,
|
| 1705 |
+
"learning_rate": 6.721457293267344e-07,
|
| 1706 |
+
"loss": 0.07739580273628235,
|
| 1707 |
+
"memory(GiB)": 40.4,
|
| 1708 |
+
"step": 845,
|
| 1709 |
+
"token_acc": 0.9659540775930324,
|
| 1710 |
+
"train_speed(iter/s)": 0.077202
|
| 1711 |
+
},
|
| 1712 |
+
{
|
| 1713 |
+
"epoch": 1.546116504854369,
|
| 1714 |
+
"grad_norm": 0.5525022745132446,
|
| 1715 |
+
"learning_rate": 6.472360468556419e-07,
|
| 1716 |
+
"loss": 0.07661284804344178,
|
| 1717 |
+
"memory(GiB)": 40.4,
|
| 1718 |
+
"step": 850,
|
| 1719 |
+
"token_acc": 0.9690966719492868,
|
| 1720 |
+
"train_speed(iter/s)": 0.077223
|
| 1721 |
+
},
|
| 1722 |
+
{
|
| 1723 |
+
"epoch": 1.5552184466019416,
|
| 1724 |
+
"grad_norm": 0.7156991958618164,
|
| 1725 |
+
"learning_rate": 6.227278991603239e-07,
|
| 1726 |
+
"loss": 0.07607601881027222,
|
| 1727 |
+
"memory(GiB)": 40.4,
|
| 1728 |
+
"step": 855,
|
| 1729 |
+
"token_acc": 0.9738924050632911,
|
| 1730 |
+
"train_speed(iter/s)": 0.077263
|
| 1731 |
+
},
|
| 1732 |
+
{
|
| 1733 |
+
"epoch": 1.5643203883495147,
|
| 1734 |
+
"grad_norm": 0.578790009021759,
|
| 1735 |
+
"learning_rate": 5.986265976964412e-07,
|
| 1736 |
+
"loss": 0.07703717947006225,
|
| 1737 |
+
"memory(GiB)": 40.4,
|
| 1738 |
+
"step": 860,
|
| 1739 |
+
"token_acc": 0.9627575277337559,
|
| 1740 |
+
"train_speed(iter/s)": 0.077321
|
| 1741 |
+
},
|
| 1742 |
+
{
|
| 1743 |
+
"epoch": 1.5734223300970873,
|
| 1744 |
+
"grad_norm": 0.41067153215408325,
|
| 1745 |
+
"learning_rate": 5.749373657471127e-07,
|
| 1746 |
+
"loss": 0.07262166738510131,
|
| 1747 |
+
"memory(GiB)": 40.4,
|
| 1748 |
+
"step": 865,
|
| 1749 |
+
"token_acc": 0.9666931007137193,
|
| 1750 |
+
"train_speed(iter/s)": 0.077313
|
| 1751 |
+
},
|
| 1752 |
+
{
|
| 1753 |
+
"epoch": 1.5825242718446602,
|
| 1754 |
+
"grad_norm": 0.6594594120979309,
|
| 1755 |
+
"learning_rate": 5.516653372909142e-07,
|
| 1756 |
+
"loss": 0.07546203732490539,
|
| 1757 |
+
"memory(GiB)": 40.4,
|
| 1758 |
+
"step": 870,
|
| 1759 |
+
"token_acc": 0.9730799683293745,
|
| 1760 |
+
"train_speed(iter/s)": 0.077321
|
| 1761 |
+
},
|
| 1762 |
+
{
|
| 1763 |
+
"epoch": 1.591626213592233,
|
| 1764 |
+
"grad_norm": 0.6693688035011292,
|
| 1765 |
+
"learning_rate": 5.28815555889228e-07,
|
| 1766 |
+
"loss": 0.07242462635040284,
|
| 1767 |
+
"memory(GiB)": 40.4,
|
| 1768 |
+
"step": 875,
|
| 1769 |
+
"token_acc": 0.9714964370546318,
|
| 1770 |
+
"train_speed(iter/s)": 0.077315
|
| 1771 |
+
},
|
| 1772 |
+
{
|
| 1773 |
+
