| --- | |
| language: | |
| - en | |
| - te | |
| tags: | |
| - translation | |
| - machine-translation | |
| - NLP | |
| - pytorch | |
| license: "MIT" | |
| datasets: | |
| - hima06varshini/english-telugu-parallel-corpus | |
| widget: | |
| - text: "Hello, how are you?" | |
| --- | |
| # π English-to-Telugu Translation Model | |
| This model translates **English** text into **Telugu** using a Transformer-based approach. | |
| ## π Model Details | |
| - **Model Name**: `hima06varshini/english-to-telugu-translation` | |
| - **Developed by**: Y. Himavarshini | |
| - **License**: MIT License | |
| ## π Usage | |
| ```python | |
| from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| model_name = "hima06varshini/english-to-telugu-translation" | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| def translate(text): | |
| inputs = tokenizer(text, return_tensors="pt") | |
| outputs = model.generate(**inputs) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| print(translate("Hello, how are you?")) |