"epoch": 1.6007281553398058,
|
| 1774 |
+
"grad_norm": 0.5314414501190186,
|
| 1775 |
+
"learning_rate": 5.063929735931985e-07,
|
| 1776 |
+
"loss": 0.07621661424636841,
|
| 1777 |
+
"memory(GiB)": 40.4,
|
| 1778 |
+
"step": 880,
|
| 1779 |
+
"token_acc": 0.9746634996041171,
|
| 1780 |
+
"train_speed(iter/s)": 0.077305
|
| 1781 |
+
},
|
| 1782 |
+
{
|
| 1783 |
+
"epoch": 1.6098300970873787,
|
| 1784 |
+
"grad_norm": 0.39022502303123474,
|
| 1785 |
+
"learning_rate": 4.844024498705072e-07,
|
| 1786 |
+
"loss": 0.07379111647605896,
|
| 1787 |
+
"memory(GiB)": 40.4,
|
| 1788 |
+
"step": 885,
|
| 1789 |
+
"token_acc": 0.9770023790642347,
|
| 1790 |
+
"train_speed(iter/s)": 0.077319
|
| 1791 |
+
},
|
| 1792 |
+
{
|
| 1793 |
+
"epoch": 1.6189320388349513,
|
| 1794 |
+
"grad_norm": 0.5611955523490906,
|
| 1795 |
+
"learning_rate": 4.6284875055222415e-07,
|
| 1796 |
+
"loss": 0.07641223073005676,
|
| 1797 |
+
"memory(GiB)": 40.4,
|
| 1798 |
+
"step": 890,
|
| 1799 |
+
"token_acc": 0.969047619047619,
|
| 1800 |
+
"train_speed(iter/s)": 0.07736
|
| 1801 |
+
},
|
| 1802 |
+
{
|
| 1803 |
+
"epoch": 1.6280339805825244,
|
| 1804 |
+
"grad_norm": 0.5914463996887207,
|
| 1805 |
+
"learning_rate": 4.4173654679994543e-07,
|
| 1806 |
+
"loss": 0.07118785977363587,
|
| 1807 |
+
"memory(GiB)": 40.4,
|
| 1808 |
+
"step": 895,
|
| 1809 |
+
"token_acc": 0.9666931007137193,
|
| 1810 |
+
"train_speed(iter/s)": 0.077387
|
| 1811 |
+
},
|
| 1812 |
+
{
|
| 1813 |
+
"epoch": 1.637135922330097,
|
| 1814 |
+
"grad_norm": 0.6131768226623535,
|
| 1815 |
+
"learning_rate": 4.2107041409344686e-07,
|
| 1816 |
+
"loss": 0.06656063199043274,
|
| 1817 |
+
"memory(GiB)": 40.4,
|
| 1818 |
+
"step": 900,
|
| 1819 |
+
"token_acc": 0.9730586370839936,
|
| 1820 |
+
"train_speed(iter/s)": 0.077393
|
| 1821 |
+
},
|
| 1822 |
+
{
|
| 1823 |
+
"epoch": 1.64623786407767,
|
| 1824 |
+
"grad_norm": 0.6083477139472961,
|
| 1825 |
+
"learning_rate": 4.00854831239082e-07,
|
| 1826 |
+
"loss": 0.07548041343688965,
|
| 1827 |
+
"memory(GiB)": 40.4,
|
| 1828 |
+
"step": 905,
|
| 1829 |
+
"token_acc": 0.9706814580031695,
|
| 1830 |
+
"train_speed(iter/s)": 0.07732
|
| 1831 |
+
},
|
| 1832 |
+
{
|
| 1833 |
+
"epoch": 1.6553398058252426,
|
| 1834 |
+
"grad_norm": 0.5123993158340454,
|
| 1835 |
+
"learning_rate": 3.8109417939912044e-07,
|
| 1836 |
+
"loss": 0.07632001638412475,
|
| 1837 |
+
"memory(GiB)": 40.4,
|
| 1838 |
+
"step": 910,
|
| 1839 |
+
"token_acc": 0.9651070578905631,
|
| 1840 |
+
"train_speed(iter/s)": 0.07734
|
| 1841 |
+
},
|
| 1842 |
+
{
|
| 1843 |
+
"epoch": 1.6644417475728155,
|
| 1844 |
+
"grad_norm": 0.6305170655250549,
|
| 1845 |
+
"learning_rate": 3.617927411422584e-07,
|
| 1846 |
+
"loss": 0.07312512397766113,
|
| 1847 |
+
"memory(GiB)": 40.4,
|
| 1848 |
+
"step": 915,
|
| 1849 |
+
"token_acc": 0.9675376088677752,
|
| 1850 |
+
"train_speed(iter/s)": 0.077345
|
| 1851 |
+
},
|
| 1852 |
+
{
|
| 1853 |
+
"epoch": 1.6735436893203883,
|
| 1854 |
+
"grad_norm": 0.5339434742927551,
|
| 1855 |
+
"learning_rate": 3.4295469951548894e-07,
|
| 1856 |
+
"loss": 0.06849889755249024,
|
| 1857 |
+
"memory(GiB)": 40.4,
|
| 1858 |
+
"step": 920,
|
| 1859 |
+
"token_acc": 0.9674861221252974,
|
| 1860 |
+
"train_speed(iter/s)": 0.077349
|
| 1861 |
+
},
|
| 1862 |
+
{
|
| 1863 |
+
"epoch": 1.6826456310679612,
|
| 1864 |
+
"grad_norm": 0.532629132270813,
|
| 1865 |
+
"learning_rate": 3.24584137137543e-07,
|
| 1866 |
+
"loss": 0.07681695818901062,
|
| 1867 |
+
"memory(GiB)": 40.4,
|
| 1868 |
+
"step": 925,
|
| 1869 |
+
"token_acc": 0.9722222222222222,
|
| 1870 |
+
"train_speed(iter/s)": 0.077356
|
| 1871 |
+
},
|
| 1872 |
+
{
|
| 1873 |
+
"epoch": 1.691747572815534,
|
| 1874 |
+
"grad_norm": 0.4466962516307831,
|
| 1875 |
+
"learning_rate": 3.0668503531409876e-07,
|
| 1876 |
+
"loss": 0.06994915008544922,
|
| 1877 |
+
"memory(GiB)": 40.4,
|
| 1878 |
+
"step": 930,
|
| 1879 |
+
"token_acc": 0.9714964370546318,
|
| 1880 |
+
"train_speed(iter/s)": 0.077371
|
| 1881 |
+
},
|
| 1882 |
+
{
|
| 1883 |
+
"epoch": 1.7008495145631068,
|
| 1884 |
+
"grad_norm": 0.586765706539154,
|
| 1885 |
+
"learning_rate": 2.892612731749414e-07,
|
| 1886 |
+
"loss": 0.07494070529937744,
|
| 1887 |
+
"memory(GiB)": 40.4,
|
| 1888 |
+
"step": 935,
|
| 1889 |
+
"token_acc": 0.969047619047619,
|
| 1890 |
+
"train_speed(iter/s)": 0.077342
|
| 1891 |
+
},
|
| 1892 |
+
{
|
| 1893 |
+
"epoch": 1.7099514563106797,
|
| 1894 |
+
"grad_norm": 0.5412377715110779,
|
| 1895 |
+
"learning_rate": 2.723166268332733e-07,
|
| 1896 |
+
"loss": 0.07770473957061767,
|
| 1897 |
+
"memory(GiB)": 40.4,
|
| 1898 |
+
"step": 940,
|
| 1899 |
+
"token_acc": 0.9676145339652449,
|
| 1900 |
+
"train_speed(iter/s)": 0.077329
|
| 1901 |
+
},
|
| 1902 |
+
{
|
| 1903 |
+
"epoch": 1.7190533980582523,
|
| 1904 |
+
"grad_norm": 0.911586582660675,
|
| 1905 |
+
"learning_rate": 2.55854768567346e-07,
|
| 1906 |
+
"loss": 0.07914371490478515,
|
| 1907 |
+
"memory(GiB)": 40.4,
|
| 1908 |
+
"step": 945,
|
| 1909 |
+
"token_acc": 0.9674861221252974,
|
| 1910 |
+
"train_speed(iter/s)": 0.077298
|
| 1911 |
+
},
|
| 1912 |
+
{
|
| 1913 |
+
"epoch": 1.7281553398058254,
|
| 1914 |
+
"grad_norm": 0.6137750148773193,
|
| 1915 |
+
"learning_rate": 2.3987926602459465e-07,
|
| 1916 |
+
"loss": 0.08327807188034057,
|
| 1917 |
+
"memory(GiB)": 40.4,
|
| 1918 |
+
"step": 950,
|
| 1919 |
+
"token_acc": 0.9706349206349206,
|
| 1920 |
+
"train_speed(iter/s)": 0.077305
|
| 1921 |
+
},
|
| 1922 |
+
{
|
| 1923 |
+
"epoch": 1.737257281553398,
|
| 1924 |
+
"grad_norm": 0.576627790927887,
|
| 1925 |
+
"learning_rate": 2.2439358144845464e-07,
|
| 1926 |
+
"loss": 0.08012324571609497,
|
| 1927 |
+
"memory(GiB)": 40.4,
|
| 1928 |
+
"step": 955,
|
| 1929 |
+
"token_acc": 0.9643423137876387,
|
| 1930 |
+
"train_speed(iter/s)": 0.077328
|
| 1931 |
+
},
|
| 1932 |
+
{
|
| 1933 |
+
"epoch": 1.7463592233009708,
|
| 1934 |
+
"grad_norm": 0.6456671953201294,
|
| 1935 |
+
"learning_rate": 2.09401070928012e-07,
|
| 1936 |
+
"loss": 0.06627861261367798,
|
| 1937 |
+
"memory(GiB)": 40.4,
|
| 1938 |
+
"step": 960,
|
| 1939 |
+
"token_acc": 0.9714285714285714,
|
| 1940 |
+
"train_speed(iter/s)": 0.077243
|
| 1941 |
+
},
|
| 1942 |
+
{
|
| 1943 |
+
"epoch": 1.7554611650485437,
|
| 1944 |
+
"grad_norm": 0.6002473831176758,
|
| 1945 |
+
"learning_rate": 1.9490498367066817e-07,
|
| 1946 |
+
"loss": 0.071403968334198,
|
| 1947 |
+
"memory(GiB)": 40.4,
|
| 1948 |
+
"step": 965,
|
| 1949 |
+
"token_acc": 0.9682791435368755,
|
| 1950 |
+
"train_speed(iter/s)": 0.077258
|
| 1951 |
+
},
|
| 1952 |
+
{
|
| 1953 |
+
"epoch": 1.7645631067961165,
|
| 1954 |
+
"grad_norm": 0.7518230080604553,
|
| 1955 |
+
"learning_rate": 1.8090846129796586e-07,
|
| 1956 |
+
"loss": 0.07573525905609131,
|
| 1957 |
+
"memory(GiB)": 40.4,
|
| 1958 |
+
"step": 970,
|
| 1959 |
+
"token_acc": 0.9722222222222222,
|
| 1960 |
+
"train_speed(iter/s)": 0.077252
|
| 1961 |
+
},
|
| 1962 |
+
{
|
| 1963 |
+
"epoch": 1.7736650485436893,
|
| 1964 |
+
"grad_norm": 0.41464531421661377,
|
| 1965 |
+
"learning_rate": 1.6741453716472677e-07,
|
| 1966 |
+
"loss": 0.07870721817016602,
|
| 1967 |
+
"memory(GiB)": 40.4,
|
| 1968 |
+
"step": 975,
|
| 1969 |
+
"token_acc": 0.9627870150435471,
|
| 1970 |
+
"train_speed(iter/s)": 0.077259
|
| 1971 |
+
},
|
| 1972 |
+
{
|
| 1973 |
+
"epoch": 1.7827669902912622,
|
| 1974 |
+
"grad_norm": 0.7254371643066406,
|
| 1975 |
+
"learning_rate": 1.5442613570165993e-07,
|
| 1976 |
+
"loss": 0.08646805882453919,
|
| 1977 |
+
"memory(GiB)": 40.4,
|
| 1978 |
+
"step": 980,
|
| 1979 |
+
"token_acc": 0.9611419508326725,
|
| 1980 |
+
"train_speed(iter/s)": 0.077274
|
| 1981 |
+
},
|
| 1982 |
+
{
|
| 1983 |
+
"epoch": 1.791868932038835,
|
| 1984 |
+
"grad_norm": 0.7164713740348816,
|
| 1985 |
+
"learning_rate": 1.4194607178157237e-07,
|
| 1986 |
+
"loss": 0.07055433988571166,
|
| 1987 |
+
"memory(GiB)": 40.4,
|
| 1988 |
+
"step": 985,
|
| 1989 |
+
"token_acc": 0.9706349206349206,
|
| 1990 |
+
"train_speed(iter/s)": 0.077341
|
| 1991 |
+
},
|
| 1992 |
+
{
|
| 1993 |
+
"epoch": 1.8009708737864076,
|
| 1994 |
+
"grad_norm": 0.5821430087089539,
|
| 1995 |
+
"learning_rate": 1.2997705010932394e-07,
|
| 1996 |
+
"loss": 0.07743188142776489,
|
| 1997 |
+
"memory(GiB)": 40.4,
|
| 1998 |
+
"step": 990,
|
| 1999 |
+
"token_acc": 0.9674861221252974,
|
| 2000 |
+
"train_speed(iter/s)": 0.077362
|
| 2001 |
+
},
|
| 2002 |
+
{
|
| 2003 |
+
"epoch": 1.8100728155339807,
|
| 2004 |
+
"grad_norm": 0.766345739364624,
|
| 2005 |
+
"learning_rate": 1.1852166463565767e-07,
|
| 2006 |
+
"loss": 0.07668507099151611,
|
| 2007 |
+
"memory(GiB)": 40.4,
|
| 2008 |
+
"step": 995,
|
| 2009 |
+
"token_acc": 0.9770023790642347,
|
| 2010 |
+
"train_speed(iter/s)": 0.077362
|
| 2011 |
+
},
|
| 2012 |
+
{
|
| 2013 |
+
"epoch": 1.8191747572815533,
|
| 2014 |
+
"grad_norm": 0.5379170179367065,
|
| 2015 |
+
"learning_rate": 1.0758239799503412e-07,
|
| 2016 |
+
"loss": 0.06778880357742309,
|
| 2017 |
+
"memory(GiB)": 40.4,
|
| 2018 |
+
"step": 1000,
|
| 2019 |
+
"token_acc": 0.9746233148295004,
|
| 2020 |
+
"train_speed(iter/s)": 0.077358
|
| 2021 |
+
},
|
| 2022 |
+
{
|
| 2023 |
+
"epoch": 1.8282766990291264,
|
| 2024 |
+
"grad_norm": 0.587326169013977,
|
| 2025 |
+
"learning_rate": 9.716162096759019e-08,
|
| 2026 |
+
"loss": 0.07784827947616577,
|
| 2027 |
+
"memory(GiB)": 40.4,
|
| 2028 |
+
"step": 1005,
|
| 2029 |
+
"token_acc": 0.9770206022187005,
|
| 2030 |
+
"train_speed(iter/s)": 0.077289
|
| 2031 |
+
},
|
| 2032 |
+
{
|
| 2033 |
+
"epoch": 1.837378640776699,
|
| 2034 |
+
"grad_norm": 0.5790999531745911,
|
| 2035 |
+
"learning_rate": 8.726159196533718e-08,
|
| 2036 |
+
"loss": 0.07364106178283691,
|
| 2037 |
+
"memory(GiB)": 40.4,
|
| 2038 |
+
"step": 1010,
|
| 2039 |
+
"token_acc": 0.9730372720063442,
|
| 2040 |
+
"train_speed(iter/s)": 0.077306
|
| 2041 |
+
},
|
| 2042 |
+
{
|
| 2043 |
+
"epoch": 1.8464805825242718,
|
| 2044 |
+
"grad_norm": 0.5765237808227539,
|
| 2045 |
+
"learning_rate": 7.788445654271532e-08,
|
| 2046 |
+
"loss": 0.07042239308357238,
|
| 2047 |
+
"memory(GiB)": 40.4,
|
| 2048 |
+
"step": 1015,
|
| 2049 |
+
"token_acc": 0.9682539682539683,
|
| 2050 |
+
"train_speed(iter/s)": 0.077338
|
| 2051 |
+
},
|
| 2052 |
+
{
|
| 2053 |
+
"epoch": 1.8555825242718447,
|
| 2054 |
+
"grad_norm": 0.4627252221107483,
|
| 2055 |
+
"learning_rate": 6.903224693160348e-08,
|
| 2056 |
+
"loss": 0.06837155222892762,
|
| 2057 |
+
"memory(GiB)": 40.4,
|
| 2058 |
+
"step": 1020,
|
| 2059 |
+
"token_acc": 0.9754358161648178,
|
| 2060 |
+
"train_speed(iter/s)": 0.077366
|
| 2061 |
+
},
|
| 2062 |
+
{
|
| 2063 |
+
"epoch": 1.8646844660194175,
|
| 2064 |
+
"grad_norm": 0.5963551998138428,
|
| 2065 |
+
"learning_rate": 6.070688160088961e-08,
|
| 2066 |
+
"loss": 0.0674078106880188,
|
| 2067 |
+
"memory(GiB)": 40.4,
|
| 2068 |
+
"step": 1025,
|
| 2069 |
+
"token_acc": 0.9659270998415214,
|
| 2070 |
+
"train_speed(iter/s)": 0.077385
|
| 2071 |
+
},
|
| 2072 |
+
{
|
| 2073 |
+
"epoch": 1.8737864077669903,
|
| 2074 |
+
"grad_norm": 0.6391610503196716,
|
| 2075 |
+
"learning_rate": 5.291016484069683e-08,
|
| 2076 |
+
"loss": 0.07277075052261353,
|
| 2077 |
+
"memory(GiB)": 40.4,
|
| 2078 |
+
"step": 1030,
|
| 2079 |
+
"token_acc": 0.9659540775930324,
|
| 2080 |
+
"train_speed(iter/s)": 0.077401
|
| 2081 |
+
},
|
| 2082 |
+
{
|
| 2083 |
+
"epoch": 1.882888349514563,
|
| 2084 |
+
"grad_norm": 0.5019727945327759,
|
| 2085 |
+
"learning_rate": 4.564378637135408e-08,
|
| 2086 |
+
"loss": 0.0752260446548462,
|
| 2087 |
+
"memory(GiB)": 40.4,
|
| 2088 |
+
"step": 1035,
|
| 2089 |
+
"token_acc": 0.9682791435368755,
|
| 2090 |
+
"train_speed(iter/s)": 0.077434
|
| 2091 |
+
},
|
| 2092 |
+
{
|
| 2093 |
+
"epoch": 1.891990291262136,
|
| 2094 |
+
"grad_norm": 0.4186345040798187,
|
| 2095 |
+
"learning_rate": 3.890932097719624e-08,
|
| 2096 |
+
"loss": 0.06725120544433594,
|
| 2097 |
+
"memory(GiB)": 40.4,
|
| 2098 |
+
"step": 1040,
|
| 2099 |
+
"token_acc": 0.9730799683293745,
|
| 2100 |
+
"train_speed(iter/s)": 0.077451
|
| 2101 |
+
},
|
| 2102 |
+
{
|
| 2103 |
+
"epoch": 1.9010922330097086,
|
| 2104 |
+
"grad_norm": 0.6359046697616577,
|
| 2105 |
+
"learning_rate": 3.270822816527325e-08,
|
| 2106 |
+
"loss": 0.07682465314865113,
|
| 2107 |
+
"memory(GiB)": 40.4,
|
| 2108 |
+
"step": 1045,
|
| 2109 |
+
"token_acc": 0.969047619047619,
|
| 2110 |
+
"train_speed(iter/s)": 0.077498
|
| 2111 |
+
},
|
| 2112 |
+
{
|
| 2113 |
+
"epoch": 1.9101941747572817,
|
| 2114 |
+
"grad_norm": 0.5813617706298828,
|
| 2115 |
+
"learning_rate": 2.7041851849043678e-08,
|
| 2116 |
+
"loss": 0.0773731827735901,
|
| 2117 |
+
"memory(GiB)": 40.4,
|
| 2118 |
+
"step": 1050,
|
| 2119 |
+
"token_acc": 0.9674861221252974,
|
| 2120 |
+
"train_speed(iter/s)": 0.077486
|
| 2121 |
+
},
|
| 2122 |
+
{
|
| 2123 |
+
"epoch": 1.9192961165048543,
|
| 2124 |
+
"grad_norm": 0.4645262062549591,
|
| 2125 |
+
"learning_rate": 2.1911420057117994e-08,
|
| 2126 |
+
"loss": 0.07277056574821472,
|
| 2127 |
+
"memory(GiB)": 40.4,
|
| 2128 |
+
"step": 1055,
|
| 2129 |
+
"token_acc": 0.9690721649484536,
|
| 2130 |
+
"train_speed(iter/s)": 0.077447
|
| 2131 |
+
},
|
| 2132 |
+
{
|
| 2133 |
+
"epoch": 1.9283980582524272,
|
| 2134 |
+
"grad_norm": 0.8828046917915344,
|
| 2135 |
+
"learning_rate": 1.7318044667119226e-08,
|
| 2136 |
+
"loss": 0.07312785387039185,
|
| 2137 |
+
"memory(GiB)": 40.4,
|
| 2138 |
+
"step": 1060,
|
| 2139 |
+
"token_acc": 0.9675118858954042,
|
| 2140 |
+
"train_speed(iter/s)": 0.077476
|
| 2141 |
+
},
|
| 2142 |
+
{
|
| 2143 |
+
"epoch": 1.9375,
|
| 2144 |
+
"grad_norm": 0.8438335657119751,
|
| 2145 |
+
"learning_rate": 1.3262721164712667e-08,
|
| 2146 |
+
"loss": 0.07410634756088257,
|
| 2147 |
+
"memory(GiB)": 40.4,
|
| 2148 |
+
"step": 1065,
|
| 2149 |
+
"token_acc": 0.9698651863600317,
|
| 2150 |
+
"train_speed(iter/s)": 0.077482
|
| 2151 |
+
},
|
| 2152 |
+
{
|
| 2153 |
+
"epoch": 1.9466019417475728,
|
| 2154 |
+
"grad_norm": 0.6822603344917297,
|
| 2155 |
+
"learning_rate": 9.746328427863993e-09,
|
| 2156 |
+
"loss": 0.0720213532447815,
|
| 2157 |
+
"memory(GiB)": 40.4,
|
| 2158 |
+
"step": 1070,
|
| 2159 |
+
"token_acc": 0.9666666666666667,
|
| 2160 |
+
"train_speed(iter/s)": 0.077488
|
| 2161 |
+
},
|
| 2162 |
+
{
|
| 2163 |
+
"epoch": 1.9557038834951457,
|
| 2164 |
+
"grad_norm": 0.5685479640960693,
|
| 2165 |
+
"learning_rate": 6.769628536364981e-09,
|
| 2166 |
+
"loss": 0.07333976030349731,
|
| 2167 |
+
"memory(GiB)": 40.4,
|
| 2168 |
+
"step": 1075,
|
| 2169 |
+
"token_acc": 0.973015873015873,
|
| 2170 |
+
"train_speed(iter/s)": 0.077502
|
| 2171 |
+
},
|
| 2172 |
+
{
|
| 2173 |
+
"epoch": 1.9648058252427183,
|
| 2174 |
+
"grad_norm": 0.5445531606674194,
|
| 2175 |
+
"learning_rate": 4.333266606676711e-09,
|
| 2176 |
+
"loss": 0.07253679037094116,
|
| 2177 |
+
"memory(GiB)": 40.4,
|
| 2178 |
+
"step": 1080,
|
| 2179 |
+
"token_acc": 0.9730586370839936,
|
| 2180 |
+
"train_speed(iter/s)": 0.077494
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"epoch": 1.9739077669902914,
|
| 2184 |
+
"grad_norm": 0.6113319993019104,
|
| 2185 |
+
"learning_rate": 2.4377706521164224e-09,
|
| 2186 |
+
"loss": 0.07309662699699401,
|
| 2187 |
+
"memory(GiB)": 40.4,
|
| 2188 |
+
"step": 1085,
|
| 2189 |
+
"token_acc": 0.9722222222222222,
|
| 2190 |
+
"train_speed(iter/s)": 0.077475
|
| 2191 |
+
},
|
| 2192 |
+
{
|
| 2193 |
+
"epoch": 1.983009708737864,
|
| 2194 |
+
"grad_norm": 0.5483999252319336,
|
| 2195 |
+
"learning_rate": 1.0835514684262583e-09,
|
| 2196 |
+
"loss": 0.07428893446922302,
|
| 2197 |
+
"memory(GiB)": 40.4,
|
| 2198 |
+
"step": 1090,
|
| 2199 |
+
"token_acc": 0.9690966719492868,
|
| 2200 |
+
"train_speed(iter/s)": 0.077464
|
| 2201 |
+
},
|
| 2202 |
+
{
|
| 2203 |
+
"epoch": 1.992111650485437,
|
| 2204 |
+
"grad_norm": 0.6084752082824707,
|
| 2205 |
+
"learning_rate": 2.7090254474421154e-10,
|
| 2206 |
+
"loss": 0.07023123502731324,
|
| 2207 |
+
"memory(GiB)": 40.4,
|
| 2208 |
+
"step": 1095,
|
| 2209 |
+
"token_acc": 0.9786223277909739,
|
| 2210 |
+
"train_speed(iter/s)": 0.077453
|
| 2211 |
+
},
|
| 2212 |
+
{
|
| 2213 |
+
"epoch": 2.0,
|
| 2214 |
+
"grad_norm": 0.5853410363197327,
|
| 2215 |
+
"learning_rate": 0.0,
|
| 2216 |
+
"loss": 0.0724187433719635,
|
| 2217 |
+
"memory(GiB)": 40.4,
|
| 2218 |
+
"step": 1100,
|
| 2219 |
+
"token_acc": 0.9679780420860018,
|
| 2220 |
+
"train_speed(iter/s)": 0.077495
|
| 2221 |
+
}
|
| 2222 |
+
],
|
| 2223 |
+
"logging_steps": 5,
|
| 2224 |
+
"max_steps": 1100,
|
| 2225 |
+
"num_input_tokens_seen": 0,
|
| 2226 |
+
"num_train_epochs": 2,
|
| 2227 |
+
"save_steps": 100,
|
| 2228 |
+
"stateful_callbacks": {
|
| 2229 |
+
"TrainerControl": {
|
| 2230 |
+
"args": {
|
| 2231 |
+
"should_epoch_stop": false,
|
| 2232 |
+
"should_evaluate": false,
|
| 2233 |
+
"should_log": false,
|
| 2234 |
+
"should_save": true,
|
| 2235 |
+
"should_training_stop": true
|
| 2236 |
+
},
|
| 2237 |
+
"attributes": {}
|
| 2238 |
+
}
|
| 2239 |
+
},
|
| 2240 |
+
"total_flos": 3.488531281539498e+18,
|
| 2241 |
+
"train_batch_size": 1,
|
| 2242 |
+
"trial_name": null,
|
| 2243 |
+
"trial_params": null
|
| 2244 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:39ee48a7bb7b7a5bb370c36f96dc579ae71d79b3b404edce79e93b50b1f18da2
|
| 3 |
+
size 8120
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if ZERO_STAGE not in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info("Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info("Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|